Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = Modulation/Direct Detection (IM/DD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4348 KB  
Article
Experimental Demonstration of OAF Fiber-FSO Relaying for 60 GBd Transmission in Urban Environment
by Evrydiki Kyriazi, Panagiotis Toumasis, Panagiotis Kourelias, Argiris Ntanos, Aristeidis Stathis, Dimitris Apostolopoulos, Nikolaos Lyras, Hercules Avramopoulos and Giannis Giannoulis
Photonics 2025, 12(12), 1222; https://doi.org/10.3390/photonics12121222 - 11 Dec 2025
Viewed by 346
Abstract
We present an experimental demonstration of a daylight-capable Optical Amplify-and-Forward (OAF) relaying system designed to support flexible and high-capacity network topologies. The proposed architecture integrates fiber-based infrastructure with OAF Free Space Optics (FSO) relaying, enabling bidirectional optical communication over 460 m (x2) using [...] Read more.
We present an experimental demonstration of a daylight-capable Optical Amplify-and-Forward (OAF) relaying system designed to support flexible and high-capacity network topologies. The proposed architecture integrates fiber-based infrastructure with OAF Free Space Optics (FSO) relaying, enabling bidirectional optical communication over 460 m (x2) using SFP-compatible schemes, while addressing Non-Line-of-Sight (NLOS) constraints and fiber disruptions. This work achieves a Bit Error Rate (BER) below the Hard-Decision Forward Error Correction (HD-FEC) limit, validating the feasibility of high-speed urban FSO links. By leveraging low-cost fiber-coupled optical terminals, the system transmits single-carrier 120 Gbps Intensity Modulation/Direct Detection (IM/DD) signals using NRZ (Non-Return-to-Zero) and PAM4 (4-Pulse Amplitude Modulation) modulation formats. Operating entirely in the optical C-Band domain, this approach ensures compatibility with existing infrastructure, supporting scalable mesh FSO deployments and seamless integration with hybrid Radio Frequency (RF)/FSO systems. Full article
(This article belongs to the Special Issue Advances in Free-Space Optical Communications)
Show Figures

Figure 1

17 pages, 1038 KB  
Article
Unified Performance Analysis of Free-Space Optical Systems over Dust-Induced Fading Channels
by Maged Abdullah Esmail
Electronics 2025, 14(23), 4637; https://doi.org/10.3390/electronics14234637 - 25 Nov 2025
Viewed by 448
Abstract
Free-space optical (FSO) communication systems offer fiber-like bandwidth, high security, and rapid deployment; however, their performance is highly susceptible to atmospheric impairments, such as dust storms, which can cause fading that degrades link reliability. In this study, we analyze the performance of FSO [...] Read more.
Free-space optical (FSO) communication systems offer fiber-like bandwidth, high security, and rapid deployment; however, their performance is highly susceptible to atmospheric impairments, such as dust storms, which can cause fading that degrades link reliability. In this study, we analyze the performance of FSO links under a dust-induced fading channel modeled as a Beta distribution channel. We derive an expression for the instantaneous signal-to-noise ratio (SNR) distribution. Using the SNR expression, we construct a general framework that yields closed-form formulas for fundamental performance measures such as outage probability, average bit-error rate (BER), and ergodic capacity. The analysis considers both intensity modulation/direct detection (IM/DD) and coherent detection techniques, encompassing typical modulation schemes including modulation formats such as on–off keying (OOK), M-ary phase-shift keying (M-PSK), and M-ary quadrature amplitude modulation (M-QAM). The results show that dust-induced fading penalizes all modulations, though coherent detection achieves better error performance than IM/DD at equivalent SNR. For example, a coherent receiver requires approximately 4.4 dB lower average SNR than an IM/DD system to achieve the same outage probability. Overall, the proposed unified framework shows that dust-induced fading can severely degrade the performance of FSO links, while also quantifying how network operators can trade off complexity and performance when choosing between coherent and IM/DD detection under realistic dust-storm conditions. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 1591 KB  
Proceeding Paper
Performance Analysis of DCO-OFDM in IEEE 802.11bb VLC PHY Modes: Impact of Biasing Techniques and Optical Channel Dispersion
by Nelson Jaque Intriago, Alex Cueva Ayala, Christian Aguirre Navas, Wilson Taipe Chicaiza and Martha Cecilia Paredes-Paredes
Eng. Proc. 2025, 115(1), 21; https://doi.org/10.3390/engproc2025115021 - 15 Nov 2025
Viewed by 490
Abstract
This paper presents a performance analysis of Direct Current-biased Optical OFDM (DCO-OFDM) under the IEEE 802.11bb standard for Visible Light Communication (VLC). The study covers all physical layer (PHY) modes (HT, VHT, and HE) through a complete simulation of the PHY processing chain, [...] Read more.
This paper presents a performance analysis of Direct Current-biased Optical OFDM (DCO-OFDM) under the IEEE 802.11bb standard for Visible Light Communication (VLC). The study covers all physical layer (PHY) modes (HT, VHT, and HE) through a complete simulation of the PHY processing chain, including scrambling, convolutional encoding, interleaving, and modulation. These results provide a standard-driven recipe to tune VLC transmitters while preserving IEEE 802.11bb interoperability. To the best of current knowledge, this is among the first IEEE 802.11bb-compliant evaluations of DCO-OFDM for VLC that jointly examine DC-biasing strategies and optical channel dispersion across HT/VHT/HE modes. The novelty lies in the presentation of practical and standard-oriented standard-based design guidelines for transmitter optimization under IEEE 802.11bb, rather than a new analytical model. This work provides one of the first IEEE 802.11bb-compliant evaluations of DCO-OFDM in VLC that jointly studies DC-biasing (static/dynamic/clipping) and optical dispersion (L=1/3/5) across HT/VHT/HE, reporting SNR@BER = 10−3 baselines, a mean BCD power proxy, and actionable bias–channel–mode design guidelines. Full article
(This article belongs to the Proceedings of The XXXIII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

