Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Morus notabilis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5286 KiB  
Article
Potential Involvement of MnCYP710A11 in Botrytis cinerea Resistance in Arabidopsis thaliana and Morus notabilis
by Hui An, Donghao Wang, Lin Yu, Hongshun Wu, Yue Qin, Shihao Zhang, Xianling Ji, Youchao Xin and Xiaodong Li
Genes 2024, 15(7), 853; https://doi.org/10.3390/genes15070853 - 28 Jun 2024
Viewed by 1233
Abstract
Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were [...] Read more.
Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were conducted to elucidate the involvement of MnCYP710A11 in combating Botrytis cinerea infection. After the infection of B. cinerea, there was a notable increase in the expression of MnCYP710A11. MnCYP710A11 is overexpressed in Arabidopsis and mulberry and strongly reacts to B. cinerea. The overexpression of the MnCYP710A11 gene in Arabidopsis and mulberry led to a substantial enhancement in resistance against B. cinerea, elevated catalase (CAT) activity, increased proline content, and reduced malondialdehyde (MDA) levels. At the same time, H2O2 and O2 levels in MnCYP710A11 transgenic Arabidopsis were decreased, which reduced the damage of ROS accumulation to plants. Furthermore, our research indicates the potential involvement of MnCYP710A11 in B. cinerea resistance through the modulation of other resistance-related genes. These findings establish a crucial foundation for gaining deeper insights into the role of cytochrome P450 in mulberry plants. Full article
(This article belongs to the Collection Feature Papers: 'Plant Genetics and Genomics' Section)
Show Figures

Figure 1

18 pages, 12786 KiB  
Article
Genome-Wide Identification and Expression of the AP2/ERF Gene Family in Morus notabilis
by Hao Dou, Tiantian Wang, Xin Zhou, Xi Feng, Wu Tang, Jin’e Quan and Huitao Bi
Forests 2024, 15(4), 697; https://doi.org/10.3390/f15040697 - 13 Apr 2024
Cited by 5 | Viewed by 2060
Abstract
The AP2/ERF gene family, referring to an exclusive class of transcription factors unique to plants, is involved in various biological processes, including plant growth and responses to environmental stresses like high salt and drought. In this study, the AP2/ERF gene in M. notabilis [...] Read more.
The AP2/ERF gene family, referring to an exclusive class of transcription factors unique to plants, is involved in various biological processes, including plant growth and responses to environmental stresses like high salt and drought. In this study, the AP2/ERF gene in M. notabilis was comprehensively identified and bioinformatically analyzed based on the genomic data of M. notabilis. 106 members in the MnAP2/ERF gene family were identified in the M. notabilis genome and were categorized into five subfamilies: ERF, AP2, DREB, RAV, and Soloist, with the ERF subfamily representing 80.19% of the total. The MnAP2/ERF gene family was observed to be distributed on six chromosomes of M. notabilis. Members in the MnAP2/ERF gene family exhibited obvious differences in amino acid number, molecular weight, isoelectric point, and other properties. Approximately 68.87% of the MnAP2/ERF proteins were acidic, all exhibiting hydrophilic characteristics. Differences in conserved sequences and arrangement of AP2 domains were observed among distinct subfamilies, with genes in the same subfamily sharing similar conserved domain compositions. There were 47 genes without untranslated regions and 44 genes with two untranslated regions. The upstream functions of promoters were concentrated on light reactions and plant hormones. Evolutionarily, significant structural differences were identified, and 28 MnAP2/ERF gene family proteins could interact with each other. Moreover, 35 family genes were involved in 22 fragment repeat events, and 55 MnAP2/ERF and 84 AtAP2/ERF genes showed collinearity. The expression of the MnAP2/ERF gene family was significantly different in different parts, indicating that these gene family members were involved in different physiological activities. These results established a theoretical foundation for investigating the functional and evolutionary aspects of AP2/ERF gene family genes in M. notabilis, as well as exploring the root morphogenesis of M. notabilis. Additionally, this study contributes to a basis for the improvement of cultivar stress resistance of M. notabilis. Full article
Show Figures

