Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,470)

Search Parameters:
Keywords = N-doped

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 779 KB  
Article
The Effect of Educational Intervention on Legal Anti-Doping Knowledge and Doping Tendency in Elite Athletes
by Antonela Sinkovic, Dinko Pivalica, Igor Jukic, Miran Pehar, Bozen Pivalica, Ivana Cerkez Zovko and Damir Sekulic
Sports 2026, 14(1), 35; https://doi.org/10.3390/sports14010035 - 9 Jan 2026
Abstract
Studies have rarely examined the effects of changes in legal anti-doping knowledge (LADK) on doping tendencies in athletes. This study aimed to evaluate the effectiveness of a structured educational intervention focused on LADK and to analyze how LADK changes affect elite athletes’ doping [...] Read more.
Studies have rarely examined the effects of changes in legal anti-doping knowledge (LADK) on doping tendencies in athletes. This study aimed to evaluate the effectiveness of a structured educational intervention focused on LADK and to analyze how LADK changes affect elite athletes’ doping tendency. The participants were athletes (n = 310; 156 females; 24.1 ± 4.2 years of age), all actively competing at the senior national or international level in either individual (N = 119) or team sports (N = 191), tested on sociodemographic-, sport-, doping-factors (including doping tendency—DT), and LADK. Participants were randomly divided into an experimental group (E: N = 140) and a control group (C: N = 170). The E group participated in a structured educational program on LADK. A pre- and posttest design was used to evaluate changes in LADK (dependent variable). Logistic regression was calculated to evaluate the association between LADK and binarized DT (negative vs. neutral/positive DT). Factorial ANOVA for repeated measurements revealed significant improvement in LADK in the E group, with significant ANOVA effects for time (F test = 35.8, p < 0.05) and time × group interaction (F test = 12.27, p < 0.05). The logistic regression did not reveal significant correlations between LADK and DT. Further studies exploring younger athletes, as well as long-term, multidimensional interventions, are warranted. Full article
14 pages, 2325 KB  
Article
Two Birds with One Stone: One-Pot Conversion of Waste Biomass into N-Doped Porous Biochar for Efficient Formaldehyde Adsorption
by Qingsong Zhao, Ning Xiang, Miao Xue, Chunlin Shang, Yiyi Li, Mengzhao Li, Qiqing Ji, Yangce Liu, Hongyu Hao, Zheng Xu, Fei Yang, Tiezheng Wang, Qiaoyan Li and Shaohua Wu
Molecules 2026, 31(2), 201; https://doi.org/10.3390/molecules31020201 - 6 Jan 2026
Viewed by 117
Abstract
Converting agricultural solid waste into porous biochar for HCHO adsorption is considered as a “two birds with one stone” strategy, which can achieve the environmental goal of “treating waste with waste”. Unfortunately, the HCHO adsorption performance of pristine biochar is generally unsatisfactory, which [...] Read more.
Converting agricultural solid waste into porous biochar for HCHO adsorption is considered as a “two birds with one stone” strategy, which can achieve the environmental goal of “treating waste with waste”. Unfortunately, the HCHO adsorption performance of pristine biochar is generally unsatisfactory, which is derived from its poor surface activity and insufficient number of pores. In this study, a series of nitrogen-doped porous biochars with adjustable N-containing groups and porosity were synthesized by one-step pyrolysis of melamine and waste jujube pit in different mass ratios (NBC-x, x represented the mass ratio of melamine to waste jujube pit, x = 4–12) for HCHO adsorption. The HCHO adsorption tests indicated that the insertion of nitrogen-containing species improved the adsorption capacity of pristine biochar (BC). However, after the insertion of excessive nitrogen-containing species, the porosity of the samples significantly decreased due to the blockage of pores, which could be disadvantageous for HCHO adsorption. DFT calculation results showed that N doping (especially pyrrolic-N) significantly increased the maxima of absolute ESP values of the carbonaceous models and consequently enhanced the affinity between polar HCHO and carbonaceous models (varied from −20.65 kJ/mol to −33.26 kJ/mol). Thus, the NBC-8 possessing both substantial nitrogen content (19.81 wt. %) and developed porosity (specific surface area of 223 m2/g) exhibited the highest HCHO uptake of 6.30 mg/g. This was approximately 6.4 times larger than that of BC. This work not only deepens the understanding of the HCHO adsorption mechanism at molecular scale, but also concurrently offers a facile and eco-friendly route of N-doped porous biochar preparation, an efficient technology with high-value utilization of waste biomass resources, and a sustainable method of pollution remediation. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Figure 1

