Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = MgO–ZnO alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 271
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

19 pages, 4606 KiB  
Article
Corrosion Behavior of MgTiZn and Mg4TiZn Alloys After Ball Milling and Subsequent Spark Plasma Sintering
by Alexander Helmer, Rahul Agrawal, Manoj Mugale, Tushar Borkar and Rajeev Gupta
Materials 2025, 18(14), 3279; https://doi.org/10.3390/ma18143279 - 11 Jul 2025
Cited by 1 | Viewed by 381
Abstract
Magnesium-containing multi-principal element alloys (MPEAs) are promising for lightweight applications due to their low density, high specific strength, and biocompatibility. This study examines two Mg-Ti-Zn alloy compositions, equal molar MgTiZn (TZ) and Mg4TiZn (4TZ), synthesized via ball milling followed by spark [...] Read more.
Magnesium-containing multi-principal element alloys (MPEAs) are promising for lightweight applications due to their low density, high specific strength, and biocompatibility. This study examines two Mg-Ti-Zn alloy compositions, equal molar MgTiZn (TZ) and Mg4TiZn (4TZ), synthesized via ball milling followed by spark plasma sintering, focusing on their microstructures and corrosion behaviors. X-ray diffraction and transmission electron microscopy revealed the formation of intermetallic phases, including Ti2Zn and Mg21Zn25 in TZ, while 4TZ exhibited a predominantly Mg-rich phase. Potentiodynamic polarization and immersion tests in 0.1 M NaCl solution showed that both alloys had good corrosion resistance, with values of 3.65 ± 0.65 µA/cm2 for TZ and 4.58 ± 1.64 µA/cm2 for 4TZ. This was attributed to the formation of a TiO2-rich surface film in the TZ, as confirmed by X-ray photoelectron spectroscopy (XPS), which contributed to enhanced passivation and lower corrosion current density. Both alloys displayed high hardness, 5.5 ± 1.0 GPa for TZ and 5.1 ± 0.9 GPa for 4TZ, and high stiffness, with Young’s modulus values of 98.2 ± 11.2 GPa for TZ and 100.8 ± 9.6 GPa for 4TZ. These findings highlight the potential of incorporating Ti and Zn via mechanical alloying to improve the corrosion resistance of Mg-containing MPEAs and Mg-based alloys. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

17 pages, 5291 KiB  
Article
General Prediction of Interface Chemical Bonding at Metal–Oxide Interface with the Interface Reaction Considered
by Michiko Yoshitake
Materials 2025, 18(13), 3096; https://doi.org/10.3390/ma18133096 - 30 Jun 2025
Viewed by 248
Abstract
A method for generally predicting interface chemical bonding at the metal–oxide interface with the interface reaction considered is reported. So far, the interface between pure metal or alloy and 11 oxides—MgO, Al2O3, SiO2, Cr2O3 [...] Read more.
A method for generally predicting interface chemical bonding at the metal–oxide interface with the interface reaction considered is reported. So far, the interface between pure metal or alloy and 11 oxides—MgO, Al2O3, SiO2, Cr2O3, ZnO, Ga2O3, Y2O3, ZrO2, CdO, La2O3, and HfO2—without considering the interface reaction, has been discussed and implemented in the free web-based software product InterChemBond (v2022). Now, the number of oxides available for prediction is 83 in total. Among them, 29 oxides are in one stable valence, and the others are multi-valence. The newly developed prediction method considering the interface reaction is additionally implemented in InterChemBond. The principles and formula for predicting interface bonding while considering interface reactions are provided as well as some screenshots of the software. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Graphical abstract

