Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = Mycosporine-like amino acids (MAAs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2353 KiB  
Article
Seaweeds of the Israeli Mediterranean Sea: Nutritional and Biotechnological Potential Through Seasonal and Species Variation
by Doron Yehoshua Ashkenazi, Félix L. Figueroa, Julia Vega, Shoshana Ben-Valid, Guy Paz, Eitan Salomon, Avigdor Abelson and Álvaro Israel
Mar. Drugs 2025, 23(8), 320; https://doi.org/10.3390/md23080320 - 4 Aug 2025
Viewed by 283
Abstract
Macroalgae (seaweeds) produce unique bioactive metabolites that have enabled their survival for millions of years, offering significant potential for human benefits. In the Israeli Mediterranean Sea, no comprehensive systematic surveys of seaweeds have been published since the 1990s, and their chemical composition remains [...] Read more.
Macroalgae (seaweeds) produce unique bioactive metabolites that have enabled their survival for millions of years, offering significant potential for human benefits. In the Israeli Mediterranean Sea, no comprehensive systematic surveys of seaweeds have been published since the 1990s, and their chemical composition remains largely unexplored. This study presents an extensive survey of intertidal seaweed communities along the shallow Israeli coastline, documenting their spatial, temporal, and biochemical diversity. Of the 320 specimens collected, 55 seaweed species were identified: 29 red (Rhodophyta), 14 brown (Phaeophyceae), and 12 green (Chlorophyta). A significant shift in species abundance was documented, with a single dominant annual bloom occurring during spring, unlike previously reported biannual blooms. Chemical analysis of the dominant species revealed significant seasonal variations in compound levels, with higher protein content in winter and increased antioxidant capacity during spring. Phenolic and natural sunscreen compounds (mycosporine-like amino acids, MAAs) showed no general seasonal trend. These findings highlight the optimal environmental conditions for seaweed growth and underscore their potential for aquaculture and biotechnology. We hypothesize that the ecologically unique conditions of the Israeli Mediterranean Sea may foster resilient seaweed species enriched with distinctive chemical properties, suitable for nutritional, health, pharmaceutical, and nutraceutical applications, particularly as climate-adaptive bioresources. Full article
Show Figures

Graphical abstract

27 pages, 1540 KiB  
Review
Cyanobacterial UV Pigments Evolved to Optimize Photon Dissipation Rather than Photoprotection
by Aleksandar Simeonov and Karo Michaelian
Biophysica 2025, 5(2), 23; https://doi.org/10.3390/biophysica5020023 - 18 Jun 2025
Viewed by 581
Abstract
An ancient repertoire of ultraviolet (UV)-absorbing pigments which survive today in the phylogenetically oldest extant photosynthetic organisms, the cyanobacteria, point to a direction in evolutionary adaptation of the pigments and their associated biota; from largely UV-C absorbing pigments in the Archean to pigments [...] Read more.
An ancient repertoire of ultraviolet (UV)-absorbing pigments which survive today in the phylogenetically oldest extant photosynthetic organisms, the cyanobacteria, point to a direction in evolutionary adaptation of the pigments and their associated biota; from largely UV-C absorbing pigments in the Archean to pigments covering ever more of the longer wavelength UV and visible regions in the Phanerozoic. Since photoprotection is not dependent on absorption, such a scenario could imply selection of photon dissipation rather than photoprotection over the evolutionary history of life, consistent with the thermodynamic dissipation theory of the origin and evolution of life which suggests that the most important hallmark of biological evolution has been the covering of Earth’s surface with organic pigment molecules and water to absorb and dissipate ever more completely the prevailing surface solar spectrum. In this article we compare a set of photophysical, photochemical, biosynthetic, and other inherent properties of the two dominant classes of cyanobacterial UV-absorbing pigments, the mycosporine-like amino acids (MAAs) and scytonemins. We show that the many anomalies and paradoxes related to these biological pigments, for example, their exudation into the environment, spectral coverage of the entire high-energy part of surface solar spectrum, their little or null photoprotective effect, their origination at UV-C wavelengths and then spreading to cover the prevailing Earth surface solar spectrum, can be better understood once photodissipation, and not photosynthesis or photoprotection, is considered as being the important variable optimized by nature. Full article
(This article belongs to the Special Issue Molecular Structure and Simulation in Biological System 3.0)
Show Figures