30 pages, 9295 KB  
Review
Nonmetallic Heteroatom Engineering in Copper-Based Electrocatalysts: Advances in CO2 Reduction
by Ningjing Li, Hongzhen Peng, Xue Liu, Jiang Li, Jing Chen and Lihua Wang
Catalysts 2026, 16(1), 61; https://doi.org/10.3390/catal16010061 - 4 Jan 2026
Viewed by 272
Abstract
With the escalating challenges of global warming and the energy crisis, electrocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising strategy to mitigate atmospheric CO2 concentrations while converting it into high-value-added chemicals. Among various CO2RR catalysts, [...] Read more.
With the escalating challenges of global warming and the energy crisis, electrocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising strategy to mitigate atmospheric CO2 concentrations while converting it into high-value-added chemicals. Among various CO2RR catalysts, copper-based materials exhibit unique capabilities for C-C coupling, yet their practical application remains constrained by several limitations: Low selectivity for C2+ products (typically <60%); Catalyst instability due to dynamic reconfiguration of active sites under high overpotentials; poor energy efficiency caused by competing hydrogen evolution reactions (HERs), etc. Recent studies demonstrate that nonmetallic heteroatom doping or functionalized ligand incorporation can effectively modulate the electronic structure and surface microenvironment of Cu-based catalysts, thereby enhancing CO2RR performance. In this review, we comprehensively summarize recent advances in such strategies. We first systematically elucidate the unique advantages of copper-based catalysts as benchmark materials for multi-carbon (C2+) product synthesis, along with the current challenges they face. Subsequently, we highlight recent advances in modulating copper-based catalysts through the incorporation of diverse nonmetallic heteroatoms (e.g., N, S, B, P, halogens) or the introduction of functionalized ligands, with a particular focus on mechanistic insights and characterization methods aimed at enhancing C-C coupling efficiency and improving C2+ product selectivity. Finally, we present perspectives on the remaining opportunities and challenges in this research field. Full article
(This article belongs to the Special Issue Recent Advances in Photo/Electrocatalytic CO2 Reduction)
Show Figures

Graphical abstract

15 pages, 2113 KB  
Article
Enhanced Toluene Combustion over Cryptomelane Catalysts: Influence of Cu Doping on Physicochemical Properties and Catalytic Performance
by Jakub Mokrzycki, Joanna Kryściak-Czerwenka, Dorota Duraczyńska, Mateusz Marzec and Robert Karcz
Materials 2026, 19(1), 159; https://doi.org/10.3390/ma19010159 - 2 Jan 2026
Viewed by 235
Abstract
The catalytic combustion of toluene over cryptomelane and Cu-doped cryptomelane catalysts was investigated to evaluate the effect of copper incorporation on catalytic performance. It was found that a small addition of Cu into the cryptomelane framework resulted in a notable decrease in the [...] Read more.
The catalytic combustion of toluene over cryptomelane and Cu-doped cryptomelane catalysts was investigated to evaluate the effect of copper incorporation on catalytic performance. It was found that a small addition of Cu into the cryptomelane framework resulted in a notable decrease in the temperature of 90% toluene conversion. To elucidate the structure–activity relationship, the catalysts were comprehensively characterized using XRD, FTIR, SEM-EDS, N2 physisorption, XRF, XPS, O2-TPD, and H2-TPR techniques. The results revealed that Cu doping modifies the physicochemical properties of cryptomelane, most importantly the share of lattice and surface oxygen species, enhancing redox behavior and oxygen mobility, which in turn improves catalytic activity. For the lowest dose of Cu, both the temperatures of 50 and 90% conversion were found to be lowest among investigated catalyst series: 180 and 195 °C, respectively. These findings highlight the potential of Cu-doped cryptomelane as an efficient catalyst for the abatement of volatile organic compounds. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Graphical abstract