14 pages, 3237 KiB  
Article
Effect of Si and HA on the Mechanical Characteristics of Spark-Plasma-Sintered Mg–Zn–Mn–(Si–HA) Composites
by Abdulaziz Kurdi, Doaa Almalki, Sayan Sarkar, Alaa Aldurihem, Ahmed Degnah and Animesh Kumar Basak
Coatings 2025, 15(6), 655; https://doi.org/10.3390/coatings15060655 - 29 May 2025
Viewed by 828
Abstract
Mg–Zn–Mn-based biocomposites hold prospects as potential orthopedic material. The composition of these composites can be modulated, based on applications, by selective elemental alloying. Towards that, the addition of silicon (Si), hydroxyapatite (HA), or both is considered, followed by the consolidation method, such as [...] Read more.
Mg–Zn–Mn-based biocomposites hold prospects as potential orthopedic material. The composition of these composites can be modulated, based on applications, by selective elemental alloying. Towards that, the addition of silicon (Si), hydroxyapatite (HA), or both is considered, followed by the consolidation method, such as spark plasma sintering (SPS). In this study, the micro-mechanical properties of Mg–Zn–Mn–(Si–HA) composites were investigated through the micro-pillar compression method. The effect of Si and HA incorporation on the mechanical characteristics and deformation mechanism was also elucidated. The microstructure of the composite presents porosity, together with different bioactive phases, such as Mg–Zn, CaMg, Mn–P, MgSi2, Mn–Si, Mn–CaO, CaMgSi, and Ca–Mn–O. Such porous structures were determined to facilitate cell growth when used as an implant, particularly for musculoskeletal-related disabilities. The yield stress (YS) and compressive stress of the Mg–Zn–Mn–Si–HA were about 1543 ± 99 MPa and 1825 ± 102 MPa, respectively. These values were about 5.8 and 4.8 times higher, respectively, than those of Mg–Zn–Mn–HA composites (266 ± 42 MPa and 380 ± 10 MPa, respectively), and the same was observed for the elastic modulus. Besides that, alloying with HA and Si alters the deformation mechanism from brittle (for Mg–Zn–Mn–Si composites) or ductile (for Mg–Zn–Mn–HA composites) to predominant ductile failure without compromising the attained mechanical properties. Full article
Show Figures

Figure 1

16 pages, 4742 KiB  
Article
Influence of Zn2⁺ Concentration on Ceramic Coatings for Corrosion Protection of Magnesium-Lithium Alloys
by Yifei Wang, Chunming Liu, Hongzhan Li and Zhen Zhang
Materials 2025, 18(9), 2072; https://doi.org/10.3390/ma18092072 - 30 Apr 2025
Viewed by 477
Abstract
This study investigates the enhancement of corrosion resistance in magnesium-lithium alloys through plasma electrolytic oxidation (PEO) coatings incorporating ZnF2 via in situ synthesis. By adjusting Zn2⁺ concentrations (4–16 g/L) in a zirconium salt-based electrolyte, ceramic coatings with tailored ZnF2 [...] Read more.
This study investigates the enhancement of corrosion resistance in magnesium-lithium alloys through plasma electrolytic oxidation (PEO) coatings incorporating ZnF2 via in situ synthesis. By adjusting Zn2⁺ concentrations (4–16 g/L) in a zirconium salt-based electrolyte, ceramic coatings with tailored ZnF2 content, thickness, and porosity were fabricated. The optimal Zn2⁺ concentration of 12 g/L yielded a ZnF2-rich coating with isolated pores and enhanced densification (inner layer resistance Ri = 3.01 × 104 Ω⋅cm2), achieving a corrosion current density (icorr) of 4.42 × 10−8 A/cm2 and polarization resistance (Rp) of 8.5 × 105 Ω⋅cm2, representing a 354-fold improvement over untreated LA103Z. Higher Zn2⁺ concentrations (16 g/L) induced interconnected pores and ZnO formation, degrading corrosion resistance. Long-term immersion (168 h in 3.5 wt% NaCl) confirmed the durability of Zn12 coatings (mass loss: 0.6 mg), while Zn4 and Zn16 coatings exhibited severe localized corrosion. The study demonstrates that balancing Zn2⁺ concentration optimizes ZnF2 passivation and pore isolation, offering a scalable strategy for Mg-Li alloy protection in corrosive environments. Full article
Show Figures

