A Host–Guest Platform for Highly Efficient, Quantitative, and Rapid Detection of Nitroreductase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentation
2.2. Synthesis of Compound 2
2.3. Synthesis of Compound GP-OH
2.4. Synthesis of Compound GP-NTR
2.5. The General Procedure for In Vitro Spectra Measurement
2.6. Kinetic Study of GP-NTR and Zn-MPB⊃GP-NTR Reacting with NTR
2.7. ITC Experiments
2.8. Molecular Docking Preparation
2.9. HPLC Analysis
2.10. Cell Culture and Cell Cytotoxicity Studies
2.11. Confocal Fluorescence Imaging for Cells
2.12. Flow Cytometry Analyses
2.13. Establishment of Mice Model
3. Results and Discussion
3.1. Preparation and Characterization of Zn-MPB⊃GP-NTR
3.2. Molecular Docking
3.3. Fluorescence Responses of Zn−MPB⊃GP-NTR toward NTR
3.4. Imaging NTR in Cancer Cells by Zn-MPB⊃GP-NTR
3.5. In Vivo Fluorescence Imaging of NTR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janczy-Cempa, E.; Mazuryk, O.; Kania, A.; Brindell, M. Significance of Specific Oxidoreductases in the Design of Hypoxia-Activated Prodrugs and Fluorescent Turn off–on Probes for Hypoxia Imaging. Cancers 2022, 14, 2686–2711. [Google Scholar] [CrossRef] [PubMed]
- Multhoff, G.; Radons, J.; Vaupel, P. Critical Role of Aberrant Angiogenesis in the Development of Tumor Hypoxia and Associated Radioresistance. Cancers 2014, 6, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Kheshtchin, N.; Hadjati, J. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy. J. Cell. Physiol. 2022, 237, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Chandel, N.S.; Simon, M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020, 21, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J.S.; Kaur, N.; Singh, N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens. Bioelectron. 2021, 191, 113441. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.G.; King, A.; de Moliner, F.; Vendrell, M.; da Silva Júnior, E.N. Quinone-based fluorophores for imaging biological processes. Chem. Soc. Rev. 2018, 47, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Pitsawong, W.; Hoben, J.P.; Miller, A.F. Understanding the Broad Substrate Repertoire of Nitroreductase Based on Its Kinetic Mechanism. J. Biol. Chem. 2014, 289, 15203–15214. [Google Scholar] [CrossRef]
- Liu, Y.F.; Li, J.Y.; Huang, H.J.; Shu, Y. A fluorescent probe for imaging nitroreductase with signal amplification in high-viscosity environments. J. Mater. Chem. B 2023, 11, 9509–9515. [Google Scholar] [CrossRef]
- Li, H.D.; Kim, D.Y.; Yao, Q.C.; Ge, H.Y.; Chung, J.W.; Fan, J.L.; Wang, J.Y.; Peng, X.J.; Yoon, J. Activity-Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image-Guided Surgery. Angew. Chem. Int. Ed. 2021, 60, 17268–17289. [Google Scholar] [CrossRef]
- Qi, Y.L.; Guo, L.; Chen, L.L.; Li, H.; Yang, Y.S.; Jiang, A.Q.; Zhu, H.L. Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord. Chem. Rev. 2020, 421, 213460. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, S.; Li, D.; Yuan, J.; Xu, J.; Shao, S. A mitochondria-targeting nitroreductase fluorescent probe with large Stokes shift and long-wavelength emission for imaging hypoxic status in tumor cells. Anal. Chim. Acta 2020, 1103, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.B.; Hu, D.H.; Yin, J.M.; Sun, K.S.; Chen, L.J.; Liu, S.J.; Li, F.Y.; Zhao, Q. An iridium complex-based probe for phosphorescent lifetime-elongated imaging of nitroreductase in living cells. Sens. Actuators B Chem. 2024, 401, 134960. [Google Scholar] [CrossRef]