17 pages, 5432 KB  
Article
Chemical Compatibility of n-Type Dopants for SWCNT Cathodes in Inverted Perovskite Solar Cells
by Achmad Syarif Hidayat, Naoki Ueoka, Hisayoshi Oshima, Yoshimasa Hijikata and Yutaka Matsuo
Nanomaterials 2026, 16(1), 64; https://doi.org/10.3390/nano16010064 - 1 Jan 2026
Viewed by 320
Abstract
The advancement of efficient and stable perovskite solar cells (PSCs) increasingly depends on developing flexible, metal-free electrode architectures. Single-walled carbon nanotubes (SWCNTs) offer chemical robustness, high conductivity, and mechanical flexibility, making them promising candidates to replace brittle metal cathodes. However, pristine SWCNTs are [...] Read more.
The advancement of efficient and stable perovskite solar cells (PSCs) increasingly depends on developing flexible, metal-free electrode architectures. Single-walled carbon nanotubes (SWCNTs) offer chemical robustness, high conductivity, and mechanical flexibility, making them promising candidates to replace brittle metal cathodes. However, pristine SWCNTs are intrinsically p-type, creating energy barriers and recombination losses in inverted (p–i–n) PSCs. Achieving stable n-type doping compatible with both SWCNTs and perovskites is therefore critical. Here, seven representative n-type dopants, small molecules (TBD and TPP), ionic salts (TBAI, TBABr, and B18C6·KCl), and polymers (PEI and PVP) were systematically investigated to elucidate their effects on doping efficiency and interfacial stability. Morphological, structural, and electronic analyses supported by DFT calculations reveal that strong bases and ionic dopants promote perovskite degradation, whereas polymeric and coordination-type dopants preserve crystallinity and surface uniformity. Among them, PEI- and TPP-doped SWCNT electrodes achieved the best device performance, with power conversion efficiencies of 9.6% and 8.1%, respectively, demonstrating efficient electron extraction and interfacial stability. These findings highlight that interfacial chemical compatibility rather than intrinsic donor strength governs the effectiveness of n-type SWCNT doping, providing rational design principles for stable, metal-free perovskite photovoltaics. Full article
Show Figures

Graphical abstract

15 pages, 2112 KB  
Article
Tuning the Oxidative Activity of Single Atom Catalysts by Carbon Doping in Hexagonal Boron Nitride Supports
by Jie Zhang, Yingguang Zhou and Naixia Lv
Nanomaterials 2026, 16(1), 61; https://doi.org/10.3390/nano16010061 - 31 Dec 2025
Viewed by 234
Abstract
Single-atom catalysts (SACs) have gained significant attention due to their exceptional metal atom utilization efficiency and high catalytic activity. Using DFT calculations, single-atom metals (M = Ag, Au) on defective and carbon-doped h-BN supports (M@BN and M@nC-BN) are systematically investigated to elucidate the [...] Read more.
Single-atom catalysts (SACs) have gained significant attention due to their exceptional metal atom utilization efficiency and high catalytic activity. Using DFT calculations, single-atom metals (M = Ag, Au) on defective and carbon-doped h-BN supports (M@BN and M@nC-BN) are systematically investigated to elucidate the effects of C-doping concentration and configuration on their structural stability, and to explore their potential application in O2 activation. The results indicate the singlet O2 adsorbed configuration is more effective in activating the O–O bond than the triplet one. Ag@4C-BN and Au@6C-BN exhibit good stability comparable to their undoped counterparts. Compared to M@BN, the M@nC-BN surfaces, particularly M@4C-BN, exhibit significantly enhanced adsorption of singlet O2, accompanied by the most notable O–O bond elongation, indicating its superior capability for O2 activation. DOS and frontier orbital analysis reveals that C-doping upshifts the HOMO energy level of M@4C-BN, endowing the catalyst with a stronger electron-donating ability to O2 2π* and leading to efficient activation. This study provides a theoretical basis for the rational design and optimization of BN-based single-atom catalysts. Full article
(This article belongs to the Special Issue Theoretical Simulations on Single-Atom Materials)
Show Figures