Figure 1

20 pages, 1095 KiB  
Article
Sustainable Extraction of Prospective Cosmetic Ingredients from Colombian Marine Macroalgae Using Natural Deep Eutectic Solvents
by Verónica María Tamayo-Rincón, Jhonny Colorado-Ríos, Didier Johan Alvarez-Bustamante, Vanessa Urrea-Victoria, Diana Margarita Márquez-Fernández, Constain H. Salamanca, Stefano Dall’Acqua, Leonardo Castellanos-Hernandez and Alejandro Martínez-Martínez
Mar. Drugs 2025, 23(6), 239; https://doi.org/10.3390/md23060239 - 30 May 2025
Viewed by 674
Abstract
This study presents the results obtained from extracting and quantifying cosmetically valuable metabolites such as phenolic compounds and mycosporine-like amino acids (MAAs) from 12 samples of marine macroalgae collected in the Colombian Caribbean Sea. Natural deep eutectic solvents (NADESs) were prepared, physicochemically tested [...] Read more.
This study presents the results obtained from extracting and quantifying cosmetically valuable metabolites such as phenolic compounds and mycosporine-like amino acids (MAAs) from 12 samples of marine macroalgae collected in the Colombian Caribbean Sea. Natural deep eutectic solvents (NADESs) were prepared, physicochemically tested (viscosity, surface tension, pH, and conductivity), and then compared with water as the reference solvent to quantify phenolic compounds using the Folin–Ciocalteau test. With a simple extraction assay with water and ultrasound followed by ultraviolet spectral scanning the presence of MAAs was easily determined in several of the analysed samples, and then they were identified by HPLC-DAD. Hydrochloric acid solution at 5% extracted a higher content of phenolic compounds than NADES and water. The NADES that showed the highest phenolic compound extraction yield was a mixture of betaine, glucose, and water with 1:1:5 molar ratio. Sargassum cf. ramifolium and Sargassum fluitans showed the highest contents of phenolic compounds extracted with NADES, with 29.2 and 21.9 mg GAE/g DW, respectively. The results show that NADESs are an interesting alternative for the more efficient extraction of cosmetically valuable compounds such as phenolic compounds and mycosporine-type amino acids from marine macroalgae. Full article
Show Figures

Graphical abstract

21 pages, 1429 KiB  
Review
Molecular Mechanisms of Nostoc flagelliforme Environmental Adaptation: A Comprehensive Review
by Jin-Long Shang, Yong-Xue Xie, Lu-Yao Shi, Shuo-Ren Diao and Jin-Yan Guan
Plants 2025, 14(11), 1582; https://doi.org/10.3390/plants14111582 - 22 May 2025
Viewed by 581
Abstract
Nostoc flagelliforme, a filamentous cyanobacterium inhabiting desert biological soil crusts (BSCs), has developed exceptional strategies to endure extreme environmental stresses, including severe desiccation, intense ultraviolet (UV) radiation, and drastic temperature fluctuations. These organisms must effectively sense and predict environmental changes, particularly the [...] Read more.
Nostoc flagelliforme, a filamentous cyanobacterium inhabiting desert biological soil crusts (BSCs), has developed exceptional strategies to endure extreme environmental stresses, including severe desiccation, intense ultraviolet (UV) radiation, and drastic temperature fluctuations. These organisms must effectively sense and predict environmental changes, particularly the onset of desiccation. This review explores recent advancements in the molecular mechanisms that enable N. flagelliforme to survive under such harsh conditions, with a focus on stress signal sensing, transduction pathways, and photosynthetic adjustments. Key molecular adaptations include the production of extracellular polysaccharide (EPS) sheaths for water retention, the accumulation of compatible solutes like trehalose, and the synthesis of UV-absorbing compounds such as scytonemin and mycosporine-like amino acids (MAAs). Furthermore, N. flagelliforme utilizes a complex signal transduction network, including light-sensing pathways, to regulate responses to rehydration and desiccation cycles. This review emphasizes the integrative nature of N. flagelliforme’s adaptive mechanisms and highlights their potential for biotechnological applications, such as enhancing drought tolerance in crops and advancing ecological restoration in arid regions. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Graphical abstract