15 pages, 4045 KB  
Article
A Low-Complexity Receiver-Side Lookup Table Equalization Method for High-Speed Short-Reach IM/DD Transmission Systems
by Junde Lu, Yu Sun, Jun Qin, Changhao Han, Jie Shi, Lanling Chen, Jianyu Shi, Jiaxin Zheng, Shuo Jiang, Chi Zhang, Yang Yang, Yueqin Li, Jian Sun and Guo-Wei Lu
Photonics 2025, 12(11), 1091; https://doi.org/10.3390/photonics12111091 - 6 Nov 2025
Viewed by 538
Abstract
In this paper, we demonstrate a receiver-side lookup table (Rx-side LUT) equalization method for high-speed short-reach intensity modulation and direct detection (IM/DD) transmission systems, which alleviates the computational complexity of neural network-based equalization algorithms. Compared to conventional pre-equalization techniques applied at the transmitter [...] Read more.
In this paper, we demonstrate a receiver-side lookup table (Rx-side LUT) equalization method for high-speed short-reach intensity modulation and direct detection (IM/DD) transmission systems, which alleviates the computational complexity of neural network-based equalization algorithms. Compared to conventional pre-equalization techniques applied at the transmitter side, which utilize distortion correction values stored in LUTs derived from the transmitted symbols and their corresponding recovered counterparts, the Rx-side LUT relies solely on receiver-side data. The received data to be equalized serves as the index of the LUT, with a nearest-neighbor algorithm employed to find the element closest to the index and then return the corresponding equalization result from the table. With a lightweight lookup process, the proposed method releases the computation complexity of neural network-based equalization algorithms by replacing the computationally intensive operations performed during the inference phase. Experimental results indicate that compared to baseline fully connected neural network (FCNN) and gated recurrent unit (GRU) equalization, the Rx-side LUT could decrease the algorithm execution time by 25.5% and 34.6% for 100 GBaud and 22.8% and 36.9% for 112 GBaud PAM4 signals, respectively, while maintaining comparable system performance. The proposed scheme provides a low-complexity solution for high-speed, low-cost IM/DD optical interconnects. Full article
Show Figures