Graphical abstract

14 pages, 4219 KB  
Article
In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction
by Mingyuan Zhang, Jinru Wang, Caihan Zhu, Yuning Zhang, Dewei Li and Shuozhen Hu
Int. J. Mol. Sci. 2026, 27(1), 434; https://doi.org/10.3390/ijms27010434 - 31 Dec 2025
Viewed by 190
Abstract
Developing efficient and durable oxygen reduction reaction (ORR) catalysts is crucial for advancing fuel cell technology and sustainable energy conversion. In this study, a scalable strategy was employed to synthesize ZIF-derived nitrogen-sulfur co-doped carbon nanosheets embedded with in situ generated ZnS and Co [...] Read more.
Developing efficient and durable oxygen reduction reaction (ORR) catalysts is crucial for advancing fuel cell technology and sustainable energy conversion. In this study, a scalable strategy was employed to synthesize ZIF-derived nitrogen-sulfur co-doped carbon nanosheets embedded with in situ generated ZnS and Co9S8 nanoparticles. The synergistic effect of heteroatom doping and metal sulfide modification effectively modulated the electronic structure, optimized charge transfer pathways, and enhanced structural stability. The optimized catalyst exhibited a half-wave potential of 0.83 V vs. RHE, close to that of commercial 20 wt% Pt/C (0.85 V), excellent 4e ORR selectivity, and exceptional stability, with only a ~15 mV degradation after 10,000 cycles. These results demonstrate that the combination of nitrogen sulfur co-doping and in situ metal sulfide addition pro-vides an effective approach for designing highly active and durable non-precious metal catalysts for the ORR. This synthetic concept provides practical guidance for the scalable preparation of multifunctional nanomaterial-based catalysts for electrochemical energy applications. Full article
(This article belongs to the Special Issue Molecular Insight into Catalysis of Nanomaterials)
Show Figures

Figure 1

14 pages, 1184 KB  
Article
Highly Efficient Electrochemical Degradation of Dyes via Oxygen Reduction Reaction Intermediates on N-Doped Carbon-Based Composites Derived from ZIF-67
by Maja Ranković, Nemanja Gavrilov, Anka Jevremović, Aleksandra Janošević Ležaić, Aleksandra Rakić, Danica Bajuk-Bogdanović, Maja Milojević-Rakić and Gordana Ćirić-Marjanović
Processes 2026, 14(1), 130; https://doi.org/10.3390/pr14010130 - 30 Dec 2025
Viewed by 223
Abstract
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was [...] Read more.
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was studied. Higher temperature and prolonged thermal treatment resulted in more uniform particle size distribution (as determined by nanoparticle tracking analysis, NTA) and surface charge lowering (as determined by zeta potential measurements). Surface-governed environmental applications of prepared cZIFs were tested using physical (adsorption) and electrochemical methods for dye degradation. Targeted dyes were methylene blue (MB) and methyl orange (MO), chosen as model compounds to establish the specificity of selected remediation procedures. Electrodegradation was initiated via an intermediate reactive oxygen species formed during oxygen reduction reaction (ORR) on cZIFs serving as electrocatalysts. The adsorption test showed relatively uniform adsorption sites at the surface of cZIFs, reaching a removal of over 70 mg/g for both dyes while governed by pseudo-first-order kinetics favored by higher mesoporosity. In the electro-assisted degradation process, cZIF samples demonstrated impressive efficiency, achieving almost complete degradation of MB and MO within 4.5 h. Detailed analysis of energy consumption in the degradation process enabled the calculation of the current conversion efficiency index and the amount of charge associated with O2•−/OH generation, normalized by the quantity of removed dye, for tested materials. Here, the proposed method will assist similar research studies on the removal of organic water pollutants to discriminate among electrode materials and procedures based on energy efficiency. Full article
Show Figures