- Xu, Y.M.; Hu, B.; Cui, Y.J.; Li, L.; Nian, F.; Zhang, Z.X.; Wang, W.T. A highly selective ratio-metric fluorescent sensor for visualizing nitroreductase in hypoxic cells. Chem. Commun. 2024, 60, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Brennecke, B.; Wang, Q.; Zhang, Q.; Hu, H.Y.; Nazare, M. An Activatable Lanthanide Luminescent Probe for Time-Gated Detection of Nitroreductase in Live Bacteria. Angew. Chem. Int. Ed. 2020, 59, 8512–8516. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Lee, H.; Ryu, H.G.; Singha, S.; Lee, Y.M.; Reo, Y.J.; Jun, Y.W.; Kim, K.H.; Kim, W.J.; Ahn, K.H. A Study on Hypoxia Susceptibility of Organ Tissues by Fluorescence Imaging with a Ratiometric Nitroreductase Probe. ACS Sens. 2021, 6, 148–155. [Google Scholar] [CrossRef]
- Li, T.; Gu, Q.S.; Chao, J.J.; Liu, T.; Mao, G.J.; Li, Y.F.; Li, C.Y. An intestinal-targeting near-infrared probe for imaging nitroreductase in inflammatory bowel disease. Sens. Actuators B Chem. 2024, 403, 135181. [Google Scholar] [CrossRef]
- Li, M.R.; Zhang, Y.; Ren, X.J.; Niu, W.C.; Yuan, Q.; Cao, K.; Zhang, J.C.; Gao, X.Y.; Su, D.D. Activatable fluorogenic probe for accurate imaging of ulcerative colitis hypoxia in vivo. Chem. Commun. 2022, 58, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Chai, X.H.; He, X.P.; Kim, H.J.; Yoon, J.; Tian, H. Fluorogenic probes for disease-relevant enzymes. Chem. Soc. Rev. 2019, 48, 683–722. [Google Scholar] [CrossRef]
- Meng, T.J.; Ma, W.B.; Fan, M.Y.; Tang, W.; Duan, X.R. Enhancing the Contrast of Tumor Imaging for Image-Guided Surgery Using a Tumor-Targeting Probiotic with the Continuous Expression of a Biomarker. Anal. Chem. 2022, 94, 10109–10117. [Google Scholar] [CrossRef]
- Fu, Y.X.; Guo, W.Y.; Wang, N.; Dai, Y.J.; Zhang, Z.Y.; Sun, X.L.; Yang, W.C.; Yang, G.F. Diagnosis of Bacterial Plant Diseases via a Nitroreductase-Activated Fluorescent Sensor. Anal. Chem. 2022, 94, 17692–17699. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; New, E.J. Bioinspired Small-Molecule Tools for the Imaging of Redox Biology. Acc. Chem. Res. 2019, 52, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.W.; Freinkman, E.; Wang, T.; Birsoy, K.; Sabatini, D.M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 2016, 166, 1324–1337. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.H.; Yang, J.; Yang, Y.W. Supramolecular Assemblies with Aggregation-Induced Emission Properties for Sensing and Detection. Chem. Eur. J. 2022, 28, e202103185. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Lei, Q.; Zhong, H.C.; Ren, T.B.; Sun, Y.; Zhang, X.B.; Yuan, L. Fluorophore-based host–guest assembly complexes for imaging and therapy. Chem. Commun. 2023, 59, 3024–3039. [Google Scholar] [CrossRef]