Figure 1

22 pages, 4882 KB  
Article
82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm
by Jingtao Ge, Jie Zhang, Sicong Xu, Qihang Wang, Jingwen Lin, Sheng Hu, Xin Lu, Zhihang Ou, Siqi Wang, Tong Wang, Yichen Li, Yuan Ma, Jiali Chen, Tensheng Zhang and Wen Zhou
Sensors 2025, 25(19), 5986; https://doi.org/10.3390/s25195986 - 27 Sep 2025
Viewed by 816
Abstract
With the rise of 6G, the exponential growth of data traffic, the proliferation of emerging applications, and the ubiquity of smart devices, the demand for spectral resources is unprecedented. Terahertz communication (100 GHz–3 THz) plays a key role in alleviating spectrum scarcity through [...] Read more.
With the rise of 6G, the exponential growth of data traffic, the proliferation of emerging applications, and the ubiquity of smart devices, the demand for spectral resources is unprecedented. Terahertz communication (100 GHz–3 THz) plays a key role in alleviating spectrum scarcity through ultra-broadband transmission. In this study, terahertz optical carrier-based systems are employed, where fiber-optic components are used to generate the optical signals, and the signal is transmitted via direct detection in the receiver side, without relying on fiber-optic transmission. In these systems, deep learning-based equalization effectively compensates for nonlinear distortions, while probability shaping (PS) enhances system capacity under modulation constraints. However, the probability distribution of signals processed by PS varies with amplitude, making it challenging to extract useful information from the minority class, which in turn limits the effectiveness of nonlinear equalization. Furthermore, in IM-DD systems, optical multipath interference (MPI) noise introduces signal-dependent amplitude jitter after direct detection, degrading system performance. To address these challenges, we propose a lightweight neural network equalizer assisted by the Synthetic Minority Oversampling Technique (SMOTE) and a clustering method. Applying SMOTE prior to the equalizer mitigates training difficulties arising from class imbalance, while the low-complexity clustering algorithm after the equalizer identifies edge jitter levels for decision-making. This joint approach compensates for both nonlinear distortion and jitter-related decision errors. Based on this algorithm, we conducted a 3.75 Gbaud W-band PAM4 wireless transmission experiment over 300 m at Fudan University’s Handan campus, achieving a bit error rate of 1.32 × 10−3, which corresponds to a 70.7% improvement over conventional schemes. Compared to traditional equalizers, the proposed new equalizer reduces algorithm complexity by 70.6% and training sequence length by 33%, while achieving the same performance. These advantages highlight its significant potential for future optical carrier-based wireless communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

18 pages, 4102 KB  
Article
Improved Ultra-Dense Connection Provision Capability of Concurrent Upstream and Direct Inter-ONU Communication IMDD PONs by P2MP Flexible Optical Transceivers
by Lin Chen, Han Yang, Shenming Jiang, Wei Jin, Jiaxiang He, Roger Philip Giddings, Yi Huang, Md. Saifuddin Faruk, Xingwen Yi and Jianming Tang
Photonics 2025, 12(9), 838; https://doi.org/10.3390/photonics12090838 - 22 Aug 2025
Cited by 1 | Viewed by 734
Abstract
To cost-effectively meet 6G latency requirements, concurrent upstream and direct inter-optical network unit (ONU) communication passive optical networks (PONs) based on flexible point-to-multipoint (P2MP) optical transceivers and intensity modulation and direct detection (IMDD) have been reported to enable direct communications among different ONUs [...] Read more.
To cost-effectively meet 6G latency requirements, concurrent upstream and direct inter-optical network unit (ONU) communication passive optical networks (PONs) based on flexible point-to-multipoint (P2MP) optical transceivers and intensity modulation and direct detection (IMDD) have been reported to enable direct communications among different ONUs within the same PON without passing data to the optical line terminal (OLT). However, the previously reported P2MP transceivers suffer from high DSP complexity for establishing ultra-dense connections. For such application scenarios, the PON’s remote nodes also have high inter-ONU signal power losses. To effectively solve these technical challenges, this paper experimentally showcases (a) new P2MP transceivers by utilizing parallel multi-channel aggregation/de-aggregation and advanced extended Gaussian function (EGF)-based orthogonal digital filter banks, along with (b) low inter-ONU signal power loss-remote nodes. By introducing these two techniques into a 27 km, >54.31 Gbit/s concurrent upstream and direct inter-ONU communication IMDD PON, comprehensive experimental explorations of the PON’s performances were undertaken for the first time. The remote node is capable of supporting 128 ONUs. The results show that the new P2MP transceivers lead to >75% (>40%) reductions in overall transmitter (receiver multi-channel de-aggregation) DSP complexity, and they can also equip the PONs with an enhanced capability of providing ultra-dense connections. The experimental results also show that the PON allows each ONU to flexibly change its upstream and inter-ONU communication channel count without considerably compromising its performance. Therefore, the PON outperforms those of previously reported works in terms of ensuring low DSP complexity, highly robust transmission performance, and enhanced capabilities of flexibly accommodating numerous applications with diverse requirements regarding traffic characteristics, thus making it suitable for ultra-dense connection application scenarios. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