Figure 1

13 pages, 1856 KB  
Article
White Organic Light-Emitting Diodes from Single-Component Nonconjugated Polymers by Combining Monomer Emission with Electromer Emission
by Chao Zheng, Mingze Li, Zhiwen Xu, Yaxuan Pan, Qi Zhou, Yujie Fu, Dongyue Cui, Huanhuan Li, Ye Tao and Runfeng Chen
Molecules 2026, 31(1), 101; https://doi.org/10.3390/molecules31010101 - 26 Dec 2025
Viewed by 288
Abstract
White organic light-emitting diodes (OLEDs) offer a promising solution for next-generation lighting technologies and their ability to emit white light through various mechanisms make them an attractive option for illumination and display applications. Here, we design and prepare a series of N, [...] Read more.
White organic light-emitting diodes (OLEDs) offer a promising solution for next-generation lighting technologies and their ability to emit white light through various mechanisms make them an attractive option for illumination and display applications. Here, we design and prepare a series of N,N-difluorenevinylaniline-based small molecules and polymer, and realize white OLEDs based on these luminescent materials with combined blue monomer emission and orange electromer emission upon electronic excitation in the solution-processed devices. Impressively, the single-component nonconjugated polymer exhibits the best device performance, because the nonconjugated structure favors good solubility of the polymers, while the conjugated starburst unit functions as highly luminescent fluorophore in both single molecular and aggregated structures for the blue and orange emissions, respectively. Specifically, the non-doped solution-processed OLEDs achieve warm white electroluminescence with a maximum luminance of 1806 cd/m2 and a maximum external quantum efficiency of 2.63%. And, the OLEDs based on the monomer also exhibit white electroluminescence with Commission Internationale de L’Eclairage coordinates of (0.30, 0.32). These results highlight a promising strategy for the material design and preparation of single-component nonconjugated polymers with rich emissive behaviors in solid states towards efficient and solution-processable white OLEDs. Full article
(This article belongs to the Special Issue Insight into Organic Semiconductor Materials)
Show Figures

Graphical abstract

21 pages, 1332 KB  
Article
Simulation of Perovskite Solar Cell with BaZr(S0.6Se0.4)3–Based Absorber Using SCAPS–1D
by Lihle Mdleleni, Sithenkosi Mlala, Tobeka Naki, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Processes 2026, 14(1), 87; https://doi.org/10.3390/pr14010087 - 26 Dec 2025
Viewed by 477
Abstract
The increasing impact of global warming is predominantly driven by the extensive use of fossil fuels, which release significant amounts of greenhouse gases into the atmosphere. This has led to a critical need for alternative, sustainable energy sources that can mitigate environmental impacts. [...] Read more.
The increasing impact of global warming is predominantly driven by the extensive use of fossil fuels, which release significant amounts of greenhouse gases into the atmosphere. This has led to a critical need for alternative, sustainable energy sources that can mitigate environmental impacts. Photovoltaic technology has emerged as a promising solution by harnessing renewable energy from the sun, providing a clean and inexhaustible power source. Perovskite solar cells (PSCs) are a class of hybrid organic–inorganic solar cells that have recently attracted significant scientific attention due to their low cost, relatively high efficiency, low–temperature processing routes, and longer carrier lifetimes. These characteristics make them a viable alternative to traditional fossil fuels, reducing the carbon footprint and contributing to the fight against global warming. In this study, the SCAPS–1D numerical simulator was used in the computational analysis of a PSC device with the configuration FTO/ETL/BaZr(S0.6Se0.4)3/HTL/Ir. Different hole transport layer (HTL) and electron transport layer (ETL) material were proposed and tested. The HTL materials included copper (I) oxide (Cu2O), 2,2′,7,7′–Tetrakis(N,N–di–p–methoxyphenylamine)9,9′–spirobifluorene (spiro–OMETAD), and poly(3–hexylthiophene) (P3HT), while the ETLs included cadmium suphide (CdS), zinc oxide (ZnO), and [6,6]–phenyl–C61–butyric acid methyl ester (PCBM). Finally, BaZr(S0.6Se0.4)3 was proposed as an absorber, and a fluorine–doped tin oxide glass substrate (FTO) was proposed as an anode. The metal back contact used was iridium. Photovoltaic parameters such as short circuit density (Isc), open circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE) were used to evaluate the performance of the device. The initial simulated primary device with the configuration FTO/CdS/BaZr(S0.6Se0.4)3/spiro–OMETAD/Ir gave a PCE of 5.75%. Upon testing different HTL materials, the best HTL was found to be Cu2O, and the PCE improved to 9.91%. Thereafter, different ETLs were also inserted and tested, and the best ETL was established to be ZnO, with a PCE of 10.10%. Ultimately an optimized device with a configuration of FTO/ZnO/BaZr(S0.6Se0.4)3/Cu2O/Ir was achieved. The other photovoltaic parameters for the optimized device were as follows: FF = 31.93%, Jsc = 14.51 mA cm−2, and Voc = 2.18 V. The results of this study will promote the use of environmentally benign BaZr(S0.6Se0.4)3–based absorber materials in PSCs for improved performance and commercialization. Full article
Show Figures