- Tarzia, A.; Jelfs, K.E. Unlocking the computational design of metal–organic cages. Chem. Commun. 2022, 58, 3717–3730. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Slappendel, L.; Nguyen, B.T.; von Krbek, L.K.S.; Ronson, T.K.; Castilla, A.M.; Nitschke, J.R. Light-Powered Reversible Guest Release and Uptake from Zn4L4 Capsules. J. Am. Chem. Soc. 2023, 145, 3828–3832. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, Y.; Yang, H.; Jia, X.C.; Li, H.Y.; He, C.; Si, W.; Duan, C.Y. Supramolecular Host–Guest Strategy for the Accelerating Detection of Nitroreductase. ACS Appl. Mater. Interfaces 2023, 15, 21198–21209. [Google Scholar] [CrossRef]
- Zhao, L.; Cai, J.K.; Li, Y.N.; Wei, J.W.; Duan, C.Y. A host–guest approach to combining enzymatic and artificial catalysis for catalyzing biomimetic monooxygenation. Nat. Commun. 2020, 11, 2903. [Google Scholar] [CrossRef]
- Wei, J.W.; Zhao, L.; Zhang, Y.; Han, G.; He, C.; Wang, C.; Duan, C.Y. Enzyme Grafting with a Cofactor-Decorated Metal-Organic Capsule for Solar-to-Chemical Conversion. J. Am. Chem. Soc. 2023, 145, 6719–6729. [Google Scholar] [CrossRef]
- Zang, S.P.; Shu, W.; Shen, T.J.; Gao, C.C.; Tian, Y.; Jing, J.; Zhang, X.L. Palladium-triggered ratiometric probe reveals CO’s cytoprotective effects in mitochondria. Dye. Pigment. 2020, 173, 107861. [Google Scholar] [CrossRef]
- Crofts, T.S.; Sontha, P.; King, A.O.; Wang, B.; Biddy, B.A.; Zanolli, N.; Gaumnitz, J.; Dantas, G. Discovery and characterization of a nitroreductase capable of conferring bacterial resistance to chloramphenicol. Cell Chem. Biol. 2019, 26, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, S.; Nayek, A.; Roy, B.; Dey, A. Induction of enzyme-like peroxidase activity in an iron porphyrin complex using second sphere interactions. Inorg. Chem. 2019, 58, 2954–2964. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.K.; Zhao, L.; Li, Y.N.; He, C.; Wang, C.; Duan, C.Y. Binding of Dual-Function Hybridized Metal–Organic Capsules to Enzymes for Cascade Catalysis. JACS Au 2022, 2, 1736–1746. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Wang, H.L.; Nie, G. Ultrasensitive Fibroblast Activation Protein-α-Activated Fluorogenic Probe Enables Selective Imaging and Killing of Melanoma In Vivo. ACS Sens. 2022, 7, 1837–1846. [Google Scholar] [CrossRef]
- Fang, Y.; Powell, J.A.; Li, E.; Wang, Q.; Perry, Z.; Kirchon, A.; Yang, X.; Xiao, Z.; Zhu, C.; Zhang, L.; et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 2019, 48, 4707–4730. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jing, X.; Shi, Y.P.; Wu, Y.C.; Duan, C.Y. Modifying Enzymatic Substrate Binding within a Metal–Organic Capsule for Supramolecular Catalysis. J. Am. Chem. Soc. 2023, 145, 10136–10148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Saha, M.L.; Wang, M.; Zhou, Z.X.; Song, B.; Lu, C.J.; Yan, X.Z.; Li, X.P.; Huang, F.H.; Yin, S.C.; et al. Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. J. Am. Chem. Soc. 2017, 139, 5067–5074. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Bai, S.; Han, Y.F. Water-Soluble Self-Assembled Cage with Triangular Metal–Metal-Bonded Units Enabling the Sequential Selective Separation of Alkanes and Isomeric Molecules. J. Am. Chem. Soc. 2022, 144, 16191–16198. [Google Scholar] [CrossRef]
