Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = MutL homologs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1197 KiB  
Article
Moderate-Low Risk Breast Cancer Gene Expression in a Romanian Population
by Iulian Gabriel Goidescu, Ioana Cristina Rotar, Georgiana Nemeti, Adelina Staicu, Mihai Surcel, Gheorghe Cruciat, Daniel Mureșan, Cerasela Goidescu and Dan Eniu
Int. J. Mol. Sci. 2025, 26(11), 5313; https://doi.org/10.3390/ijms26115313 - 31 May 2025
Viewed by 620
Abstract
Multigene panel testing for hereditary breast and ovarian cancer is becoming a standard in medical care. Recent studies highlight the importance of pathogenic variants in genes with moderate or low penetrance. 255 consecutive breast cancer cases who met the criteria for genetic testing [...] Read more.
Multigene panel testing for hereditary breast and ovarian cancer is becoming a standard in medical care. Recent studies highlight the importance of pathogenic variants in genes with moderate or low penetrance. 255 consecutive breast cancer cases who met the criteria for genetic testing were approached by next-generation sequencing. From 104 pathogenic mutations identified, 21 were in moderate-risk genes, three in low-risk genes and eight in the group with insufficient evidence genes. The most frequent PVs in moderate-risk genes were in the CHEK2 gene—Checkpoint kinase 2 gene (13 cases), the ATM gene—Ataxia-telangiectasia Mutated gene (six cases), BARD1—BRCA1-associated ring domain 1 gene (one case) and RAD 51C–radiation sensitive 51 Paralog C—(one case) genes. Among the low-risk genes, we identified only three pathogenic mutations (two in MSH1 gene—melanocyte-stimulating hormone gene—and one in MLH1 gene—MutL homolog 1 gene). Reporting on low-risk mutations and those with insufficient evidence regarding breast cancer risk is valuable to enable a more comprehensive view of genetic factors influencing disease development and improve screening protocols, tailor diagnostic strategies, and individualize treatment plans. This approach also enhances our understanding of BC risk in various populations, potentially leading to new insights into genetic contributions to cancer and the refinement of risk models for patient care. Full article
(This article belongs to the Special Issue Molecular Research and Cellular Biology of Breast Cancer)
Show Figures