Figure 1

12 pages, 6390 KiB  
Article
Exploring How Dopants Strengthen Metal-Ni/Ceramic-Al2O3 Interface Structures at the Atomic and Electronic Levels
by Fengqiao Sun, Xiaofeng Zhang, Long Li, Qicheng Chen, Dehao Kong, Haifeng Yang and Renwei Li
Molecules 2025, 30(9), 1990; https://doi.org/10.3390/molecules30091990 - 29 Apr 2025
Viewed by 384
Abstract
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density [...] Read more.
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density of states for doped-M (M = Ti, Mg, Cu, Zn, Si, Mn, or Al) Ni (111)/Al2O3 (0001) interface structures are studied using first-principle calculation methods. The calculation results demonstrate that doping Ti and Mg can increase the bonding strength of the Ni–Al2O3 interface by factors of 3.4 and 1.5, respectively. However, other dopants, such as Si, Mn, and Al, have a negative effect on the bonding of the Ni–Al2O3 interface. As a result, the alloying elements may be beneficial to the bonding of the Ni–Al2O3 interface, but they may also play an opposite role. Moreover, the Ti and Mg dopants segregate from the matrix and move to the middle position of the Ni–Al2O3 interface during relaxation, while other dopants exhibit a slight segregation and solid solution in the matrix. Most remarkably, the segregation behavior of Ti and Mg induced electron transfer to the middle of the interface, thereby increasing the charge density of the Ni–Al2O3 interface. For the optimal doped-Ti Ni–Al2O3 interface, bonds of Ti–O and Ti–Ni are found, which indicates that the dopant Ti generates stable compounds in the interface region, acting as a stabilizer for the interface. Consequently, selecting Ti as an additive in the fabrication of metal-based ceramic Ni–Al2O3 composites will contribute to prolonging the service lifetime of the composite. Full article
Show Figures

Graphical abstract

21 pages, 8410 KiB  
Article
Effect of Extrusion Temperature on the Microstructure and Properties of Biomedical Mg-1Zn-0.4Ca-1MgO Composite
by Shuaipeng Gao, Shaoyuan Lyu, Qian Zhao and Minfang Chen
Metals 2025, 15(3), 337; https://doi.org/10.3390/met15030337 - 20 Mar 2025
Cited by 1 | Viewed by 449
Abstract
The effects of extrusion temperatures on the microstructure, mechanical properties, and corrosion performance of biomedical Mg-1Zn-0.4Ca-1MgO composites were systematically investigated. The results indicated that lower extrusion temperatures notably refined the grain size and promoted the formation of numerous nano-scaled secondary phase particles. The [...] Read more.
The effects of extrusion temperatures on the microstructure, mechanical properties, and corrosion performance of biomedical Mg-1Zn-0.4Ca-1MgO composites were systematically investigated. The results indicated that lower extrusion temperatures notably refined the grain size and promoted the formation of numerous nano-scaled secondary phase particles. The grain sizes were 0.8 μm, 1.7 μm, and 3.4 μm for the materials extruded at 280 °C, 310 °C, and 330 °C, which were named ET280, ET310, and ET330. The finest grain size and abundant precipitates enhanced the mechanical properties of the composite with a microhardness of 86.9 HV, a yield strength of 305 MPa, and a fracture elongation of 15.2%. Moreover, the ET280 alloy with ultra-fine grains exhibited the optimal corrosion resistance among these three composites, and its annual corrosion after immersion in Hank’s solution for 14 days was only 0.17 mm/y. The excellent performance in vitro immersion was mainly attributed to the formation of the uniformly dense Ca-P layer on its surface and the contiguous compact Mg(OH)2 layer, which could effectively weaken the contact between the corrosive solution and the Mg matrix. Full article
(This article belongs to the Special Issue Metal Composite Materials and Their Interface Behavior)
Show Figures