Figure 1

11 pages, 4932 KB  
Article
Enhanced Electron–Phonon Coupling of Superconductivity in Indium-Doped Topological Crystalline Insulator SnTe
by Kwan-Young Lee, Gareoung Kim, Jae Hyun Yun, Jin Hee Kim and Jong-Soo Rhyee
Materials 2026, 19(1), 73; https://doi.org/10.3390/ma19010073 - 24 Dec 2025
Viewed by 370
Abstract
Indium-doped SnTe (Sn1−xInxTe) provides a model platform for exploring the emergence of superconductivity within a topological crystalline insulator. Here, we present a systematic investigation of the structural, transport, and thermodynamic properties of high-quality single crystals with 0.0 ≤ x [...] Read more.
Indium-doped SnTe (Sn1−xInxTe) provides a model platform for exploring the emergence of superconductivity within a topological crystalline insulator. Here, we present a systematic investigation of the structural, transport, and thermodynamic properties of high-quality single crystals with 0.0 ≤ x ≤ 0.5. All compositions up to x = 0.4 form a single-phase cubic structure, enabling a controlled study of the superconducting state. Electrical resistivity and specific heat measurements reveal a bulk, fully gapped s-wave superconducting phase whose transition temperature increases monotonically with In concentration, reaching Tc ≈ 4.7 K at x = 0.5. Analysis of the electronic specific heat and McMillan formalism shows that the electron–phonon coupling constant λel-ph systematically increases with doping, while the Debye temperature systematically decreases, resulting in the lattice softening. This behavior, together with the observed evolution of the normal-state resistivity exponent from Fermi-liquid (n ≈ 2.04) toward non-Fermi-liquid values (n ≈ 1.72), demonstrates a clear crossover from weak to strong interaction with increasing In content. These results establish Sn1−xInxTe as a tunable superconducting system in which coupling strength can be continuously controlled, offering a promising platform for future studies on the interplay between phonon-mediated superconductivity and crystalline topological band structure. Full article
Show Figures

Figure 1

13 pages, 2273 KB  
Article
Weak Hydrogen Bond with Iodide Modulating Crystallization of Methylammonium Lead Iodide for High-Performance Perovskite Solar Cells
by Ning Kang, Lu Li, Zhe Wan, Liping Yang, Zhen Liang, Li Chen, Peng Li, Yongrong Sun, Zuyong Wang and Chenglong Wang
Micromachines 2026, 17(1), 15; https://doi.org/10.3390/mi17010015 - 24 Dec 2025
Viewed by 242
Abstract
The weak hydrogen bond with methylammonium iodide (MAI) dominates the formation of methylammonium lead iodide (MAPbI3) during its nucleation and growth process. Herein, a weak hydrogen bond involving iodide is designed between the MAI and glycerol molecule in mixed solvents containing [...] Read more.
The weak hydrogen bond with methylammonium iodide (MAI) dominates the formation of methylammonium lead iodide (MAPbI3) during its nucleation and growth process. Herein, a weak hydrogen bond involving iodide is designed between the MAI and glycerol molecule in mixed solvents containing N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) to delay the growth of MAPbI3 film. Incorporation of glycerol into the perovskite film indicates a larger grain size and suppressed nonradiative recombination of carriers in the film. Finally, the glycerol-doped perovskite solar cells (PSCs) achieve a champion power conversion efficiency (PCE) of up to 16.84%, with excellent stability to retain 92.05% of their initial PCE after 30 days of storage. The above results unveil a deep understanding of weak hydrogen bonds in high-performance perovskite photovoltaics. Full article
(This article belongs to the Special Issue Perovskite and Perovskite-Like Devices)
Show Figures