28 pages, 2231 KiB  
Review
Diversity of Bioactive Compounds in Microalgae: Key Classes and Functional Applications
by Maslin Osathanunkul, Suebsuya Thanaporn, Lefkothea Karapetsi, Georgia Maria Nteve, Emmanouil Pratsinakis, Eleni Stefanidou, Giorgos Lagiotis, Eleni Avramidou, Lydia Zorxzobokou, Georgia Tsintzou, Artemis Athanasiou, Sofia Mpelai, Constantinos Constandinidis, Panagiota Pantiora, Marián Merino, José Luis Mullor, Luka Dobrovic, Leonardo Cerasino, Tomohisa Ogawa, Meropi Tsaousi, Alexandre M. C. Rodrigues, Helena Cardoso, Rita Pires, Daniel Figueiredo, Inês F. Costa, Catarina Anjos, Nikolaos E. Labrou and Panagiotis Madesisadd Show full author list remove Hide full author list
Mar. Drugs 2025, 23(6), 222; https://doi.org/10.3390/md23060222 - 22 May 2025
Viewed by 1683
Abstract
Microalgae offer a sustainable and versatile source of bioactive compounds. Their rapid growth, efficient CO2 utilization, and adaptability make them a promising alternative to traditional production methods. Key compounds, such as proteins, polyunsaturated fatty acids (PUFAs), polyphenols, phytosterols, pigments, and mycosporine-like amino [...] Read more.
Microalgae offer a sustainable and versatile source of bioactive compounds. Their rapid growth, efficient CO2 utilization, and adaptability make them a promising alternative to traditional production methods. Key compounds, such as proteins, polyunsaturated fatty acids (PUFAs), polyphenols, phytosterols, pigments, and mycosporine-like amino acids (MAAs), hold significant commercial value and are widely utilized in food, nutraceuticals, cosmetics, and pharmaceuticals, driving innovation across multiple industries. Their antiviral and enzyme-producing capabilities further enhance industrial and medical applications. Additionally, microalgae-based biostimulants and plant elicitor peptides (PEPs) contribute to sustainable agriculture by enhancing plant growth and resilience to environmental stressors. The GRAS status of several species facilitates market integration, but challenges in scaling and cost reduction remain. Advances in biotechnology and metabolic engineering will optimize production, driving growth in the global microalgae industry. With increasing consumer demand for natural, eco-friendly products, microalgae will play a vital role in health, food security, and environmental sustainability. Full article
(This article belongs to the Special Issue Marine Biorefinery for Bioactive Compounds Production)
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Marine Algae Extract-Loaded Nanoemulsions: A Spectrophotometric Approach to Broad-Spectrum Photoprotection
by Julian Tello Quiroz, Ingrid Andrea Rodriguez Martinez, Vanessa Urrea-Victoria, Leonardo Castellanos and Diana Marcela Aragón Novoa
Cosmetics 2025, 12(3), 101; https://doi.org/10.3390/cosmetics12030101 - 15 May 2025
Viewed by 907
Abstract
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids [...] Read more.
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids (MAAs) and fucoxanthin, offering natural alternatives to synthetic sunscreens. This study aimed to develop and optimize a nanoemulsion incorporating both algal extracts, with MAAs and fucoxanthin strategically distributed in the aqueous and oil phases, respectively, to enhance synergistic broad-spectrum UV protection. MAAs were quantified in Gracilaria sp. using UHPLC-DAD, revealing 8.03 mg/g dry weight, primarily composed of shinorine and porphyra-334. Fucoxanthin was identified in S. polyceratium at 0.98 mg/g dry weight. A Box–Behnken design (BBD) was employed to optimize the nanoemulsion, targeting minimal droplet size and optimal ζ potential. The resulting formulation achieved a droplet size less than 100 nm and a ζ potential less than −25.0 mV. In vitro spectrophotometric analysis demonstrated significant photoprotective potential. The nanoemulsion containing only 375 ppm of algal extracts exhibited a UVA ratio of 1.25 and a critical wavelength of 379 nm, meeting the criteria for broad-spectrum protection and outperforming the commercial natural filter Helioguard®365. These results confirm the efficacy of combining red and brown algae extracts in a nanoemulsion platform to deliver sustainable, low-dose photoprotection. This work presents, for the first time, the incorporation of red and brown algae extracts into a single nanoemulsion system, representing a novel strategy to maximize the combined photoprotective potential of MAAs and fucoxanthin. Ultimately, this investigation contributes to the growing field of marine-derived sunscreens and supports the advancement of “blue beauty” innovations aligned with eco-conscious formulation principles. Full article
Show Figures