Figure 1

17 pages, 6809 KiB  
Article
Predicting the Distributions of Morus notabilis C. K. Schneid under Climate Change in China
by Hui Gao, Qianqian Qian, Xinqi Deng, Yaqin Peng and Danping Xu
Forests 2024, 15(2), 352; https://doi.org/10.3390/f15020352 - 11 Feb 2024
Cited by 3 | Viewed by 1541
Abstract
As one of the common mulberry tree species, Morus notabilis C. K. Schneid plays a significant role in various industries such as silkworm rearing, papermaking, and medicine due to its valuable mulberry leaves, fruits, and wood. This study utilizes the maximum entropy (MaxEnt) [...] Read more.
As one of the common mulberry tree species, Morus notabilis C. K. Schneid plays a significant role in various industries such as silkworm rearing, papermaking, and medicine due to its valuable mulberry leaves, fruits, and wood. This study utilizes the maximum entropy (MaxEnt) model to predict the potential distribution of M. notabilis in China under future environmental changes. By integrating the relative percentage contribution score of environmental factors with jackknife test analysis, important variables influencing the distribution of M. notabilis were identified along with their optimal values. The results indicate that Annual Precipitation (bio12), Precipitation of Driest Month (bio14), Min Temperature of Coldest Month (bio6), Temperature Annual Range (bio5–bio6) (bio7), Precipitation of Warmest Quarter (bio18), and Precipitation of Coldest Quarter (bio19) are the primary environmental variables affecting its potential distribution. Currently, M. notabilis exhibits high suitability over an area spanning 11,568 km2, while medium suitability covers 34,244 km2. Both current and future suitable areas for M. notabilis are predominantly concentrated in Sichuan, Yunnan, and Guizhou provinces, as well as Chongqing city in southwest China. Under the SSP5-8.5 scenario representing high greenhouse gas concentrations by 2050s and 2090s, there is an increase in high suitability area by 2952 km2 and 3440 km2, with growth rates reaching 25.52% and 29.74%, respectively. Notably, these two scenarios exhibit substantial expansion in suitable habitats for this species compared to others analyzed within this study period. Full article
Show Figures

Figure 1

24 pages, 3319 KiB  
Article
Phylogeny and Biogeography of Morus (Moraceae)
by Chen-Xuan Yang, Shui-Yin Liu, Nyree J. C. Zerega, Gregory W. Stull, Elliot M. Gardner, Qin Tian, Wei Gu, Qing Lu, Ryan A. Folk, Heather R. Kates, Robert P. Guralnick, Douglas E. Soltis, Pamela S. Soltis, Yue-Hua Wang and Ting-Shuang Yi
Agronomy 2023, 13(8), 2021; https://doi.org/10.3390/agronomy13082021 - 30 Jul 2023
Cited by 11 | Viewed by 4776
Abstract
The mulberry genus, Morus L. (Moraceae), has long been taxonomically difficult, and its species circumscription has only been defined recently. This genus comprises ca. 16 species distributed across Asia and the Americas, yet its biogeographic history remains poorly understood. In this study, we [...] Read more.
The mulberry genus, Morus L. (Moraceae), has long been taxonomically difficult, and its species circumscription has only been defined recently. This genus comprises ca. 16 species distributed across Asia and the Americas, yet its biogeographic history remains poorly understood. In this study, we reconstructed the phylogeny and explored the biogeographic history of Morus using a combination of newly generated and previously published Hyb-Seq data. Our nuclear phylogeny recovered three well-supported geographic clades of Morus and showed that M. notabilis (China) is sister to the American clade plus the Asian clade. Multiple reticulation events among species of Morus and extensive incomplete lineage sorting (ILS) likely explain the difficulties in inferring phylogenetic relationships within the genus. Divergence time estimation indicated that Morus originated at the Eocene–Oligocene boundary, and current lineages started to diverge during the early Miocene, there is ambiguity surrounding the ancestral area with the two most likely regions being Sino-Himalaya or the Americas. Biogeographic inference and the fossil record suggest that Morus might have experienced extensive local extinction events during the Tertiary. Morus has expanded its distributional range through two dispersals from the Sino-Himalayan and Sino-Japanese regions to Southeast Asia. In summary, our new phylogenetic scheme and the biogeographic history presented here provide an essential foundation for understanding species relationships and the evolutionary history of Morus. Full article
Show Figures