Figure 1

17 pages, 3597 KiB  
Article
Interrelationships Between Topology and Wettability of Nanostructured Composite Wide Bandgap Metal Oxide Films Prepared by Spray Pyrolysis
by Vadim Morari, Elena I. Monaico, Eduard V. Monaico, Emil V. Rusu and Veaceslav V. Ursaki
Appl. Sci. 2025, 15(5), 2381; https://doi.org/10.3390/app15052381 - 23 Feb 2025
Viewed by 686
Abstract
The interrelationships between the topological features, such as surface roughness deduced from atomic force microscopy (AFM), and wettability properties expressed by the contact angle of a water droplet on the surface of nanostructured wide bandgap oxide films prepared by spray pyrolysis are investigated [...] Read more.
The interrelationships between the topological features, such as surface roughness deduced from atomic force microscopy (AFM), and wettability properties expressed by the contact angle of a water droplet on the surface of nanostructured wide bandgap oxide films prepared by spray pyrolysis are investigated for a wide range of compositions. A direct relationship between the surface roughness and the value of the contact angle was found for nanocomposite (In2O3)1−x(MgO)x, (In1−xGax)2O3, and Zn1−xMgxO films, for which both the surface roughness and the contact angle increase with the increasing x-value. On the other hand, in ITO films doped with Ga, it was found that the surface roughness increases by increasing the Ga doping, while the contact angle decreases. Both the surface roughness and the contact angle proved to increase in Ga2O3 films when they were alloyed with Al2O3, similar to other nanocomposite films. An inverse relationship was revealed for a nanocomposite formed from Ga2O3 and SnO2. The contact angle for a (Ga2O3)0.75(SnO2)0.25 film was larger as compared to that of the Ga2O3 film, while the surface roughness was lower, similar to ITO films. The highest value of the contact angle equal to 128° was found for a (In2O3)1−x(MgO)x film with an x-value of 0.8, and the largest RMS roughness of 20 nm was showed by a Ga1.75Al0.25O3 film. The optical properties of the prepared films were also analyzed from optical absorption spectroscopy, demonstrating their bandgap variation in the range of (4 to 4.85) eV, corresponding to the middle ultraviolet spectral range. Full article
Show Figures

Figure 1

19 pages, 11601 KiB  
Article
Micro-Size Layers Evaluation of CIGSe Solar Cells on Flexible Substrates by Two-Segment Process Improved for Overall Efficiencies
by Jiajer Ho, Da-Ming Yu, Jen-Chuan Chang and Jyh-Jier Ho
Molecules 2025, 30(3), 562; https://doi.org/10.3390/molecules30030562 - 26 Jan 2025
Viewed by 821
Abstract
This paper details the enhancement of the optoelectronic properties of Cu-(In, Ga)-Se2 (CIGSe) solar cells through a two-segment process in the ultraviolet (UV)–visible spectral range. These include fine-tuning the DC sputtering power of the absorber layer (ranging from 20 to 40 W [...] Read more.
This paper details the enhancement of the optoelectronic properties of Cu-(In, Ga)-Se2 (CIGSe) solar cells through a two-segment process in the ultraviolet (UV)–visible spectral range. These include fine-tuning the DC sputtering power of the absorber layer (ranging from 20 to 40 W at segment I) and thoroughly checking the trace micro-chemistry composition of the absorber layer (CdS, ZnO/CdS, ZnMgO/CdS, and ZnMgO at segment II). After segment I of treatment, the optimal 30 W CIGSe absorber layer (i.e., with a 0.95 CGI ratio) can be obtained, it can be seen that the Cu-rich film exhibits the ability to significantly promote grain growth and can effectively reduce its trap state density. After the segment II process aimed at replacing toxic CdS, the optimal metal alloy (Zn0.9Mg0.1O) composition (buffer layer) achieved the highest conversion efficiency (η) of 8.70%, also emphasizing its role in environmental protection. Especially within the tunable bandgap range (2.48–3.62 eV), the developed overall internal and external quantum efficiency (IQE/EQE) is significantly improved by 13.15% at shorter wavelengths. A photovoltaic (PV) module designed with nine optimal CIGSe cells demonstrated commendable stability. Variation remained within ±5% throughout the 60-day experiment. The PV modules in this study represent a breakthrough benchmark toward a significant advance in the scientific understanding of renewable energy. Furthermore, this research clearly promotes the practical application of PV modules, harmonizes with sustainable goals, and actively contributes to the creation of eco-friendly communities. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