Figure 1

24 pages, 4833 KiB  
Article
Comprehensive Extraction and Biological Activities of Mycosporine-like Amino Acids and Glyceroglycolipids Extracts from Two Macroalgae Ecklonia kurome and Ulva lactuca
by Xin Wei, Xiaoqi Hu, Tianhuan Li, Yuxiang Li, You Yu, Xiujing Jiang, Haonan Wang, Jie Yang, Xue Jiao, Xinghu Zhou and Yingying Sun
Foods 2025, 14(3), 440; https://doi.org/10.3390/foods14030440 - 29 Jan 2025
Viewed by 1307
Abstract
Mycosporine-like amino acids (MAAs) and glyceroglycolipids have promising applications in various fields, but limited research exists on their simultaneous extraction from macroalgae. This study optimized the key parameters (liquid–solid ratio, extraction temperature and extraction time) in the extraction of MAAs and glyceroglycolipids from [...] Read more.
Mycosporine-like amino acids (MAAs) and glyceroglycolipids have promising applications in various fields, but limited research exists on their simultaneous extraction from macroalgae. This study optimized the key parameters (liquid–solid ratio, extraction temperature and extraction time) in the extraction of MAAs and glyceroglycolipids from Ecklonia kurome and Ulva lactuca using single factor and response surface experiments. The yields of MAAs from E. kurome and U. lactuca were 169.71 mg/g and 177.33 mg/g, respectively, while glyceroglycolipids were extracted from the residue with yields of 163.51 mg/g and 213.45 mg/g, respectively. Both extracts showed concentration-dependent antioxidant activities, with the MAAs extracted from U. lactuca demonstrating the strongest effect. The addition of MAA extract to flaxseed oil significantly reduced oxidation rancidity, highlighting its potential as a natural antioxidant for oils. The glyceroglycolipid extract from E. kurome exhibited significant moisture absorption, and a water-retaining agent prepared from this extract showed excellent moisture retention and resistance to high temperatures, freezing, and pressure. A silica gel column chromatography method confirmed the presence of MGDG in the purified glyceroglycolipid extract. These findings suggested that E. kurome and U. lactuca can be converted into high-value-added compounds with potential applications in food, cosmetics, and pharmaceuticals. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

22 pages, 15766 KiB  
Article
Pharmacological Effects of Antioxidant Mycosporine-Glycine in Alleviating Ultraviolet B-Induced Skin Photodamage: Insights from Metabolomic and Transcriptomic Analyses
by Kai Wang, Ling Qin, Huan Lin, Mengke Yao, Junhan Cao, Qing Zhang, Changfeng Qu, Yingying He, Jinlai Miao and Ming Liu
Antioxidants 2025, 14(1), 30; https://doi.org/10.3390/antiox14010030 - 29 Dec 2024
Cited by 1 | Viewed by 1482
Abstract
Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, [...] Read more.
Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days. At the end of the experiment, UVB exposure caused erythema, wrinkling, collagen degradation, and mast cell infiltration in mouse dorsal skin. M-Gly treatment improved skin appearance and reduced mast cell numbers, while also elevating antioxidant levels, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Furthermore, M-Gly reduced inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β, typically upregulated after UVB exposure. M-Gly also protected skin collagen by upregulating type I procollagen and decreasing MMP-1 levels. Skin metabolomic profiling identified 34 differentially abundant metabolites, and transcriptomic analysis revealed 752 differentially expressed genes. The combined metabolomic and transcriptomic data indicate that M-Gly’s protective effects may involve the regulation of ion transport, cellular repair, metabolic stability, collagen preservation, and the Nrf2/HO-1 pathway. These findings highlight M-Gly’s potential as an endogenous antioxidant for protecting skin from UVB-induced damage. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