Figure 1

10 pages, 542 KiB  
Article
First Report of Streptococcus agalactiae Meningitis in a Non-Pregnant Adult in Italy
by Giorgia Borriello, Giovanna Fusco, Francesca Greco, Maria Vittoria Mauro, Lorella Barca, Antonio Limone, Maria Garzi Cosentino, Agata Campione, Antonio Rinaldi, Saveria Dodaro, Esterina De Carlo, Sonia Greco, Valeria Vangeli, Rubina Paradiso and Antonio Mastroianni
Microorganisms 2025, 13(5), 978; https://doi.org/10.3390/microorganisms13050978 - 24 Apr 2025
Viewed by 574
Abstract
This study, for the first time in Italy, analyses by WGS a Streptococcus agalactiae strain isolated from a non-pregnant adult affected by Meningitis and without common risk factors. The S. agalactiae strain was classified as a serotype II (SS2), sequence type ST569. Molecular [...] Read more.
This study, for the first time in Italy, analyses by WGS a Streptococcus agalactiae strain isolated from a non-pregnant adult affected by Meningitis and without common risk factors. The S. agalactiae strain was classified as a serotype II (SS2), sequence type ST569. Molecular characterization evidenced the presence of resistance genes to tetracycline and macrolide (tet(M) and mre(A)) and several virulence genes coding for adhesion and immune evasion factors (bca, cps family, neu family, scpB, gbs family, pil family and hylB), toxins (cfa/cfb, cyl family), pro-inflammatory factors (lepA), and two homologous genes that contributed to bacterial escape from the host immune system (lmb, luxS). SNP analysis showed 18 different alleles, with 9 missense SNP mutations related to genes involved in cellular metabolism (dhaS, ftsE, ligA, nrdD and secA), virulence (bgrR and galE) and antimicrobial resistance (glpK and mutL). SNPs in glpK and mutL genes might reduce susceptibility to drugs. The SNP analysis highlighted the presence of mutations conferring pathogenicity to the strain. The evidence in this study could explain the development of Meningitis in a healthy patient. This case highlights the importance of using molecular methods to characterize the complete genome of a bacterial species that could seriously affect human health. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 9111 KiB  
Article
Identification of the Highly Polymorphic Prion Protein Gene (PRNP) in Frogs (Rana dybowskii)
by Chang-Su Han, Sae-Young Won, Sang-Hun Park and Yong-Chan Kim
Animals 2025, 15(2), 220; https://doi.org/10.3390/ani15020220 - 15 Jan 2025
Viewed by 1357
Abstract
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPScs, encoded by the endogenous prion protein gene (PRNP). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal [...] Read more.
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPScs, encoded by the endogenous prion protein gene (PRNP). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the PRNP gene have not been investigated. In this study, genetic polymorphisms in the PRNP gene were investigated in 194 Dybowski’s frogs using polymerase chain reaction (PCR) and amplicon sequencing. We carried out in silico analyses to predict functional alterations according to non-synonymous single nucleotide polymorphisms (SNPs) using PolyPhen-2, PANTHER, SIFT, and MutPred2. We used ClustalW2 and MEGA X to compare frog PRNP and PrP sequences with those of prion-related animals. To evaluate the impact of the SNPs on protein aggregation propensity and 3D structure, we utilized AMYCO and ColabFold. We identified 34 novel genetic polymorphisms including 6 non-synonymous SNPs in the frog PRNP gene. The hydrogen bond length varied at codons 143 and 207 according to non-synonymous SNPs, even if the electrostatic potential was not changed. In silico analysis predicted S143N to increase the aggregation propensity, and W6L, C8Y, R211W, and L241F had damaging effects on frog PrPs. The PRNP and PrP sequences of frogs showed low homology with those of prion-related mammals. To the best of our knowledge, this study was the first to discover genetic polymorphisms in the PRNP gene in amphibians. Full article
(This article belongs to the Special Issue Prion Diseases in Animals)
Show Figures

Figure 1

10 pages, 1626 KiB  
Article
MutL Significantly Regulates the Formation of Biofilms in Bacillus amyloliquefaciens YT1
by Huafei Zhou, Min Chen, Baoyan Li, Haining Chen, Hongtao Wang, Shaoli Wang, Binghui Luan and Baoyou Liu
Agriculture 2024, 14(7), 1193; https://doi.org/10.3390/agriculture14071193 - 19 Jul 2024
Viewed by 1441
Abstract
The purpose of this study is to discover and excavate more key factors and signaling pathways that regulate the formation intensity of biofilms and to fully reveal the possible models affecting biofilm formation. By using gene homologous recombination and bioinformatics technology, a MutL [...] Read more.
The purpose of this study is to discover and excavate more key factors and signaling pathways that regulate the formation intensity of biofilms and to fully reveal the possible models affecting biofilm formation. By using gene homologous recombination and bioinformatics technology, a MutL protein-directed deletion mutant strain was successfully constructed. The growth status of the mutant strain was observed, and it was confirmed that, except for the change in cell morphology, there were no significant differences in growth and reproduction between the mutant strain and the wild-type strain. By using the induced biofilm formation technique, the significant decrease in biofilm formation in the MutL mutant strain was successfully verified. The plate confrontation test confirmed that the inhibitory ability of the mutant strain against rice blast fungus was not significantly different from that of the WT strain. The colonization ability of the mutant strain on rice stems was tested, and it was confirmed that the colonization ability of the mutant strain was significantly lower than that of the WT strain. In terms of the prevention and control effect of rice blast disease, the mutant strain showed a significant decrease. By using transcriptomic big data, the gene and pathway expression differences between the mutant strain and the WT strain during biofilm formation were analyzed. The analysis revealed no significant correlation with the previously reported spo0A and tapA-sipW-tasA pathways. The key factor capB of the polyglutamic acid signaling pathway, which affects the formation of the biological model, was found to have a significant decrease in expression. A mechanical hypothesis was proposed: MutL may participate in regulating the formation intensity of Bacillus biofilms by regulating the formation of glutamic acid to polyglutamic acid. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