27 pages, 38081 KiB  
Article
Dynamic Testing of Materials for Galvanising Pot Roll Bearings with Improved Performance
by Giovanni Paolo Alparone, James Sullivan, Christopher Mills, James Edy and David Penney
Materials 2024, 17(23), 5837; https://doi.org/10.3390/ma17235837 - 28 Nov 2024
Viewed by 800
Abstract
Galvanising pot roll bearings are subjected to severe deterioration due to the corrosion of the bearing materials in liquid Zn, resulting in maintenance stops that can cost thousands of pounds per hour in downtime. Dynamic wear testing in molten Zn-Al and Zn-Al-Mg was [...] Read more.
Galvanising pot roll bearings are subjected to severe deterioration due to the corrosion of the bearing materials in liquid Zn, resulting in maintenance stops that can cost thousands of pounds per hour in downtime. Dynamic wear testing in molten Zn-Al and Zn-Al-Mg was conducted to assess the corrosion and wear resistance of three material pairs using a bespoke testing rig. The materials investigated in this study were Wallex6TM coated with WC-Co, stainless steel 316L coated with Al2O3, and as-received Wallex6TM and Wallex4TM alloys. It was found that only the Al2O3 coating remained unreactive in Zn alloy, whereas the materials containing Co were corroded, as evidenced by the formation of intermetallic compounds containing Al-Co-Zn-Fe. The results also highlighted that the dissolution of the Co matrix and diffusion of Zn and Al from the bath occurred in Wallex6TM and Wallex4TM. However, the diffusion of Zn into the WallexTM alloys was reduced by approximately 60% in the Zn-Al-Mg bath compared to Zn-Al. The wear scars were analysed to determine the wear coefficient of the worn specimens. Out of the three material couplings investigated in this study, minimal wear damage in both Zn-Al and Zn-Al-Mg was only obtained by pairing Wallex6TM with Al2O3 coatings. Full article
Show Figures

Figure 1

17 pages, 22813 KiB  
Article
Effect of Oxide’s Thermophysical Properties on 2205 Duplex Stainless Steels ATIG Welds
by Rachid Djoudjou, Kamel Touileb, Elawady Attia, Abousoufiane Ouis, Abdeljlil Chihaoui Hedhibi, Hany S. Abdo and Ibrahim AlBaijan
Crystals 2024, 14(11), 973; https://doi.org/10.3390/cryst14110973 - 10 Nov 2024
Viewed by 1390
Abstract
Duplex stainless-steel grade 2205 (2205 DSS) is the most widely used of the current duplex materials. The duplex steel alloy is characterized by high strength and high corrosion resistance through enhancing nitrogen and molybdenum contents. The activated tungsten inert gas (ATIG) welding technique [...] Read more.
Duplex stainless-steel grade 2205 (2205 DSS) is the most widely used of the current duplex materials. The duplex steel alloy is characterized by high strength and high corrosion resistance through enhancing nitrogen and molybdenum contents. The activated tungsten inert gas (ATIG) welding technique uses the same equipment as tungsten inert gas (TIG), but prior to the welding operation, a thin layer of flux is deposited. Activation fluxes are known to influence the shape and energy characteristics of the arc. They promote the change in shapes and dimensions of the welds, namely, increasing the depth and narrowing the weld width. This work is dedicated to investigate the influence of the thermophysical properties of individual metal oxide fluxes on 2205 DSS welding morphology. It helps also to identify the recommended flux properties in order to perform full penetrated ATIG welds. Thirteen kinds of oxides (SiO2, TiO2, Fe2O3, Cr2O3, ZnO, Mn2O3, V2O5, MoO3, Co3O4, SrO, ZrO2, CaO, and MgO) have been tested and three current intensity levels (120, 150 and 180 A) have been considered. The results showed that the main input factors affecting the weld depth (D) were the welding current intensity with a contribution of up to 53.36%, followed by the oxides enthalpy energy with 15.05% and then by the difference between the oxides and the base metal of 2205 DSS (BM 2205 DSS) melting points with a contribution of 9.71% of the data variance. The conditions on individual oxides’ thermophysical properties to achieve full penetrated weld beads have been also revealed. Full article
Show Figures