19 pages, 2677 KiB  
Article
Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications
by Débora Tomazi Pereira, Paz García-García, Nathalie Korbee, Julia Vega, Francisco J. Señoráns and Félix L. Figueroa
Mar. Drugs 2024, 22(6), 284; https://doi.org/10.3390/md22060284 - 18 Jun 2024
Cited by 5 | Viewed by 4638
Abstract
Porphyra sensu lato is one of the most economically significant and widely cultured and consumed algae in the world. Porphyra species present excellent nutraceutic properties due to their bioactive compounds (BACs). This research aimed to find the most efficient aqueous extraction method for [...] Read more.
Porphyra sensu lato is one of the most economically significant and widely cultured and consumed algae in the world. Porphyra species present excellent nutraceutic properties due to their bioactive compounds (BACs). This research aimed to find the most efficient aqueous extraction method for BACs by examining alkaline and enzymatic hydrolysis. Alkaline hydrolysis with 2.5% sodium carbonate (SC) and at 80 °C proved optimal for extracting all BACs (phycobiliproteins, soluble proteins, polyphenols, and carbohydrates) except mycosporine-like amino acids (MAAs), which were best extracted with water only, and at 80 °C. Enzymatic hydrolysis, particularly with the ‘Miura’ enzymatic cocktail (cellulase, xylanase, glycoside hydrolase, and β-glucanase), showed superior results in extracting phycoerythrin (PE), phycocyanin (PC), soluble proteins, and carbohydrates, with increases of approximately 195%, 510%, 890%, and 65%, respectively, compared to the best alkaline hydrolysis extraction (2.5% SC and 80 °C). Phenolic content analysis showed no significant difference between the ‘Miura’ cocktail and 2.5% SC treatments. Antioxidant activity was higher in samples from alkaline hydrolysis, while extraction of MAAs showed no significant difference between water-only and ‘Miura’ treatments. The study concludes that enzymatic hydrolysis improves the efficiency of BACs extraction in P. linearis, highlighting its potential for the nutraceutical industry, and especially with respect to MAAs for topical and oral UV-photoprotectors. Full article
(This article belongs to the Special Issue High-Value Algae Products)
Show Figures

Graphical abstract

16 pages, 2191 KiB  
Article
The Role of Nitrate Supply in Bioactive Compound Synthesis and Antioxidant Activity in the Cultivation of Porphyra linearis (Rhodophyta, Bangiales) for Future Cosmeceutical and Bioremediation Applications
by Débora Tomazi Pereira, Nathalie Korbee, Julia Vega and Félix L. Figueroa
Mar. Drugs 2024, 22(5), 222; https://doi.org/10.3390/md22050222 - 15 May 2024
Cited by 4 | Viewed by 1697
Abstract
Porphyra sensu lato has economic importance for food and pharmaceutical industries due to its significant physiological activities resulting from its bioactive compounds (BACs). This study aimed to determine the optimal nitrate dosage required in short-term cultivation to achieve substantial BAC production. A nitrate [...] Read more.
Porphyra sensu lato has economic importance for food and pharmaceutical industries due to its significant physiological activities resulting from its bioactive compounds (BACs). This study aimed to determine the optimal nitrate dosage required in short-term cultivation to achieve substantial BAC production. A nitrate experiment using varied concentrations (0 to 6.5 mM) revealed optimal nitrate uptake at 0.5 mM in the first two days and at 3 and 5 mM in the last five days. Polyphenols and carbohydrates showed no differences between treatments, while soluble proteins peaked at 1.5 and 3 mM. Total mycosporine-like amino acids (MAAs) were highest in algae incubated at 5 and 6.5 mM, and the highest antioxidant activity was observed in the 5 mM, potentially related to the MAAs amount. Total carbon and sulfur did not differ between treatments, while nitrogen decreased at higher nitrate. This discovery highlights the nuanced role of nitrate in algal physiology, suggesting that biological and chemical responses to nitrate supplementation can optimize an organism’s health and its commercially significant bioactive potential. Furthermore, given its ability to absorb high doses of nitrate, this alga can be cultivated in eutrophic zones or even in out-/indoor tanks, becoming an excellent option for integrated multi-trophic aquaculture (IMTA) and bioremediation. Full article
(This article belongs to the Special Issue From Sea to Skin: Advancements in Marine-Based Cosmeceuticals)
Show Figures