12 pages, 1072 KB  
Article
Performance Evaluation of IM/DD FSO Communication System Under Dust Storm Conditions
by Maged Abdullah Esmail
Technologies 2025, 13(7), 288; https://doi.org/10.3390/technologies13070288 - 7 Jul 2025
Cited by 2 | Viewed by 923
Abstract
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior [...] Read more.
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior studies have addressed atmospheric effects such as fog and turbulence, the specific impact of dust on signal performance remains insufficiently explored. This work presents a probabilistic modeling framework for evaluating the performance of an intensity modulation/direct detection (IM/DD) FSO system under dust storm conditions. Using a controlled laboratory environment, we conducted measurements of the optical signal under dust-induced channel conditions using real-world dust samples collected from an actual dust storm. We identified the Beta distribution as the most accurate model for the measured signal fluctuations. Closed-form expressions were derived for average bit error rate (BER), outage probability, and channel capacity. The close agreement between the analytical, approximate, and simulated results validates the proposed model as a reliable tool for evaluating FSO system performance. The results show that the forward error correction (FEC) BER threshold of 103 is achieved at approximately 10.5 dB, and the outage probability drops below 103 at 10 dB average SNR. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

20 pages, 1134 KB  
Article
Study on Outage Probability of RF-UWOC Hybrid Dual-Hop Relaying Systems with Decode-and-Forward Protocol
by Meng Guo, Yueheng Li, Yong Lv and Meiyan Ju
Electronics 2025, 14(11), 2110; https://doi.org/10.3390/electronics14112110 - 22 May 2025
Viewed by 714
Abstract
This paper investigates the outage probability of a hybrid Radio Frequency–Underwater Wireless Optical Communication (RF-UWOC) system that employs the Decode-and-Forward protocol under composite fading channels. It is assumed that the RF link experiences Generalized K distribution fading along with atmospheric path loss, while [...] Read more.
This paper investigates the outage probability of a hybrid Radio Frequency–Underwater Wireless Optical Communication (RF-UWOC) system that employs the Decode-and-Forward protocol under composite fading channels. It is assumed that the RF link experiences Generalized K distribution fading along with atmospheric path loss, while the UWOC link endures generalized Gamma distribution turbulent fading, accounting for underwater path loss and pointing errors. Based on these assumptions, when intensity modulation with direct detection (IM/DD) and heterodyne detection (HD) are, respectively, utilized at the receiver, the average outage probability and its corresponding asymptotic expression for the considered hybrid dual-hop systems under high signal-to-noise ratios are derived. Subsequently, Monte Carlo simulations are conducted to validate the accuracy of the theoretical analysis results and to explore the influence of various key system parameters on the dual-hop systems. Full article
Show Figures

Figure 1

17 pages, 956 KB  
Article
Digital Frequency-Domain MIMO Equalizer Enabling Six-LP-Mode Strong-Coupling IM/DD MDM Optical Transmission System
by Jianyu Long, Chen Wang, Ying Wu, Bohan Sang, Chengzhen Bian, Xiongwei Yang, Long Zhang, Yifan Chen, Qinyi Zhang, Ying Wang, Yichen Li, Wen Zhou, Kaihui Wang, Bo Liu, Lei Shen and Jianjun Yu
Sensors 2025, 25(8), 2562; https://doi.org/10.3390/s25082562 - 18 Apr 2025
Cited by 2 | Viewed by 1151
Abstract
Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling that will extremely deteriorate the received [...] Read more.
Mode division multiplexing (MDM) techniques provide significant enhancement of the capacity of optical intensity modulation and direct detection (IM/DD) short-reach communication systems, like the datacenter interconnection scenarios. While the introduction of multiple modes leads to mode coupling that will extremely deteriorate the received signals, two approaches have been explored to address this issue: one involves the application of all-link weakly coupled components to suppress modal crosstalk, while the other utilizes optical multiple-input–multiple-output (MIMO) equalizers based on optical devices for signal decoupling. However, pure digital signal processing (DSP)-based schemes for mode decoupling in IM/DD MDM systems with strong mode coupling remain unexplored. In this paper, we propose to use a frequency-domain MIMO equalizer for compensating the modal interference in the strong-coupling linear-polarized (LP) MDM IM/DD system. The signal recovery capability of the proposed method is verified through numerical simulation. Finally, we successfully experimentally demonstrate the transmission of on–off-key (OOK) signals in a six-LP-mode strong-coupling MDM IM/DD system over a 10 km few-mode fiber, employing a pair of strong-coupling mode multiplexers/demultiplexers. The experimental results indicate that, with the frequency-domain MIMO equalizer, OOK signals from all modes can be recovered with an 11% hard-decision forward error correction threshold of 8.3 × 103. The proposed method facilitated by flexible DSP software offers an alternative for short-reach communication systems and has the potential to advance the practical application of MDM techniques in the future. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