23 pages, 4160 KiB  
Article
Intermolecular Gene Conversion for the Equalization of Genome Copies in the Polyploid Haloarchaeon Haloferax volcanii: Identification of Important Proteins
by Hanna Özer, Daniel Wasser, Lara Sandner and Jörg Soppa
Genes 2024, 15(7), 861; https://doi.org/10.3390/genes15070861 - 1 Jul 2024
Cited by 2 | Viewed by 1752
Abstract
The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected [...] Read more.
The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected that encode proteins with orthologs involved in gene conversion or homologous recombination in archaea, bacteria, or eukaryotes. Single gene deletion strains of 22 genes and a control gene were constructed in two parent strains for a gene conversion assay; only radA and radB were shown to be essential. Protoplast fusions were used to generate strains that were heterozygous for the gene HVO_2528, encoding an enzyme for carotinoid biosynthesis. It was revealed that a lack of six of the proteins did not influence the efficiency of gene conversion, while sixteen mutants had severe gene conversion defects. Notably, lack of paralogous proteins of gene families had very different effects, e.g., mutant Δrad25b had no phenotype, while mutants Δrad25a, Δrad25c, and Δrad25d were highly compromised. Generation of a quadruple rad25 and a triple sph deletion strain also indicated that the paralogs have different functions, in contrast to sph2 and sph4, which cannot be deleted simultaneously. There was no correlation between the severity of the phenotypes and the respective transcript levels under non-stressed conditions, indicating that gene expression has to be induced at the onset of gene conversion. Phylogenetic trees of the protein families Rad3/25, MutL/S, and Sph/SMC/Rad50 were generated to unravel the history of the paralogous proteins of H. volcanii. Taken together, unselected intermolecular gene conversion in H. volcanii involves at least 16 different proteins, the molecular roles of which can be studied in detail in future projects. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2207 KiB  
Article
AMPK Deficiency Increases DNA Methylation and Aggravates Colorectal Tumorigenesis in AOM/DSS Mice
by Qi Sun, Qiyu Tian, Alejandro Bravo Iniguez, Xiaofei Sun, Hui Zhang, Jeanene Deavila, Min Du and Mei-Jun Zhu
Genes 2024, 15(7), 835; https://doi.org/10.3390/genes15070835 - 25 Jun 2024
Cited by 3 | Viewed by 2168
Abstract
The incidence of colorectal cancer (CRC) is closely linked to metabolic diseases. Accumulating evidence suggests the regulatory role of AMP-activated protein kinase (AMPK) in cancer metabolic reprogramming. In this study, wild-type and AMPK knockout mice were subjected to azoxymethane-induced and dextran sulfate sodium [...] Read more.
The incidence of colorectal cancer (CRC) is closely linked to metabolic diseases. Accumulating evidence suggests the regulatory role of AMP-activated protein kinase (AMPK) in cancer metabolic reprogramming. In this study, wild-type and AMPK knockout mice were subjected to azoxymethane-induced and dextran sulfate sodium (AOM/DSS)-promoted colitis-associated CRC induction. A stable AMPK-deficient Caco-2 cell line was also established for the mechanistic studies. The data showed that AMPK deficiency accelerated CRC development, characterized by increased tumor number, tumor size, and hyperplasia in AOM/DSS-treated mice. The aggravated colorectal tumorigenesis resulting from AMPK ablation was associated with reduced α-ketoglutarate production and ten-eleven translocation hydroxylase 2 (TET2) transcription, correlated with the reduced mismatch repair protein mutL homolog 1 (MLH1) protein. Furthermore, in AMPK-deficient Caco-2 cells, the mRNA expression of mismatch repair and tumor suppressor genes, intracellular α-ketoglutarate, and the protein level of TET2 were also downregulated. AMPK deficiency also increased hypermethylation in the CpG islands of Mlh1 in both colonic tissues and Caco-2 cells. In conclusion, AMPK deficiency leads to reduced α-ketoglutarate concentration and elevates the suppressive epigenetic modifications of tumor suppressor genes in gut epithelial cells, thereby increasing the risk of colorectal tumorigenesis. Given the modifiable nature of AMPK activity, it holds promise as a prospective molecular target for the prevention and treatment of CRC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