Figure 1

21 pages, 9321 KiB  
Article
The Influence of As-Cast Grain Size on the Formation of Recrystallized Grains and the Related Mechanical Properties in Al–Zn–Mg–Cu-Based Alloy Sheets
by Jonggyu Jeon, Sangjun Lee, Jeheon Jeon, Maru Kang and Heon Kang
Materials 2024, 17(21), 5267; https://doi.org/10.3390/ma17215267 - 29 Oct 2024
Cited by 3 | Viewed by 1131
Abstract
The influence of as-cast grain size on recrystallization and the related mechanical properties of Al–Zn–Mg–Cu-based alloys was investigated. Grain sizes ranging from 163 to 26 μm were achieved by adding Ti, Cr and Mn, and ZnO nano-particles, which acted as heterogeneous nucleation sites. [...] Read more.
The influence of as-cast grain size on recrystallization and the related mechanical properties of Al–Zn–Mg–Cu-based alloys was investigated. Grain sizes ranging from 163 to 26 μm were achieved by adding Ti, Cr and Mn, and ZnO nano-particles, which acted as heterogeneous nucleation sites. A decrease in the as-cast grain size led to a corresponding reduction in the recrystallized grain size from 54 to 13 μm. Notably, as-cast grain sizes below 100 μm provided additional nucleation sites at grain boundaries, allowing for a reasonable prediction of recrystallized grain size. Finer grains also contributed to enhanced mechanical properties, with yield strength increasing as recrystallized grain size decreased without significant loss of elongation. Additional strengthening was observed due to η-precipitates at grain boundaries, further improving the properties of fine-grained sheets. Full article
Show Figures

Figure 1

18 pages, 6517 KiB  
Article
Antibacterial Amorphous–Crystalline Coatings Based on Wollastonite and ZnO Particles
by Mariya B. Sedelnikova, Violetta V. Mayer, Olga V. Bakina, Alexander D. Kashin, Pavel V. Uvarkin, Margarita A. Khimich, Nikita A. Luginin, Ivan A. Glukhov, Tatiana V. Tolkacheva, Anna V. Ugodchikova and Yurii P. Sharkeev
Crystals 2024, 14(10), 886; https://doi.org/10.3390/cryst14100886 - 11 Oct 2024
Viewed by 1022
Abstract
This study considers the regularities in the formation of amorphous–crystalline coatings with zinc oxide and wollastonite particles via micro-arc oxidation (MAO) on metal substrates made from a Mg-0.8 wt.% Ca alloy. The combination of components with increased antibacterial and osteogenic properties made it [...] Read more.
This study considers the regularities in the formation of amorphous–crystalline coatings with zinc oxide and wollastonite particles via micro-arc oxidation (MAO) on metal substrates made from a Mg-0.8 wt.% Ca alloy. The combination of components with increased antibacterial and osteogenic properties made it possible to obtain a unique bioactive and corrosion-resistant coating that slowed down the bioresorption of a magnesium implant and stimulated the processes of osteointegration. The coating was examined using various methods, including scanning and transmission electron microscopy, X-ray crystallography, scratch testing, energy-dispersive X-ray spectroscopy, and potentiodynamic polarization testing. As a result of plasma-chemical interactions between electrolyte components and the magnesium substrate, a porous amorphous–crystalline coating comprising wollastonite (CaSiO3), zinc oxide (ZnO), forsterite (Mg2SiO4), and periclase (MgO) was formed at varying voltages (350–500 V) during the MAO process. The protective properties of the coating were exceptional, as evidenced by the mass loss values of the coated samples (1.4–2.3%) in 0.9% NaCl solution, which were significantly lower than the mass loss of the uncoated alloy (8.9%). The coating synthesized at a voltage of 500 V was characterized by a maximum zinc content of 8 at.%, which was responsible for the highest antibacterial activity against Staphylococcus aureus (99.1%). Full article
(This article belongs to the Special Issue Synthesis, Characterization and Properties of Crystalline Materials)
Show Figures