12 pages, 4422 KB  
Communication
Machine Learning-Assisted Mitigation of Optical Multipath Interference in PAM4 IM-DD Transmission Systems
by Wenxin Cui, Jiahao Huo, Jin Zhu, Jianlong Tao, Peng Qin, Xiaoying Zhang and Haolin Bai
Photonics 2025, 12(4), 310; https://doi.org/10.3390/photonics12040310 - 28 Mar 2025
Viewed by 1254
Abstract
This paper aims to mitigate multipath interference (MPI) in intensity modulation with direct detection (IM-DD) systems using machine learning techniques, specifically for four-level pulse amplitude modulation (PAM4) systems. We propose a machine learning-assisted MPI mitigation scheme, called KNN-aided SVM+RF-M. In this scheme, KNN-aided [...] Read more.
This paper aims to mitigate multipath interference (MPI) in intensity modulation with direct detection (IM-DD) systems using machine learning techniques, specifically for four-level pulse amplitude modulation (PAM4) systems. We propose a machine learning-assisted MPI mitigation scheme, called KNN-aided SVM+RF-M. In this scheme, KNN-aided SVM serves as a soft decision algorithm that adapts the decision threshold to signal amplitude fluctuations, improving the decision accuracy for MPI-affected PAM4 signals. By replacing the original hard decision in the RF-M algorithm with KNN-aided SVM, we mitigate the error transfer problem inherent in RF-M. MPI mitigation is then achieved through MPI estimation and noise value cancellation methods applied to signals after soft decision processing. Our proposed scheme is validated in a 28 GBaud PAM4-DD transmission system, and the simulation results show that our proposed scheme can improve SIR tolerance by 2 dB and receiver sensitivity by about 1 dB at the 7% HD-FEC threshold compared to the original RF-M scheme. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

14 pages, 714 KB  
Article
Design and Analysis of Enhanced IM/DD System with Nonorthogonal Code Shift Keying and Parallel Transmission
by Nobuyoshi Komuro and Hiromasa Habuchi
Photonics 2025, 12(2), 166; https://doi.org/10.3390/photonics12020166 - 19 Feb 2025
Viewed by 1016
Abstract
Providing Optical Wireless Communications (OWCs) is desirable for high data transmission efficiency. Intensity Modulation and Direct Detection (IM/DD) is widely adopted for its simplicity and practicality. Among various modulation schemes, Code Shift Keying (CSK) has demonstrated superior transmission efficiency compared to On-Off Keying [...] Read more.
Providing Optical Wireless Communications (OWCs) is desirable for high data transmission efficiency. Intensity Modulation and Direct Detection (IM/DD) is widely adopted for its simplicity and practicality. Among various modulation schemes, Code Shift Keying (CSK) has demonstrated superior transmission efficiency compared to On-Off Keying (OOK) and Pulse Position Modulation (PPM). Prior research has shown that CSK performance can be further enhanced through parallel transmission and code concatenation techniques. However, the direct application of concatenated CSK to parallel transmission reduces the number of available code combinations as the concatenation level increases, potentially lowering modulation efficiency. This study proposes an advanced transmission scheme that integrates parallel transmission with a multi-level intensity adjustment mechanism. The proposed method preserves a high number of distinguishable transmission symbols, thereby achieving higher data transmission rates. Analytical derivations for transmission efficiency are provided for single-user scenarios, and numerical simulations validate the effectiveness of the proposed system. The key contributions of this work include mitigating symbol reduction in nonorthogonal CSK with parallel transmission and adjusting the multi-level intensity to enhance overall system performance. The results confirm that the proposed scheme significantly improves the efficiency and scalability of nonorthogonal CSK in OWC applications. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