- Mei, Y.X.; Zhang, Q.W.; Gu, Q.Y.; Liu, Z.C.; He, X.; Tian, Y. Pillar[5]arene-Based Fluorescent Sensor Array for Biosensing of Intracellular Multi-neurotransmitters through Host–Guest Recognitions. J. Am. Chem. Soc. 2022, 144, 2351–2359. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, J.; Sun, J.F.; Yang, J. Host–guest interactions of a twisted cucurbit[15]uril with paraquat derivatives and bispyridinium salts. Tetrahedron Lett. 2019, 60, 151022. [Google Scholar] [CrossRef]
- Sobiech, T.A.; Zhong, Y.L.; Miller, D.P.; McGrath, J.K.; Scalzo, C.T.; Redington, M.C.; Zurek, E.; Gong, B. Ultra-Tight Host-Guest Binding with Exceptionally Strong Positive Cooperativity. Angew. Chem. Int. Ed. 2022, 61, e202213467. [Google Scholar] [CrossRef]
- Bobylev, E.O.; Poole, D.A.; Bruin, B.; Reek, J.N.H. M6L12 Nanospheres with Multiple C70 Binding Sites for 1O2 Formation in Organic and Aqueous Media. J. Am. Chem. Soc. 2022, 144, 15633–15642. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.Y.; Yue, Y.X.; Ying, A.K.; Hu, X.Y.; Li, H.B.; Cai, K.; Guo, D.S. An Antitumor Dual-Responsive Host-Guest Supramolecular Polymer Based on Hypoxia-Cleavable Azocalix[4]arene. Angew. Chem. Int. Ed. 2023, 62, e202213578. [Google Scholar] [CrossRef] [PubMed]
- Demers, J.; Mittermaier, A. Binding Mechanism of an SH3 Domain Studied by NMR and ITC. J. Am. Chem. Soc. 2009, 131, 4355–4367. [Google Scholar] [CrossRef] [PubMed]
- Altmann, P.J.; Pöthig, A. Pillarplexes: A Metal–Organic Class of Supramolecular Hosts. J. Am. Chem. Soc. 2016, 138, 13171–13174. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, R.R.; Zhai, H.L.; Meng, Y.J.; Han, L.; Ren, C.L. The binding mechanism of nitroreductase fluorescent probe: Active pocket deformation and intramolecular hydrogen bonds. Int. J. Biol. Macromol. 2020, 150, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.L.; Wang, H.R.; Kang, Q.J.; Chen, L.L.; Qi, P.F.; He, Z.X.; Yang, Y.S.; Zhu, H.L. A versatile fluorescent probe for simultaneously detecting viscosity, polarity and nitroreductases and its application in bioimaging. Sens. Actuators B Chem. 2022, 352, 130989. [Google Scholar] [CrossRef]
- Chen, S.J.; Ma, X.D.; Wang, L.; Wu, Y.Y.; Wang, Y.P.; Hou, S.C.; Fan, W.K. Construction of an intelligent fluorescent probe that can accurately track β-galactosidase activity in fruits and living organisms. Sens. Actuators B Chem. 2023, 387, 133787. [Google Scholar] [CrossRef]
- Guo, H.W.; Yang, K.P.; Fan, X.P.; Chen, M.; Ke, G.L.; Ren, T.B.; Yuan, L.; Zhang, X.B. Designing a brightness-restored rhodamine derivative by the ortho-compensation effect for assessing drug-induced acute kidney injury. Anal. Chem. 2023, 95, 6863–6870. [Google Scholar] [CrossRef]
- Tang, Z.X.; Yan, Z.; Gong, L.L.; Zhang, L.; Yin, X.M.; Sun, J.; Wu, K.; Yang, W.J.; Fan, G.W.; Li, Y.L.; et al. Precise Monitoring and Assessing Treatment Response of Sepsis-Induced Acute Lung Hypoxia with a Nitroreductase-Activated Golgi-Targetable Fluorescent Probe. Anal. Chem. 2022, 94, 14778–14784. [Google Scholar] [CrossRef] [PubMed]