17 pages, 2758 KiB  
Article
Microsatellite Instability Testing and Prognostic Implications in Colorectal Cancer
by Vincent Ho, Liping Chung, Kate Wilkinson, Yafeng Ma, Tristan Rutland, Vivienne Lea, Stephanie H. Lim, Askar Abubakar, Weng Ng, Mark Lee, Tara L. Roberts, Therese M. Becker, Scott Mackenzie, Wei Chua and Cheok Soon Lee
Cancers 2024, 16(11), 2005; https://doi.org/10.3390/cancers16112005 - 25 May 2024
Cited by 4 | Viewed by 2867
Abstract
Given the crucial predictive implications of microsatellite instability (MSI) in colorectal cancer (CRC), MSI screening is commonly performed in those with and at risk for CRC. Here, we compared results from immunohistochemistry (IHC) and the droplet digital PCR (ddPCR) MSI assay on formalin-fixed [...] Read more.
Given the crucial predictive implications of microsatellite instability (MSI) in colorectal cancer (CRC), MSI screening is commonly performed in those with and at risk for CRC. Here, we compared results from immunohistochemistry (IHC) and the droplet digital PCR (ddPCR) MSI assay on formalin-fixed paraffin-embedded tumor samples from 48 patients who underwent surgery for colon and rectal cancer by calculating Cohen’s kappa measurement (k), revealing high agreement between the methods (k = 0.915). We performed Kaplan–Meier survival analyses and univariate and multivariate Cox regression to assess the prognostic significance of ddPCR-based MSI and to identify clinicopathological features associated with CRC outcome. Patients with MSI-high had better overall survival (OS; p = 0.038) and disease-free survival (DFS; p = 0.049) than those with microsatellite stability (MSS). When stratified by primary tumor location, right-sided CRC patients with MSI-high showed improved DFS, relative to those with MSS (p < 0.001), but left-sided CRC patients did not. In multivariate analyses, MSI-high was associated with improved OS (hazard ratio (HR) = 0.221, 95% confidence interval (CI): 0.026–0.870, p = 0.042), whereas the loss of DNA mismatch repair protein MutL homolog 1 (MLH1) expression was associated with worse OS (HR = 0.133, 95% CI: 0.001–1.152, p = 0.049). Our results suggest ddPCR is a promising tool for MSI detection. Given the opposing effects of MSI-high and MLH1 loss on OS, both ddPCR and IHC may be complementary for the prognostic assessment of CRC. Full article
(This article belongs to the Special Issue Feature Papers in Section "Cancer Biomarkers" in 2023–2024)
Show Figures

Figure 1

21 pages, 3029 KiB  
Article
Depleted-MLH1 Expression Predicts Prognosis and Immunotherapeutic Efficacy in Uterine Corpus Endometrial Cancer: An In Silico Approach
by Tesfaye Wolde, Jing Huang, Peng Huang, Vijay Pandey and Peiwu Qin
BioMedInformatics 2024, 4(1), 326-346; https://doi.org/10.3390/biomedinformatics4010019 - 1 Feb 2024
Cited by 6 | Viewed by 3037
Abstract
Uterine corpus endometrial carcinoma (UCEC) poses significant clinical challenges due to its high incidence and poor prognosis, exacerbated by the lack of effective screening methods. The standard treatment for UCEC typically involves surgical intervention, with radiation and chemotherapy as potential adjuvant therapies. In [...] Read more.
Uterine corpus endometrial carcinoma (UCEC) poses significant clinical challenges due to its high incidence and poor prognosis, exacerbated by the lack of effective screening methods. The standard treatment for UCEC typically involves surgical intervention, with radiation and chemotherapy as potential adjuvant therapies. In recent years, immunotherapy has emerged as a promising avenue for the advanced treatment of UCEC. This study employs a multi-omics approach, analyzing RNA-sequencing data and clinical information from The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis (GEPIA), and GeneMANIA databases to investigate the prognostic value of MutL Homolog 1 (MLH1) gene expression in UCEC. The dysregulation of MLH1 in UCEC is linked to adverse prognostic outcomes and suppressed immune cell infiltration. Gene Set Enrichment Analysis (GSEA) data reveal MLH1’s involvement in immune-related processes, while its expression correlates with tumor mutational burden (TMB) and microsatellite instability (MSI). Lower MLH1 expression is associated with poorer prognosis, reduced responsiveness to Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1) inhibitors, and heightened sensitivity to anti-cancer agents. This comprehensive analysis establishes MLH1 as a potential biomarker for predicting prognosis, immunotherapy response, and drug sensitivity in UCEC, offering crucial insights for the clinical management of patients. Full article
(This article belongs to the Special Issue Feature Papers in Computational Biology and Medicine)
Show Figures