Figure 1

12 pages, 3669 KiB  
Article
MnASI1 Mediates Resistance to Botrytis cinerea in Mulberry (Morus notabilis)
by Donghao Wang, Na Gong, Chaorui Liu, Suxia Li, Zhaocheng Guo, Gefan Wang, Qiqi Shang, Dongming Wang, Xianling Ji and Youchao Xin
Int. J. Mol. Sci. 2022, 23(21), 13372; https://doi.org/10.3390/ijms232113372 - 2 Nov 2022
Cited by 9 | Viewed by 2115
Abstract
Six α-amylase/subtilisin inhibitor genes (MnASIs) were identified from mulberry (Morus notabilis). In this study, bioinformatics and expression pattern analysis of six MnASIs were performed to determine their roles in resistance to B. cinerea. The expression of all six [...] Read more.
Six α-amylase/subtilisin inhibitor genes (MnASIs) were identified from mulberry (Morus notabilis). In this study, bioinformatics and expression pattern analysis of six MnASIs were performed to determine their roles in resistance to B. cinerea. The expression of all six MnASIs was significantly increased under Botrytis cinerea infection. MnASI1, which responded strongly to B. cinerea, was overexpressed in Arabidopsis and mulberry. The resistance of Arabidopsis and mulberry overexpressing MnASI1 gene to B. cinerea was significantly improved, the catalase (CAT) activity was increased, and the malondialdehyde (MDA) content was decreased after inoculation with B. cinerea. At the same time, H2O2 and O2 levels were reduced in MnASI1 transgenic Arabidopsis, reducing the damage of ROS accumulation to plants. In addition, MnASI1 transgenic Arabidopsis increased the expression of the salicylic acid (SA) pathway-related gene AtPR1. This study provides an important reference for further revealing the function of α-amylase/subtilisin inhibitors. Full article
(This article belongs to the Special Issue Comparative Genomics and Functional Genomics Analysis in Plants)
Show Figures

Figure 1

15 pages, 2946 KiB  
Article
Functional Characterization of MaZIP4, a Gene Regulating Copper Stress Tolerance in Mulberry (Morus atropurpurea R.)
by Yisu Shi, Qiaonan Zhang, Lei Wang, Qiuxia Du, Michael Ackah, Peng Guo, Danyan Zheng, Mengmeng Wu and Weiguo Zhao
Life 2022, 12(9), 1311; https://doi.org/10.3390/life12091311 - 26 Aug 2022
Cited by 2 | Viewed by 2246
Abstract
ZIP4 (zinc transporter 4) plays important roles in transporting Cu2+ ions in plants, which may contribute to the maintenance of plant metal homeostasis in growth, plant development and normal physiological metabolism. However, ZIP4 transporters have not been described in mulberry and the [...] Read more.
ZIP4 (zinc transporter 4) plays important roles in transporting Cu2+ ions in plants, which may contribute to the maintenance of plant metal homeostasis in growth, plant development and normal physiological metabolism. However, ZIP4 transporters have not been described in mulberry and the exact function of ZIP4 transporters in regulating the homeostasis of Cu in mulberry remains unclear. In this study, a new ZIP4 gene (MaZIP4) was isolated and cloned from Morus atropurpurea R. Phylogenetic analysis of amino sequences suggested that the amino-acid sequence of the MaZIP4 protein shows high homology with other ZIP4 proteins of Morus notabilis, Trema orientale, Ziziphus jujube and Cannabis sativa. In addition, a MaZIP4 silenced line was successfully constructed using virus-induced gene silencing (VIGS). The analysis of MaZIP4 expression by quantitative real-time PCR in mulberry showed that the level of MaZIP4 expression increased with increasing Cu concentration until the Cu concentration reached 800 ppm. Relative to the blank (WT) and the negative controls, malondialdehyde (MDA) levels increased significantly and rose with increasing Cu concentration in the MaZIP4 silenced line, whereas the soluble protein and proline content, superoxide dismutase (SOD) and peroxidase (POD) activities of these transgenic plants were lower. These results indicated that MaZIP4 may play an important role in the resistance of mulberry to Cu stress. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses)
Show Figures