Figure 1

16 pages, 3407 KB  
Article
Unraveling the Hf4+ Site Occupation Transition in Dy: LiNbO3: A Combined Experimental and Theoretical Study on the Concentration Threshold Mechanism
by Shunxiang Yang, Li Dai, Jingchao Wang and Binyu Dai
Appl. Sci. 2026, 16(1), 165; https://doi.org/10.3390/app16010165 - 23 Dec 2025
Viewed by 236
Abstract
Precise control over defect structures is essential for tuning the functional properties of lithium niobate (LiNbO3) crystals. Although the threshold effect of Hf4+ doping is well recognized, its underlying atomic-scale mechanism, especially in systems co-doped with luminescent rare earth ions, [...] Read more.
Precise control over defect structures is essential for tuning the functional properties of lithium niobate (LiNbO3) crystals. Although the threshold effect of Hf4+ doping is well recognized, its underlying atomic-scale mechanism, especially in systems co-doped with luminescent rare earth ions, remains unclear. In this study, we combine experimental and theoretical approaches to elucidate the Hf4+ concentration-driven threshold behavior in Dy: LiNbO3 crystals. A series of crystals with Hf4+ concentrations of 2, 4, 6, and 8 mol% were grown using the Czochralski method. Characterization through XRD and IR spectroscopy identified a threshold near 4 mol%, evidenced by an inflection in lattice constants and a pronounced blue shift of the OH absorption peak. UV–Vis–NIR absorption spectra revealed a systematic enhancement of Dy3+f–f transition intensities, linking the global defect structure to the local crystal field of the optical activator. First-principles calculations showed that Hf4+ ions preferentially occupy Li sites, repairing antisite Nb defects (NbLi4+) below the threshold, and incorporate into Nb sites beyond it, inducing structural reorganization. Electron Localization Function analysis visualized strengthened Hf-O covalent bonding in the post-threshold regime. This work establishes a complete atomic-scale picture connecting dopant site preference, chemical bonding, and macroscopic properties, providing a foundational framework for the rational design of advanced LiNbO3-based materials. Full article
Show Figures