Graphical abstract

20 pages, 4503 KiB  
Article
pilE G-Quadruplex Is Recognized and Preferentially Bound but Not Processed by the MutL Endonuclease from Neisseria gonorrhoeae Mismatch Repair Pathway
by Viktoriia Yu. Savitskaya, Vadim V. Strekalovskikh, Viktoriia G. Snyga, Mayya V. Monakhova, Alexander M. Arutyunyan, Nina G. Dolinnaya and Elena A. Kubareva
Int. J. Mol. Sci. 2023, 24(7), 6167; https://doi.org/10.3390/ijms24076167 - 24 Mar 2023
Viewed by 2111
Abstract
The human pathogen Neisseria gonorrhoeae uses a homologous recombination to undergo antigenic variation and avoid an immune response. The surface protein pilin (PilE) is one of the targets for antigenic variation that can be regulated by N. gonorrhoeae mismatch repair (MMR) and a [...] Read more.
The human pathogen Neisseria gonorrhoeae uses a homologous recombination to undergo antigenic variation and avoid an immune response. The surface protein pilin (PilE) is one of the targets for antigenic variation that can be regulated by N. gonorrhoeae mismatch repair (MMR) and a G-quadruplex (G4) located upstream of the pilE promoter. Using bioinformatics tools, we found a correlation between pilE variability and deletion of DNA regions encoding ngMutS or ngMutL proteins, the main participants in N. gonorrhoeae methyl-independent MMR. To understand whether the G4 structure could affect the ngMutL-mediated regulation of pilin antigenic variation, we designed several synthetic pilE G4-containing oligonucleotides, differing in length, and related DNA duplexes. Using CD measurements and biochemical approaches, we have showed that (i) ngMutL preferentially binds to pilE G4 compared to DNA duplex, although the latter is a cognate substrate for ngMutL endonuclease, (ii) protein binding affinity decreases with shortening of quadruplex-containing and duplex ligands, (iii) the G4 structure inhibits ngMutL-induced DNA nicking and modulates cleavage positions; the enzyme does not cleave DNA within G4, but is able to bypass this noncanonical structure. Thus, pilE G4 may regulate the efficiency of pilin antigenic variation by quadruplex binding to ngMutL and suppression of homologous recombination. Full article
(This article belongs to the Special Issue Molecular Mechanism of DNA Replication and Repair)
Show Figures

Figure 1

27 pages, 2870 KiB  
Article
Genomic Insights into the Radiation-Resistant Capability of Sphingomonas qomolangmaensis S5-59T and Sphingomonas glaciei S8-45T, Two Novel Bacteria from the North Slope of Mount Everest
by Yang Liu, Xiaowen Cui, Ruiqi Yang, Yiyang Zhang, Yeteng Xu, Guangxiu Liu, Binglin Zhang, Jinxiu Wang, Xinyue Wang, Wei Zhang, Tuo Chen and Gaosen Zhang
Microorganisms 2022, 10(10), 2037; https://doi.org/10.3390/microorganisms10102037 - 14 Oct 2022
Cited by 4 | Viewed by 3419
Abstract
Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m [...] Read more.
Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m and 5100m above sea level. (2) Methods: The present study investigated the polyphasic features and genomic characteristics of S5-59T and S8-45T. (3) Results: The major fatty acids and the predominant respiratory menaquinone of S5-59T and S8-45T were summed as feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c) and ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA sequences and average nucleotide identity values among these two strains and their reference type strains were below the species demarcation thresholds of 98.65% and 95%. Strains S5-59T and S8-45T harbored great radiation resistance. The genomic analyses showed that DNA damage repair genes, such as mutL, mutS, radA, radC, recF, recN, etc., were present in the S5-59T and S8-45T strains. Additionally, strain S5-59T possessed more genes related to DNA protection proteins. The pan-genome analysis and horizontal gene transfers revealed that strains of Sphingomonas had a consistently homologous genetic evolutionary radiation resistance. Moreover, enzymatic antioxidative proteins also served critical roles in converting ROS into harmless molecules that resulted in resistance to radiation. Further, pigments and carotenoids such as zeaxanthin and alkylresorcinols of the non-enzymatic antioxidative system were also predicted to protect them from radiation. (4) Conclusions: Type strains S5-59T (=JCM 35564T =GDMCC 1.3193T) and S8-45T (=JCM 34749T =GDMCC 1.2715T) represent two novel species of the genus Sphingomonas with the proposed name Sphingomonas qomolangmaensis sp. nov. and Sphingomonas glaciei sp. nov. The type strains, S5-59T and S8-45T, were assessed in a deeply genomic study of their radiation-resistant mechanisms and this thus resulted in a further understanding of their greater potential application for the development of anti-radiation protective drugs. Full article
(This article belongs to the Special Issue Genomics of Extremophiles and Archaea)
Show Figures