Figure 1

14 pages, 4822 KiB  
Article
The Mulberry SPL Gene Family and the Response of MnSPL7 to Silkworm Herbivory through Activating the Transcription of MnTT2L2 in the Catechin Biosynthesis Pathway
by Hongshun Li, Bi Ma, Yiwei Luo, Wuqi Wei, Jianglian Yuan, Changxin Zhai and Ningjia He
Int. J. Mol. Sci. 2022, 23(3), 1141; https://doi.org/10.3390/ijms23031141 - 20 Jan 2022
Cited by 9 | Viewed by 2618
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, as unique plant transcription factors, play important roles in plant developmental regulation and stress response adaptation. Although mulberry is a commercially valuable tree species, there have been few systematic studies on SPL genes. In this [...] Read more.
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, as unique plant transcription factors, play important roles in plant developmental regulation and stress response adaptation. Although mulberry is a commercially valuable tree species, there have been few systematic studies on SPL genes. In this work, we identified 15 full-length SPL genes in the mulberry genome, which were distributed on 4 Morus notabilis chromosomes. Phylogenetic analysis clustered the SPL genes from five plants (Malus × domestica Borkh, Populus trichocarpa, M. notabilis, Arabidopsis thaliana, and Oryza sativa) into five groups. Two zinc fingers (Zn1 and Zn2) were found in the conserved SBP domain in all of the MnSPLs. Comparative analyses of gene structures and conserved motifs revealed the conservation of MnSPLs within a group, whereas there were significant structure differences among groups. Gene quantitative analysis showed that the expression of MnSPLs had tissue specificity, and MnSPLs had much higher expression levels in older mulberry leaves. Furthermore, transcriptome data showed that the expression levels of MnSPL7 and MnSPL14 were significantly increased under silkworm herbivory. Molecular experiments revealed that MnSPL7 responded to herbivory treatment through promoting the transcription of MnTT2L2 and further upregulating the expression levels of catechin synthesis genes (F3′H, DFR, and LAR). Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2578 KiB  
Article
Characterization of the Chitinase Gene Family in Mulberry (Morus notabilis) and MnChi18 Involved in Resistance to Botrytis cinerea
by Youchao Xin, Donghao Wang, Shengmei Han, Suxia Li, Na Gong, Yiting Fan and Xianling Ji
Genes 2022, 13(1), 98; https://doi.org/10.3390/genes13010098 - 31 Dec 2021
Cited by 19 | Viewed by 2713
Abstract
Chitinase is a hydrolase that uses chitin as a substrate. It plays an important role in plant resistance to fungal pathogens by degrading chitin. Here, we conducted bioinformatics analysis and transcriptome data analysis of the mulberry (Morus notabilis) chitinase gene family [...] Read more.
Chitinase is a hydrolase that uses chitin as a substrate. It plays an important role in plant resistance to fungal pathogens by degrading chitin. Here, we conducted bioinformatics analysis and transcriptome data analysis of the mulberry (Morus notabilis) chitinase gene family to determine its role in the resistance to Botrytis cinerea. A total of 26 chitinase genes were identified, belonging to the GH18 and GH19 families. Among them, six chitinase genes were differentially expressed under the infection of B. cinerea. MnChi18, which significantly responded to B. cinerea, was heterologously expressed in Arabidopsis (Arabidopsis thaliana). The resistance of MnChi18 transgenic Arabidopsis to B. cinerea was significantly enhanced, and after inoculation with B. cinerea, the activity of catalase (CAT) increased and the content of malondialdehyde (MDA) decreased. This shows that overexpression of MnChi18 can protect cells from damage. In addition, our study also indicated that MnChi18 may be involved in B. cinerea resistance through other resistance-related genes. This study provides an important basis for further understanding the function of mulberry chitinase. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3058 KiB  
Article