13 pages, 3141 KB  
Article
Improved Performances in Point-to-Multipoint Flexible Optical Transceivers Utilizing Cascaded Discrete Fourier Transform-Spread Inverse Fast Fourier Transform/Fast Fourier Transform-Based Multi-Channel Aggregation/De-Aggregation
by Lin Chen, Yingxue Gao, Wei Jin, Han Yang, Shenming Jiang, Shu Liu, Yi Huang and Jianming Tang
Photonics 2025, 12(2), 106; https://doi.org/10.3390/photonics12020106 - 24 Jan 2025
Viewed by 1107
Abstract
The previously proposed cascaded inverse fast Fourier transform/fast Fourier transform (IFFT/FFT)-based point-to-multipoint (P2MP) flexible optical transceivers have the potential to equip future intensity modulation and direct detection (IMDD) optical access networks with excellent flexibility, adaptability, scalability and upgradability. However, due to their cascaded [...] Read more.
The previously proposed cascaded inverse fast Fourier transform/fast Fourier transform (IFFT/FFT)-based point-to-multipoint (P2MP) flexible optical transceivers have the potential to equip future intensity modulation and direct detection (IMDD) optical access networks with excellent flexibility, adaptability, scalability and upgradability. However, due to their cascaded IFFT-based multi-channel aggregations, P2MP flexible transceivers suffer high peak-to-average power ratios (PAPRs). To address the technical challenge, this paper proposes a novel P2MP flexible optical transceiver, which uses a cascaded discrete Fourier transformation-spread (DFT-Spread) IFFT/FFT-based multi-channel aggregation/de-aggregation and standard signal clipping to jointly reduce its PAPRs. The upstream performances of the proposed transceivers are numerically explored in a 20 km IMDD upstream passive optical network (PON). The results indicate that the proposed transceiver’s PAPRs are mainly dominated by the size of the last IFFT operation of the multi-channel aggregation, and are almost independent of modulation format and channel count. Compared to conventional cascaded IFFT/FFT-based P2MP transceivers with and without clipping operations, the proposed DFT-Spread P2MP transceivers can reduce PAPRs by 2.6 dB and 3.5 dB, respectively, for a final IFFT operation size of 1024. More significant PAPR reductions are achievable when the last IFFT operation size is increased further. As a direct result, compared to conventional P2MP transceivers adopting clipping operations only, the proposed transceiver can improve upstream receiver sensitivities by >1.9 dB and the aggregated upstream transmission capacities by >14.1%. Such aggregated upstream transmission capacity enhancements are independent of channel count and become more pronounced for longer transmission distances. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

20 pages, 3250 KB  
Review
Coherent Optics for Passive Optical Networks: Flexible Access, Rapid Burst Detection, and Simplified Structure
by Guangying Yang, Yixiao Zhu, Ziheng Zhang, Lina Man, Xiatao Huang, Xingang Huang and Weisheng Hu
Photonics 2025, 12(1), 68; https://doi.org/10.3390/photonics12010068 - 14 Jan 2025
Cited by 1 | Viewed by 2320
Abstract
With the development of the Internet of Things, cloud networking, and 4K/8K high-definition video, global internet traffic has seen a dramatic increase. This surge in traffic has placed higher demands on the performance of optical networks, featuring higher data rates, lower latency, and [...] Read more.
With the development of the Internet of Things, cloud networking, and 4K/8K high-definition video, global internet traffic has seen a dramatic increase. This surge in traffic has placed higher demands on the performance of optical networks, featuring higher data rates, lower latency, and lower cost. The passive optical network (PON) is a representative scenario of optical access networks. Issues such as burst-mode detection in upstream PON scenarios, flexible rate allocation in downstream scenarios, and the simplification of hardware complexity at the optical network unit (ONU) side have attracted considerable attention. Compared to intensity modulation/direct detection (IM/DD), a recently proposed coherent PON incorporates a local oscillator laser at the receiver, enabling superior receiver sensitivity, spectrally efficient modulation, linear optical field recovery, and flexible channel selection. These features significantly enhance the flexibility and data rates of PON systems. This paper provides a comprehensive review of the development of coherent PONs, particularly in aspects of preamble design for burst-mode detection in upstream scenarios, the design of flexible rate PONs in downstream scenarios, and solutions for reducing hardware complexity at the ONU side. Full article
(This article belongs to the Special Issue Optical Networking Technologies for High-Speed Data Transmission)
Show Figures