Figure 1

14 pages, 4069 KiB  
Article
Electroless ZnO Deposition on Mg-Al Alloy for Improved Corrosion Resistance to Marine Environments
by Luis Chávez, Lucien Veleva and Andrea Castillo-Atoche
Coatings 2024, 14(9), 1192; https://doi.org/10.3390/coatings14091192 - 15 Sep 2024
Cited by 1 | Viewed by 1136
Abstract
Electroless ZnO (≈900 nm) was deposited on the surface of an Mg-Al alloy (AM60) to reduce its degradation in the marine environment. Uncoated and coated ZnO samples were exposed to an SME simulated marine solution for up to 30 days. The AFM and [...] Read more.
Electroless ZnO (≈900 nm) was deposited on the surface of an Mg-Al alloy (AM60) to reduce its degradation in the marine environment. Uncoated and coated ZnO samples were exposed to an SME simulated marine solution for up to 30 days. The AFM and optical images revealed that the corrosion attack on the ZnO-AM60 surface was reduced due to an increase in the surface hydrophobicity of the ZnO coating (contact angle of ≈91.6°). The change in pH to more alkaline values over time was less pronounced for ZnO-AM60 (by ≈13%), whereas the release of Mg2+ ions was reduced by 34 times, attributed to the decrease in active sites on the Mg-matrix provided by the electroless ZnO coating. The OCP (free corrosion potential) of ZnO-AM60 shifted towards less negative values of ≈100 mV, indicating that electroless ZnO may serve as a good barrier for AM60 in a marine environment. The calculated polarization resistance (Rp), based on EIS data, was ≈3 times greater for ZnO-AM60 than that of the uncoated substrate. Full article
(This article belongs to the Special Issue Surface Modification of Magnesium, Aluminum Alloys, and Steel)
Show Figures

Figure 1

12 pages, 3683 KiB  
Article
The Activation of Magnesium Sintering by Zinc Addition
by Serhii Teslia, Mykyta Kovalenko, Mariia Teslia, Mykhailo Vterkovskiy, Ievgen Solodkyi, Petro Loboda and Tetiana Soloviova
Alloys 2024, 3(3), 178-189; https://doi.org/10.3390/alloys3030011 - 6 Aug 2024
Viewed by 1723
Abstract
Light alloys based on magnesium are widely used in most areas of science and technology. However, magnesium powder alloys are quite difficult to sinter due to the stable film of oxides that counteracts diffusion. Therefore, finding a method to activate magnesium sintering is [...] Read more.
Light alloys based on magnesium are widely used in most areas of science and technology. However, magnesium powder alloys are quite difficult to sinter due to the stable film of oxides that counteracts diffusion. Therefore, finding a method to activate magnesium sintering is urgent. This study examines the effect of adding 5 wt. % and 10 wt. % zinc to the sintering pattern of magnesium powders at 430 °C; a dwell of 30 min was used to homogenize at the densification’s temperature. Scanning electron microscopy (SEM) was used to characterize the alloy’s microstructure, while the phase composition was characterized using X-ray diffraction (XRD) and energy dispersion spectroscopy (EDS). The sintering densities of Mg–5Zn and Mg–10Zn were found to be 88% and 92%, respectively. The results show that after sintering, a heterophase structure of the alloy is formed based on a solid solution and phases MgZn and Mg50Zn21. To establish the sintering mechanism, the interaction at the MgO and Zn melt phase interface was analyzed using the sessile drop method. The minimum contact angle—65°—was discovered at 500 °C with a 20 min holding time. It was demonstrated that the sintering process in the Mg–Zn system proceeds through the following stages: (1) penetration of zinc into oxide-free surfaces; (2) crystallization of a solid solution, intermetallics; and (3) the removal of magnesium oxide from the particle surface, with oxide particles deposited on the surface of the sample. Full article
Show Figures

Figure 1

Back to TopTop