Figure 1

17 pages, 3458 KiB  
Article
L-Asparaginase from Penicillium sizovae Produced by a Recombinant Komagataella phaffii Strain
by Marcela Freitas, Paula Souza, Mauricio Homem-de-Mello, Yris M. Fonseca-Bazzo, Damaris Silveira, Edivaldo X. Ferreira Filho, Adalberto Pessoa Junior, Dipak Sarker, David Timson, João Inácio and Pérola O. Magalhães
Pharmaceuticals 2022, 15(6), 746; https://doi.org/10.3390/ph15060746 - 14 Jun 2022
Cited by 6 | Viewed by 4117
Abstract
L-asparaginase is an important enzyme in the pharmaceutical field used as treatment for acute lymphoblastic leukemia due to its ability to hydrolyze L-asparagine, an essential amino acid synthesized by normal cells, but not by neoplastic cells. Adverse effects of L-asparaginase formulations are associated [...] Read more.
L-asparaginase is an important enzyme in the pharmaceutical field used as treatment for acute lymphoblastic leukemia due to its ability to hydrolyze L-asparagine, an essential amino acid synthesized by normal cells, but not by neoplastic cells. Adverse effects of L-asparaginase formulations are associated with its glutaminase activity and bacterial origin; therefore, it is important to find new sources of L-asparaginase produced by eukaryotic microorganisms with low glutaminase activity. This work aimed to identify the L-asparaginase gene sequence from Penicillium sizovae, a filamentous fungus isolated from the Brazilian Savanna (Cerrado) soil with low glutaminase activity, and to biosynthesize higher yields of this enzyme in the yeast Komagataella phaffii. The L-asparaginase gene sequence of P. sizovae was identified by homology to L-asparaginases from species of Penicillium of the section Citrina: P. citrinum and P. steckii. Partial L-asparaginase from P. sizovae, lacking the periplasmic signaling sequence, was cloned, and expressed intracellularly with highest enzymatic activity achieved by a MUT+ clone cultured in BMM expression medium; a value 5-fold greater than that obtained by native L-asparaginase in P. sizovae cells. To the best of our knowledge, this is the first literature report of the heterologous production of an L-asparaginase from a filamentous fungus by a yeast. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