Figure 1

14 pages, 1716 KiB  
Article
Mycosporine-like Amino Acids in Palmaria palmata (Rhodophyta): Specific Implication of Usujirene in Photoprotection
by Fanny Lalegerie, Valérie Stiger-Pouvreau and Solène Connan
Mar. Drugs 2024, 22(3), 121; https://doi.org/10.3390/md22030121 - 5 Mar 2024
Cited by 3 | Viewed by 3121
Abstract
The effect of UV radiation on the accumulation of mycosporine-like amino acids (MAAs) and pigments was investigated on red macroalga Palmaria palmata cultivated for 21 days. The data were combined with the effect of NaNO3 to further investigate the synthesis of these [...] Read more.
The effect of UV radiation on the accumulation of mycosporine-like amino acids (MAAs) and pigments was investigated on red macroalga Palmaria palmata cultivated for 21 days. The data were combined with the effect of NaNO3 to further investigate the synthesis of these nitrogenous compounds. A progressive decrease in both total MAA and pigment contents was observed, with a positive effect of nitrate supply. Usujirene was the only MAA exhibiting a significantly increasing content when exposed to UV radiation, changing from 9% to 24% of the total MAA’s contribution, with no variation observed with NaNO3. This suggests a specific induction or synthesis pathway of usujirene for photoprotection, while the synthesis of other MAAs could have been limited by an insufficient amount of UV radiation and/or irradiance. The photoprotective ability of some MAAs could have been impacted by nitrogen starvation over time, resulting in a limited synthesis and/or potential use of MAAs as a nitrogen source for red macroalgae. The data confirmed the multiple effects of environmental factors on the synthesis of MAAs while providing new insights into the specific synthesis of usujirene, which could find an application in the cosmetics sector as natural sunscreen or an anti-ageing agent. Full article
(This article belongs to the Special Issue Antiphotoaging and Photoprotective Compounds from Marine Environments)
Show Figures

Graphical abstract

10 pages, 1492 KiB  
Article
Evaluation of MAA Analogues as Potential Candidates to Increase Photostability in Sunscreen Formulations
by Jacobo Soilán, Leonardo López-Cóndor, Beatriz Peñín, José Aguilera, María Victoria de Gálvez, Diego Sampedro and Raúl Losantos
Photochem 2024, 4(1), 128-137; https://doi.org/10.3390/photochem4010007 - 6 Feb 2024
Cited by 2 | Viewed by 1681
Abstract
Avobenzone is one of the most widely used sunscreens in skin care formulations, but suffers from some drawbacks, including photo instability. To mitigate this critical issue, the use of octocrylene as a stabilizer is a common approach in these products. However, octocrylene has [...] Read more.
Avobenzone is one of the most widely used sunscreens in skin care formulations, but suffers from some drawbacks, including photo instability. To mitigate this critical issue, the use of octocrylene as a stabilizer is a common approach in these products. However, octocrylene has been recently demonstrated to show potential phototoxicity. The aim of this work is to analyze the performance of a series of mycosporine-like amino acid (MAA)-inspired compounds to act as avobenzone stabilizers as an alternative to octocrylene. Different avobenzone/MAA analogue combinations included in galenic formulations were followed under increasing doses of solar-simulated UV radiation. Some of the synthetic MAA analogues analyzed were able to increase by up to two times the UV dose required for 50% of avobenzone photobleaching. We propose some of these MAA analogues as new candidates to act as avobenzone-stabilizing compounds in addition to their UV absorbance and antioxidant properties, together with a facile synthesis. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry II)
Show Figures

Figure 1

20 pages, 5632 KiB  
Review
Biotechnological Potential of Macroalgae during Seasonal Blooms for Sustainable Production of UV-Absorbing Compounds
by Nedeljka Rosic and Carol Thornber
Mar. Drugs 2023, 21(12), 633; https://doi.org/10.3390/md21120633 - 8 Dec 2023
Cited by 6 | Viewed by 5843
Abstract
Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity [...] Read more.
Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity levels) and biotic factors (e.g., grazing and pathogen exposure). As a result, macroalgae developed numerous important strategies to increase their adaptability, including synthesizing secondary metabolites, which have promising biotechnological applications, such as UV-absorbing Mycosporine-Like Amino Acid (MAAs). MAAs are small, water-soluble, UV-absorbing compounds that are commonly found in many marine organisms and are characterized by promising antioxidative, anti-inflammatory and photoprotective properties. However, the widespread use of MAAs by humans is often restricted by their limited bioavailability, limited success in heterologous expression systems, and low quantities recovered from the natural environment. In contrast, bloom-forming macroalgal species from all three major macroalgal clades (Chlorophyta, Phaeophyceae, and Rhodophyta) occasionally form algal blooms, resulting in a rapid increase in algal abundance and high biomass production. This review focuses on the bloom-forming species capable of producing pharmacologically important compounds, including MAAs, and the application of proteomics in facilitating macroalgal use in overcoming current environmental and biotechnological challenges. Full article
Show Figures