Figure 1

14 pages, 7309 KB  
Article
Design Considerations for 1.6 Tbit/s Data Center Interconnects: Evaluating IM/DD and Coherent Transmission over O-Band Transmission Window
by Adrian A. Juarez, Yanjun Zhu, Xin Chen and Ming-Jun Li
Photonics 2024, 11(12), 1179; https://doi.org/10.3390/photonics11121179 - 14 Dec 2024
Cited by 4 | Viewed by 3406
Abstract
As data center interconnects surge towards a 1.6 Tbit/s data rate, achieving cost-effective and technically viable solutions present challenges. Intensity-modulation and direct-detection (IM/DD) transmission over O-Band using standard single-mode fiber has emerged as a promising low-cost option. However, understanding the limitations imposed by [...] Read more.
As data center interconnects surge towards a 1.6 Tbit/s data rate, achieving cost-effective and technically viable solutions present challenges. Intensity-modulation and direct-detection (IM/DD) transmission over O-Band using standard single-mode fiber has emerged as a promising low-cost option. However, understanding the limitations imposed by factors like chromatic dispersion (CD) and fiber non-linearity (FWM) is crucial, particularly in different scenarios, such as operating at 8 × 100 GBaud PAM4 in an LWDM-8 configuration. In this paper, we adopt a statistical approach to assess outage probability and consider practical fluctuations in link parameters. Numerical modeling suggests IM/DD can span distances up to 5 km with transmission power under 0 dBm using this architecture. In addition, we evaluate recently proposed architecture to achieve 800 Gbit/s and 1.6 Tbit/s using an LWDM4 configuration and assess the impact of FWM to understand the role of zero-dispersion wavelength (ZDW) of the fiber. Coherent transmission leverages more powerful signal processing capabilities which extends the transmission range. Yet, reducing coherent transmission complexity is desirable for cost-effective and power-efficient data center applications. By exploring dual wavelength transmission and DP-16 QAM transceivers, akin to IM/DD counterparts, the feasibility of streamlining this architecture is also studied. The analysis indicates that the complexity of the coherent approach can be reduced without significant penalties for distances up to 10 km. Full article
Show Figures

Figure 1

13 pages, 4339 KB  
Article
FPGA Implementation for 24.576-Gbit/s Optical PAM4 Signal Transmission with MLP-Based Digital Pre-Distortion
by Sheng Hu, Tianqi Zheng, Chengzhen Bian, Xiongwei Yang, Xinda Sun, Zonghui Zhu, Yumeng Gou, Yuanxiao Meng, Jie Zhang, Jingtao Ge, Yichen Li and Kaihui Wang
Sensors 2024, 24(23), 7872; https://doi.org/10.3390/s24237872 - 9 Dec 2024
Cited by 3 | Viewed by 1720
Abstract
In this work, we implemented a short-reach real-time optical communication system using MLP for pre-distortion. Lookup table (LUT) algorithms are commonly employed for pre-distortion in intensity modulation and direct detection (IM/DD) systems. However, storage limitations typically restrict the LUT pattern length to 9, [...] Read more.
In this work, we implemented a short-reach real-time optical communication system using MLP for pre-distortion. Lookup table (LUT) algorithms are commonly employed for pre-distortion in intensity modulation and direct detection (IM/DD) systems. However, storage limitations typically restrict the LUT pattern length to 9, limiting its effectiveness in compensating for nonlinear effects. A multilayer perceptron (MLP) can overcome this limitation by predicting errors and generating pre-distorted signals, thus replacing the extensive storage requirements of LUTs with minimal computational resources. The MLP-based digital pre-distortion (MLP-DPD) technique enables the creation of long-pattern LUTs for improved nonlinear compensation. In this work, an MLP-DPD scheme was implemented on a field-programmable gate array (FPGA). The FPGA was used to generate a 14.7456 GBaud pre-distorted pulse amplitude modulation 4-level (PAM4) signal. This signal was then transmitted over 20 km of standard single-mode fiber (SSMF). At the receiver, the parallel constant modulus algorithm (PCMA) was applied for signal processing. The bit error rate (BER) achieved met the 2.4 × 10−2 threshold for soft-decision forward error correction (SD-FEC), enabling a net transmission bit rate of 24.576 Gbit/s. This approach demonstrates the feasibility of using MLP-DPD for effective nonlinear compensation in high-speed optical communication systems with limited resources. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

Back to TopTop