Core RNA Interference Genes Involved in miRNA and Ta-siRNA Biogenesis in Hops and Their Expression Analysis after Challenging with Verticillium nonalfalfae
by Urban Kunej, Jernej Jakše, Sebastjan Radišek and Nataša Štajner
Int. J. Mol. Sci. 2021, 22(8), 4224; https://doi.org/10.3390/ijms22084224 - 19 Apr 2021
Cited by 5 | Viewed by 2758
Abstract
RNA interference is an evolutionary conserved mechanism by which organisms regulate the expression of genes in a sequence-specific manner to modulate defense responses against various abiotic or biotic stresses. Hops are grown for their use in brewing and, in recent years, for the [...] Read more.
RNA interference is an evolutionary conserved mechanism by which organisms regulate the expression of genes in a sequence-specific manner to modulate defense responses against various abiotic or biotic stresses. Hops are grown for their use in brewing and, in recent years, for the pharmaceutical industry. Hop production is threatened by many phytopathogens, of which Verticillium, the causal agent of Verticillium wilt, is a major contributor to yield losses. In the present study, we performed identification, characterization, phylogenetic, and expression analyses of three Argonaute, two Dicer-like, and two RNA-dependent RNA polymerase genes in the susceptible hop cultivar Celeia and the resistant cultivar Wye Target after infection with Verticillium nonalfalfae. Phylogeny results showed clustering of hop RNAi proteins with their orthologues from the closely related species Cannabis sativa, Morus notabilis and Ziziphus jujuba which form a common cluster with species of the Rosaceae family. Expression analysis revealed downregulation of argonaute 2 in both cultivars on the third day post-inoculation, which may result in reduced AGO2-siRNA-mediated posttranscriptional gene silencing. Both cultivars may also repress ta-siRNA biogenesis at different dpi, as we observed downregulation of argonaute 7 in the susceptible cultivar on day 1 and downregulation of RDR6 in the resistant cultivar on day 3 after inoculation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 28726 KiB  
Article
Flavones Produced by Mulberry Flavone Synthase Type I Constitute a Defense Line against the Ultraviolet-B Stress
by Han Li, Dong Li, Zhen Yang, Qiwei Zeng, Yiwei Luo and Ningjia He
Plants 2020, 9(2), 215; https://doi.org/10.3390/plants9020215 - 7 Feb 2020
Cited by 35 | Viewed by 4342
Abstract
Flavones, one of the largest classes of flavonoids in plants, have a variety of bioactivities and participate in the resistance response of plants to biotic and abiotic stresses. However, flavone synthase (FNS), the key enzyme for flavone biosynthesis, has not yet been characterized [...] Read more.
Flavones, one of the largest classes of flavonoids in plants, have a variety of bioactivities and participate in the resistance response of plants to biotic and abiotic stresses. However, flavone synthase (FNS), the key enzyme for flavone biosynthesis, has not yet been characterized in mulberry. In this study, we report that the leaves of certain mulberry cultivars, namely BJ7, PS2, and G14, are rich in flavones. We identified a Fe2+/2-oxoglutarate-dependent dioxygenase from Morus notabilis (MnFNSI) that shows the typical enzymatic activity of a FNSI-type enzyme, and directly converts eriodictyol and naringenin into their corresponding flavones. Overexpression of MnFNSI in tobacco increased the flavones contents in leaves and enhanced the tolerance of tobacco to ultraviolet-B (UV-B) stress. We found that mulberry cultivars with higher flavones contents exhibit less UV-B induced damage after a UV-B treatment. Accordingly, our findings demonstrate that MnFNSI, a FNSI-type enzyme, is involved in the biosynthesis of flavones, which provide protection against UV-B radiation. These results lay the foundation for obtaining mulberry germplasm resources that are more tolerant to UV-B stress and richer in their nutritional value. Full article
(This article belongs to the Special Issue The Impacts of Abiotic Stresses on Plant Development)
Show Figures