18 pages, 3231 KiB  
Article
BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants
by Guangzheng Li, Xiaofang Zeng, Yan Li, Jianrong Li, Xiaozhen Huang and Degang Zhao
Int. J. Mol. Sci. 2022, 23(10), 5305; https://doi.org/10.3390/ijms23105305 - 10 May 2022
Cited by 5 | Viewed by 2613
Abstract
Lodging resistance of rice (Oryza sativa L.) has always been a hot issue in agricultural production. A brittle stem mutant, osbc17, was identified by screening an EMS (Ethylmethane sulfonate) mutant library established in our laboratory. The stem segments and leaves of [...] Read more.
Lodging resistance of rice (Oryza sativa L.) has always been a hot issue in agricultural production. A brittle stem mutant, osbc17, was identified by screening an EMS (Ethylmethane sulfonate) mutant library established in our laboratory. The stem segments and leaves of the mutant were obviously brittle and fragile, with low mechanical strength. Examination of paraffin sections of flag leaf and internode samples indicated that the number of cell layers in mechanical tissue of the mutant was decreased compared with the wild type, Pingtangheinuo, and scanning electron microscopy revealed that the mechanical tissue cell walls of the mutant were thinner. Lignin contents of the internodes of mature-stage rice were significantly lower in the mutant than in the wild type. By the MutMap method, we found candidate gene OsBC17, which was located on rice chromosome 2 and had a 2433 bp long coding sequence encoding a protein sequence of 810 amino acid residues with unknown function. According to LC-MS/MS analysis of intermediate products of the lignin synthesis pathway, the accumulation of caffeyl alcohol in the osbc17 mutant was significantly higher than in Pingtangheinuo. Caffeyl alcohol can be polymerized to the catechyl lignin monomer by laccase ChLAC8; however, ChLAC8 and OsBC17 are not homologous proteins, which suggests that the osbc17 gene is involved in this process by regulating laccase expression. Full article
(This article belongs to the Topic Plant Functional Genomics and Crop Genetic Improvement)
Show Figures

Figure 1

13 pages, 2551 KiB  
Article
Andrias davidianus Ranavirus (ADRV) Genome Replicate Efficiently by Engaging Cellular Mismatch Repair Protein MSH2
by Fei Ke, Renbao Wang, Zihao Wang and Qiya Zhang
Viruses 2022, 14(5), 952; https://doi.org/10.3390/v14050952 - 2 May 2022
Cited by 6 | Viewed by 2210
Abstract
As nucleocytoplasmic large DNA viruses, replication of ranaviruses (genus Ranavirus, family Iridoviridae) involves a series of viral and host proteins. We have described that the replication and transcription machinery of Andrias davidianus ranavirus (ADRV) which was isolated from the Chinese giant [...] Read more.
As nucleocytoplasmic large DNA viruses, replication of ranaviruses (genus Ranavirus, family Iridoviridae) involves a series of viral and host proteins. We have described that the replication and transcription machinery of Andrias davidianus ranavirus (ADRV) which was isolated from the Chinese giant salamander contained host factors. Here, a new host factor, the MutS homolog 2 (MSH2), was proved as an important protein that participated in ADRV infection. Expression of MSH2 was stable during ADRV infection in cultured cells and it localized at the cytoplasmic viral factories and colocalized with virus nascent DNA, indicating its possible role in virus genome replication. Investigation of the viral proteins that interacted with MSH2 by co-immunoprecipitation showed that A. davidianus MSH2 can interact with ADRV-35L (possible components associated with virus transcription), ADRV-47L (virus DNA polymerase), and ADRV-98R. Further knockdown MSH2 expression by RNAi significantly reduced the late gene expression of ADRV. Additionally, MSH2 knockout by CRISPR/Cas9 significantly reduced viral titers, genome replication, and late gene transcription of ADRV. Thus, the current study proved that ADRV can engage cellular MSH2 for its efficient genome replication and late gene transcription, which provided new information for understanding the roles of host factors in ranavirus replication and transcription. Full article
Show Figures

Figure 1

12 pages, 594 KiB  
Article
Gastric Xanthelasma, Microsatellite Instability and Methylation of Tumor Suppressor Genes in the Gastric Mucosa: Correlation and Comparison as a Predictive Marker for the Development of Synchronous/Metachronous Gastric Cancer
by Masashi Fukushima, Hirokazu Fukui, Jiro Watari, Chiyomi Ito, Ken Hara, Hirotsugu Eda, Toshihiko Tomita, Tadayuki Oshima and Hiroto Miwa
J. Clin. Med. 2022, 11(1), 9; https://doi.org/10.3390/jcm11010009 - 21 Dec 2021
Cited by 5 | Viewed by 3249
Abstract
A predictive marker for the development of synchronous/metachronous gastric cancer (GC) would be highly desirable in order to establish an effective strategy for endoscopic surveillance. Herein, we examine the significance of gastric xanthelasma (GX) and molecular abnormalities for the prediction of synchronous/metachronous GC. [...] Read more.
A predictive marker for the development of synchronous/metachronous gastric cancer (GC) would be highly desirable in order to establish an effective strategy for endoscopic surveillance. Herein, we examine the significance of gastric xanthelasma (GX) and molecular abnormalities for the prediction of synchronous/metachronous GC. Patients (n = 115) were followed up (range, 12–122; median, 55 months) in whom the presence of GX and molecular alterations, including microsatellite instability (MSI) and methylation of human mutL homolog 1 (hMLH1), cyclin-dependent kinase inhibitor 2A (CDKN2A) and adenomatous polyposis coli (APC) genes, had been confirmed in non-neoplastic gastric mucosa when undergoing endoscopic submucosal dissection (ESD) for early GC. At the start of surveillance, the numbers of positive subjects were as follows: GX, 59 (51.3%); MSI, 48 (41.7%); hMLH1, 37 (32.2%); CDKN2A, 7 (6.1%); APC, 18 (15.7%). After ESD treatment, synchronous/metachronous GCs occurred in patients with the following positive factors: GX, 16 (27.1%); MSI, 7 (14.6%); hMLH1, 6 (16.2%); CDKN2A, 3 (42.9%); APC, 3 (16.7%). The presence of GX had no significant relationship to positivity for MSI or methylation of hMLH1, CDKN2A or APC. GX was significantly (p = 0.0059) and independently (hazard ratio, 3.275; 95% confidence interval, 1.134–9.346) predictive for the development of synchronous/metachronous GC, whereas those genetic alterations were not predictive. GX is a simple and powerful marker for predicting the development of synchronous or metachronous GC. Full article
(This article belongs to the Special Issue Gastrointestinal Malignancies: Screening, Diagnosis, and Treatment)
Show Figures

Figure 1

15 pages, 2870 KiB  
Article
Combined Simplified Molecular Classification of Gastric Adenocarcinoma, Enhanced by Lymph Node Status: An Integrative Approach
by Till Daun, Ronny Nienhold, Aino Paasinen-Sohns, Angela Frank, Melanie Sachs, Inti Zlobec and Gieri Cathomas
Cancers 2021, 13(15), 3722; https://doi.org/10.3390/cancers13153722 - 24 Jul 2021
Cited by 8 | Viewed by 3706
Abstract
Gastric adenocarcinoma (GAC) is a heterogeneous disease and at least two major studies have recently provided a molecular classification for this tumor: The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ARCG). Both classifications quote four molecular subtypes, but these subtypes [...] Read more.
Gastric adenocarcinoma (GAC) is a heterogeneous disease and at least two major studies have recently provided a molecular classification for this tumor: The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ARCG). Both classifications quote four molecular subtypes, but these subtypes only partially overlap. In addition, the classifications are based on complex and cost-intensive technologies, which are hardly feasible for everyday practice. Therefore, simplified approaches using immunohistochemistry (IHC), in situ hybridization (ISH) as well as commercially available next generation sequencing (NGS) have been considered for routine use. In the present study, we screened 115 GAC by IHC for p53, MutL Homolog 1 (MLH1) and E-cadherin and performed ISH for Epstein–Barr virus (EBV). In addition, sequencing by NGS for TP53 and tumor associated genes was performed. With this approach, we were able to define five subtypes of GAC: (1) Microsatellite Instable (MSI), (2) EBV-associated, (3) Epithelial Mesenchymal Transition (EMT)-like, (4) p53 aberrant tumors surrogating for chromosomal instability and (5) p53 proficient tumors surrogating for genomics stable cancers. Furthermore, by considering lymph node metastasis in the p53 aberrant GAC, a better prognostic stratification was achieved which finally allowed us to separate the GAC highly significant in a group with poor and good-to-intermediate prognosis, respectively. Our data show that molecular classification of GAC can be achieved by using commercially available assays including IHC, ISH and NGS. Furthermore, we present an integrative workflow, which has the potential to overcome the uncertainty resulting from discrepancies from existing classification schemes. Full article
(This article belongs to the Collection Cancer Biomarkers)
Show Figures

Figure 1

Back to TopTop