Figure 1

30 pages, 17342 KB  
Article
Design and Synthesis of Dy2TmSbO7/BiHoO3 Heterojunction: The Mechanism and Application for Photocatalytic Degradation of Sulphamethoxypyridazine
by Jingfei Luan, Minghe Ma, Liang Hao, Hengchang Zeng and Anan Liu
Molecules 2026, 31(1), 24; https://doi.org/10.3390/molecules31010024 - 22 Dec 2025
Viewed by 232
Abstract
A novel Z-scheme Dy2TmSbO7/BiHoO3 heterostructure photocatalyst was synthesized with the ultrasound-assisted solvothermal method. The Dy2TmSbO7/BiHoO3 heterojunction photocatalyst (DBHP) reflected wonderful separation efficiency of photogenerated electrons and photogenerated holes owing to the efficient direct [...] Read more.
A novel Z-scheme Dy2TmSbO7/BiHoO3 heterostructure photocatalyst was synthesized with the ultrasound-assisted solvothermal method. The Dy2TmSbO7/BiHoO3 heterojunction photocatalyst (DBHP) reflected wonderful separation efficiency of photogenerated electrons and photogenerated holes owing to the efficient direct Z-scheme heterojunction structure characteristic. The lattice parameter and the bandgap energy of the Dy2TmSbO7 were 10.52419 Å and 2.58 eV, simultaneously, the lattice parameter and the bandgap energy of the BiHoO3 were 5.42365 Å and 2.25 eV, additionally, the bandgap energy of the DBHP was 2.32 eV. Above results indicated that DBHP, Dy2TmSbO7 or BiHoO3 possessed an excellent ability for absorbing visible light energy, therefore, DBHP, Dy2TmSbO7 or BiHoO3 owned superior photocatalytic activity for degrading the sulphamethoxypyridazine (SMP) under visible light irradiation. The removal rate of the SMP after visible light irradiation of 135 min with the DBHP was 99.47% for degrading the SMP during the photocatalytic degradation (PADA) process, correspondingly, the removal rate of the total organic carbon (TOC) concentration after visible light irradiation of 135 min with the DBHP was 98.02% for degrading the SMP during the PADA process. The removal rate of the SMP after visible light irradiation of 135 min with the DBHP was 1.15 times, 1.29 times or 2.60 times that with Dy2TmSbO7, BiHoO3 or nitrogen-doped TiO2 (N-T). Therefore, the DBHP displayed higher photocatalytic activity for degrading the SMP under visible light irradiation compared with Dy2TmSbO7, BiHoO3 or N-T. Specifically, the mineralization rate for removing the TOC concentration during the PADA process of the SMP with the DBHP was 1.18 times, 1.32 times or 2.79 times that with Dy2TmSbO7, BiHoO3 or N-T. In addition, the stability and reusability of the DBHP were systematically evaluated, confirming that the DBHP owned potential applicability for degrading the antibiotic pollutant, which derived from the practical industrial wastewater. Trapping radicals experiments and the electron paramagnetic resonance measurement experiments were conducted for identifying the reactive radicals, such as the hydroxyl radicals (•OH), the superoxide anions (•O2) and the photogenerated holes (h+), which were generated with the DBHP for degrading the SMP during the PADA process under visible light irradiation, as a result, the •O2 possessed the maximal oxidative capability compared with the •OH or the h+. Above results indicated the degradation mechanism and the degradation pathways which were related to the SMP. In conclusion, this study makes a significant contribution for the development of the efficient Z-scheme heterostructure photocatalysts and provides a key opinion to the development of the sustainable remediation method with the view of mitigating the antibiotic pollution. Full article
(This article belongs to the Special Issue Progress in Nanomaterials for Pollutant Removal)
Show Figures

Graphical abstract

22 pages, 2417 KB  
Article
Sustainable Carbon Source from Almond Shell Waste: Synthesis, Characterization, and Electrochemical Properties
by Katarina Nikolić, Milan Kragović, Marija Stojmenović, Jasmina Popović, Jugoslav Krstić, Janez Kovač and Jelena Gulicovski
Materials 2026, 19(1), 8; https://doi.org/10.3390/ma19010008 - 19 Dec 2025
Viewed by 317
Abstract
This study demonstrates the complete transformation of almond shell waste into a high-performance carbon material for carbon paste electrode (CPE) fabrication. The biocarbon was synthesized via carbonization at 800 °C and subsequently activated with CO2, resulting in a semicrystalline structure rich [...] Read more.
This study demonstrates the complete transformation of almond shell waste into a high-performance carbon material for carbon paste electrode (CPE) fabrication. The biocarbon was synthesized via carbonization at 800 °C and subsequently activated with CO2, resulting in a semicrystalline structure rich in carbonyl groups—consistent with its lignocellulosic origin (34.25% cellulose, 13.48% hemicellulose, 48.03% lignin). Carbonization increased the total pore volume of carbonized almond (CAR_ALD) by nearly 13-fold and the specific surface area by over two orders of magnitude compared to raw almond (RAW_ALD), while CO2 activation further enhanced activated almond’s (ACT_ALD) surface area (~19%) and pore volume (~35%). To improve electrochemical performance, Bi2O3 doped with Sm was applied as a surface modifier. Comprehensive characterization (N2 physisorption X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopic Analysis (FTIR), X-Ray Photoelectron Spectroscopic Analysis (XPS), Thermogravimetric and Differential Thermal Analysis (TG-DTA), Cyclic voltammetry (CV), Electrochemical impedance spectroscopy (EIS)) confirmed the material’s structural integrity, graphitic features, and successful modifier incorporation. Electrochemical testing revealed the highest current response (48 µA) for the CPE fabricated from CAR_ALD/Bi2O3-Sm, indicating superior electrocatalytic activity and reduced charge transfer resistance. Notably, this is the first report of a fully functional CPE working electrode fabricated entirely from waste material. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

Back to TopTop