Figure 1

19 pages, 4807 KiB  
Article
New Insights into the Structure-Function Relationship of the Endosomal-Type Na+, K+/H+ Antiporter NHX6 from Mulberry (Morus notabilis)
by Boning Cao, Zhongqiang Xia, Changying Liu, Wei Fan, Shuai Zhang, Qiao Liu, Zhonghuai Xiang and Aichun Zhao
Int. J. Mol. Sci. 2020, 21(2), 428; https://doi.org/10.3390/ijms21020428 - 9 Jan 2020
Cited by 9 | Viewed by 3470
Abstract
The endosomal-type Na+, K+/H+ antiporters (NHXs) play important roles in K+, vesicle pH homeostasis, and protein trafficking in plant. However, the structure governing ion transport mechanism and the key residues related to the structure–function of the [...] Read more.
The endosomal-type Na+, K+/H+ antiporters (NHXs) play important roles in K+, vesicle pH homeostasis, and protein trafficking in plant. However, the structure governing ion transport mechanism and the key residues related to the structure–function of the endosomal-type NHXs remain unclear. Here, the structure-function relationship of the only endosomal-type NHX from mulberry, MnNHX6, was investigated by homology modeling, mutagenesis, and localization analyses in yeast. The ectopic expression of MnNHX6 in arabidopsis and Nhx1 mutant yeast can enhance their salt tolerance. MnNHX6’s three-dimensional structure, established by homology modeling, was supported by empirical, phylogenetic, and experimental data. Structure analysis showed that MnNHX6 contains unusual 13 transmembrane helices, but the structural core formed by TM5-TM12 assembly is conserved. Localization analysis showed that MnNHX6 has the same endosomal localization as yeast Nhx1/VPS44, and Arg402 is important for protein stability of MnNHX6. Mutagenesis analysis demonstrated MnNHX6 contains a conserved cation binding mechanism and a similar charge-compensated pattern as NHE1, but shares a different role in ion selectivity than the vacuolar-type NHXs. These results improve our understanding of the role played by the structure–function related key residues of the plant endosomal-type NHXs, and provide a basis for the ion transport mechanism study of endosomal-type NHXs. Full article
(This article belongs to the Special Issue Structural/Functional Characterization of Plant Proteins)
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
An R1R2R3 MYB Transcription Factor, MnMYB3R1, Regulates the Polyphenol Oxidase Gene in Mulberry (Morus notabilis)
by Dan Liu, Shuai Meng, Zhonghuai Xiang, Guangwei Yang and Ningjia He
Int. J. Mol. Sci. 2019, 20(10), 2602; https://doi.org/10.3390/ijms20102602 - 27 May 2019
Cited by 21 | Viewed by 5173
Abstract
The aim of this study was to determine how the mulberry (Morus notabilis) polyphenol oxidase 1 gene (MnPPO1) is regulated during plant stress responses by exploring the interaction between its promoter region and regulatory transcription factors. First, we analyzed [...] Read more.
The aim of this study was to determine how the mulberry (Morus notabilis) polyphenol oxidase 1 gene (MnPPO1) is regulated during plant stress responses by exploring the interaction between its promoter region and regulatory transcription factors. First, we analyzed the cis-acting elements in the MnPPO1 promoter. Then, we used the MnPPO1 promoter region [(1268 bp, including an MYB3R-binding cis-element (MSA)] as a probe to capture proteins in DNA pull-down assays. These analyses revealed that the MYB3R1 transcription factor in M. notabilis (encoded by MnMYB3R1) binds to the MnPPO1 promoter region. We further explored the interaction between the MnPPO1 promoter and MYB3R1 with the dual luciferase reporter, yeast one-hybrid, and chromatin immunoprecipitation assays. These analyses verified that MnMYB3R1 binds to the MSA in the MnPPO1 promoter region. The overexpression of MnMYB3R1 in tobacco upregulated the expression of the tobacco PPO gene. This observation as well as the quantitative real-time PCR results implied that MnMYB3R1 and PPO are involved in the abscisic acid-responsive stress response pathway. Full article
Show Figures