Graphical abstract

15 pages, 2054 KiB  
Article
Isolation and Structure Elucidation of Novel Mycosporine-like Amino Acids from the Two Intertidal Red Macroalgae Bostrychia scorpioides and Catenella caespitosa
by Maria Orfanoudaki, Mostafa Alilou, Anja Hartmann, Julia Mayr, Ulf Karsten, Hieu Nguyen-Ngoc and Markus Ganzera
Mar. Drugs 2023, 21(10), 543; https://doi.org/10.3390/md21100543 - 18 Oct 2023
Cited by 6 | Viewed by 2527
Abstract
This study presents a phytochemical survey of two common intertidal red algal species, Bostrychia scorpioides and Catenella caespitosa, regarding their MAA (mycosporine-like amino acid) composition, which are known as biogenic sunscreen compounds. Six novel MAAs from Bostrychia scorpioides named bostrychines and two [...] Read more.
This study presents a phytochemical survey of two common intertidal red algal species, Bostrychia scorpioides and Catenella caespitosa, regarding their MAA (mycosporine-like amino acid) composition, which are known as biogenic sunscreen compounds. Six novel MAAs from Bostrychia scorpioides named bostrychines and two novel MAAs from Catenella caespitosa named catenellines were isolated using a protocol which included silica gel column chromatography, flash chromatography on reversed phase material and semipreparative HPLC (High-Performance Liquid Chromatography). The structure of the novel MAAs was elucidated using NMR (Nuclear Magnetic Resonance) and HR-MS (High-Resolution Mass Spectrometry), and their absolute configuration was confirmed by ECD (Electronic Circular Dichroism). All isolated MAAs possess a cyclohexenimine scaffold, and the metabolites from B. scorpioides are related to the known MAAs bostrychines A-F, which contain glutamine, glutamic acid and/or threonine in their side chains. The new MAAs from C. caespitosa contain taurine, an amino sulfonic acid that is also present in another MAA isolated from this species, namely, catenelline. Previous and new data confirm that intertidal red algae are chemically rich in MAAs, which explains their high tolerance against biologically harmful ultraviolet radiation. Full article
(This article belongs to the Special Issue Photoprotective Compounds from Marine Organisms)
Show Figures

Graphical abstract

14 pages, 3860 KiB  
Article
Protective Effect of Mycosporine-like Amino Acids Isolated from an Antarctic Diatom on UVB-Induced Skin Damage
by Kai Wang, Yashan Deng, Yingying He, Junhan Cao, Liping Zhang, Ling Qin, Changfeng Qu, Hongmei Li and Jinlai Miao
Int. J. Mol. Sci. 2023, 24(20), 15055; https://doi.org/10.3390/ijms242015055 - 10 Oct 2023
Cited by 10 | Viewed by 2330
Abstract
Although it is well recognized that mycosporine-like amino acids (MAAs) are ultraviolet (UV) protective agents that can reduce UV damage, the specific biological mechanism of its role in the skin remains unclear. In this study, we investigated the effect of MAAs extracted from [...] Read more.
Although it is well recognized that mycosporine-like amino acids (MAAs) are ultraviolet (UV) protective agents that can reduce UV damage, the specific biological mechanism of its role in the skin remains unclear. In this study, we investigated the effect of MAAs extracted from Antarctic diatom Phaeodactylum tricornutum ICE-H on UVB-induced skin damage using a mice model. The MAAs components identified by liquid chromatography-tandem mass spectrometry included 4-deoxygadusol, shinorine, and porphyra-334, which were purified using a Supledean Carboxen1000 solid phase extraction column. The antioxidant activities of these MAA compounds were tested in vitro. For UVB-induced skin photodamage in mice, MAAs alleviated skin swelling and epidermal thickening in this study. We detected the content of reactive oxygen species (ROS), malondialdehyde, and collagen in skin tissue. In addition, quantitative real-time polymerase chain reaction was used to detect nuclear factor-κB (NF-κB), tumor necrosis factor α, interleukin-1β, cyclooxygenase-2, mitogen activated protein kinase (MAPK) family (extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38 kinase), and matrix metalloproteinases. The expression of these cytokines and enzymes is related to inflammatory responses and collagen degradation. In comparison to the model group without MAA treatment, the MAA component decreased the concentration of ROS, the degree of oxidative stress in the skin tissue, and the expression of genes involved in the NF-κB and MAPK pathways. In summary, these MAA components extracted from Phaeodactylum tricornutum ICE-H protected against UVB-induced skin damage by inhibiting ROS generation, relieving skin inflammation, and slowing down collagen degradation, suggesting that these MAA components are effective cosmetic candidate molecules for the protection and therapy of UVB damage. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

Back to TopTop