- Race, P.R.; Lovering, A.L.; Green, R.M.; Ossor, A.; White, S.A.; Searle, P.F.; Wrighton, C.J.; Hyde, E.I. Structural and Mechanistic Studies of Escherichia coli Nitroreductase with the Antibiotic Nitrofurazone. J. Biol. Chem. 2005, 280, 13256–13264. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Zhao, Z.X.; Weng, Y.R.; Gardner, S.H.; Brady, C.J.; Peguero, O.D.P.; Chan, J. Hydrolysis-Resistant Ester-Based Linkers for Development of Activity-Based NIR Bioluminescence Probes. J. Am. Chem. Soc. 2023, 145, 1460–1469. [Google Scholar] [CrossRef]
- Du, W.; Wang, J.Q.; Fang, H.X.; Ji, W.H.; Liu, Y.; Qu, Y.W.; Zhang, D.T.; Shao, T.; Hou, X.Y.; Wu, Q.; et al. Mitochondria-specific two-photon fluorogenic probe for simultaneously visualizing nitroreductase and viscosity in cancer cells. Sens. Actuators B Chem. 2022, 370, 132456. [Google Scholar] [CrossRef]
- Chen, S.Z.; Xiao, L.; Li, Y.; Qiu, M.S.; Yuan, Y.P.; Zhou, R.; Li, C.G.; Zhang, L.; Jiang, Z.X.; Liu, M.L.; et al. In Vivo Nitroreductase Imaging via Fluorescence and Chemical Shift Dependent 19F NMR. Angew. Chem. Int. Ed. 2022, 61, e202213495. [Google Scholar] [CrossRef]
- Zwicker, V.E.; Oliveira, B.L.; Yeo, J.H.; Fraser, S.T.; Bernardes, G.J.L.; New, E.J.; Jolliffe, K.A. A Fluorogenic Probe for Cell Surface Phosphatidylserine Using an Intramolecular Indicator Displacement Sensing Mechanism. Angew. Chem. Int. Ed. 2019, 58, 3087–3091. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Li, Z.; Hao, Y.T.; Zhang, Y.; Zhang, C.X. Near-Infrared Fluorescence Probe with a New Recognition Moiety for Specific Detection and Imaging of Aldehyde Dehydrogenase Expecting the Identification and Isolation of Cancer Stem Cells. Anal. Chem. 2022, 94, 17328–17333. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, L.; Gao, X.; Si, W.; Duan, C.Y. Cofactor-substrate-based Reporter for Enhancing Signaling Communications towards Hypoxia Enzyme Expression. Angew. Chem. Int. Ed. 2020, 59, 6021–6027. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, S.J.; Li, J.; Du, W.; Wu, Q. A novel pyrimidine-based two-photon fluorogenic probe for rapidly visualizing nitroreductase activity in hypoxic cancer cells and in vivo. Sens. Actuators B Chem. 2023, 390, 134015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, W.; Jiao, Y.; Jia, X.; Gao, M.; Zhang, Y.; Gao, Y.; Zhang, L.; Duan, C. A Host–Guest Platform for Highly Efficient, Quantitative, and Rapid Detection of Nitroreductase. Chemosensors 2024, 12, 145. https://doi.org/10.3390/chemosensors12080145
Si W, Jiao Y, Jia X, Gao M, Zhang Y, Gao Y, Zhang L, Duan C. A Host–Guest Platform for Highly Efficient, Quantitative, and Rapid Detection of Nitroreductase. Chemosensors. 2024; 12(8):145. https://doi.org/10.3390/chemosensors12080145
Chicago/Turabian StyleSi, Wen, Yang Jiao, Xianchao Jia, Meng Gao, Yihao Zhang, Ye Gao, Lei Zhang, and Chunying Duan. 2024. "A Host–Guest Platform for Highly Efficient, Quantitative, and Rapid Detection of Nitroreductase" Chemosensors 12, no. 8: 145. https://doi.org/10.3390/chemosensors12080145
APA StyleSi, W., Jiao, Y., Jia, X., Gao, M., Zhang, Y., Gao, Y., Zhang, L., & Duan, C. (2024). A Host–Guest Platform for Highly Efficient, Quantitative, and Rapid Detection of Nitroreductase. Chemosensors, 12(8), 145. https://doi.org/10.3390/chemosensors12080145