Figure 1

15 pages, 2578 KiB  
Article
New Insights into Long Terminal Repeat Retrotransposons in Mulberry Species
by Bi Ma, Lulu Kuang, Youchao Xin and Ningjia He
Genes 2019, 10(4), 285; https://doi.org/10.3390/genes10040285 - 9 Apr 2019
Cited by 12 | Viewed by 3403
Abstract
The evolutionary dynamics of long terminal repeat (LTR) retrotransposons in tree genomes has remained largely unknown. The availability of the complete genome sequences of the mulberry tree (Morus notabilis) has offered an unprecedented opportunity for us to characterize these retrotransposon elements. [...] Read more.
The evolutionary dynamics of long terminal repeat (LTR) retrotransposons in tree genomes has remained largely unknown. The availability of the complete genome sequences of the mulberry tree (Morus notabilis) has offered an unprecedented opportunity for us to characterize these retrotransposon elements. We investigated 202 and 114 families of Copia and Gypsy superfamilies, respectively, comprising 2916 intact elements in the mulberry genome. The tRNAMet was the most frequently used type of tRNA in both superfamilies. Phylogenetic analysis suggested that Copia and Gypsy from mulberry can be grouped into eight and six lineages, respectively. All previously characterized families of such elements could also be found in the mulberry genome. About 95% of the identified Copia and Gypsy full elements were estimated to have been inserted into the mulberry genome within the past 2–3 million years. Meanwhile, the estimated insertion times of members of the three most abundant families of the Copia superfamily (908 members from the three most abundant families) and Gypsy superfamily (783 members from the three most abundant families) revealed divergent life histories. Compared with the situation in Gypsy elements, three families of Copia elements are under positive selection pressure, which suggested that Copia elements may have a dominant influence in the evolution of mulberry genes. Analysis of insertion and deletion dynamics suggested that Copia and Gypsy elements exhibited a very long half-life in the mulberry genome. The present work provides new insights into the insertion and deletion dynamics of LTR retrotransposons, and it will greatly improve our understanding of the important roles transposable elements play in the architecture of the mulberry genome. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2754 KiB  
Article
Auxin Response Factor Genes Repertoire in Mulberry: Identification, and Structural, Functional and Evolutionary Analyses
by Vinay Kumar Baranwal, Nisha Negi and Paramjit Khurana
Genes 2017, 8(9), 202; https://doi.org/10.3390/genes8090202 - 25 Aug 2017
Cited by 17 | Viewed by 5408
Abstract
Auxin Response Factors (ARFs) are at the core of the regulation mechanism for auxin-mediated responses, along with AUX/IAA proteins.They are critical in the auxin-mediated control of various biological responses including development and stress. A wild mulberry species genome has been sequenced and offers [...] Read more.
Auxin Response Factors (ARFs) are at the core of the regulation mechanism for auxin-mediated responses, along with AUX/IAA proteins.They are critical in the auxin-mediated control of various biological responses including development and stress. A wild mulberry species genome has been sequenced and offers an opportunity to investigate this important gene family. A total of 17 ARFs have been identified from mulberry (Morus notabilis) which show a wide range of expression patterns. Of these 17 ARFs, 15 have strong acidic isoelectric point (pI) values and a molecular mass ranging from 52 kDa to 101 kDa. The putative promoters of these ARFs harbour cis motifs related to light-dependent responses, various stress responses and hormone regulations suggestive of their multifactorial regulation. The gene ontology terms for ARFs indicate their role in flower development, stress, root morphology and other such development and stress mitigation related activities. Conserved motif analysis showed the presence of all typical domains in all but four members that lack the PB1 domain and thus represent truncated ARFs. Expression analysis of these ARFs suggests their preferential expression in tissues ranging from leaf, root, winter bud, bark and male flowers. These ARFs showed differential expression in the leaf tissue of M. notabilis, Morus laevigata and Morus serrata. Insights gained from this analysis have implications in mulberry improvement programs. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4056 KiB  
Article
Genome-Wide Identification and Characterization of Long Non-Coding RNAs from Mulberry (Morus notabilis) RNA-seq Data
by Xiaobo Song, Liang Sun, Haitao Luo, Qingguo Ma, Yi Zhao and Dong Pei
Genes 2016, 7(3), 11; https://doi.org/10.3390/genes7030011 - 29 Feb 2016
Cited by 42 | Viewed by 7738
Abstract
Numerous sources of evidence suggest that most of the eukaryotic genome is transcribed into protein-coding mRNAs and also into a large number of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs), a group consisting of ncRNAs longer than 200 nucleotides, have been found to play [...] Read more.
Numerous sources of evidence suggest that most of the eukaryotic genome is transcribed into protein-coding mRNAs and also into a large number of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs), a group consisting of ncRNAs longer than 200 nucleotides, have been found to play critical roles in transcriptional, post-transcriptional, and epigenetic gene regulation across all kingdoms of life. However, lncRNAs and their regulatory roles remain poorly characterized in plants, especially in woody plants. In this paper, we used a computational approach to identify novel lncRNAs from a published RNA-seq data set and analyzed their sequences and expression patterns. In total, 1133 novel lncRNAs were identified in mulberry, and 106 of these lncRNAs displayed a predominant tissue-specific expression in the five major tissues investigated. Additionally, functional predictions revealed that tissue-specific lncRNAs adjacent to protein-coding genes might play important regulatory roles in the development of floral organ and root in mulberry. The pipeline used in this study would be useful for the identification of lncRNAs obtained from other deep sequencing data. Furthermore, the predicted lncRNAs would be beneficial towards an understanding of the variations in gene expression in plants. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop