Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (392)

Search Parameters:
Keywords = Mg-3.03Ca alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2868 KiB  
Article
The Biocorrosion of a Rare Earth Magnesium Alloy in Artificial Seawater Containing Chlorella vulgaris
by Xinran Yao, Qi Fu, Guang-Ling Song and Kai Wang
Materials 2025, 18(15), 3698; https://doi.org/10.3390/ma18153698 - 6 Aug 2025
Abstract
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the [...] Read more.
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the surface of Mg alloys, resulting in biocorrosion damage, which is really troublesome in the maritime industry and can even be disastrous to the navy. Currently, there is a lack of research on the biocorrosion of Mg alloys that may find important applications in marine engineering. In this paper, the biocorrosion mechanism of the Mg alloy Mg-3Nd-2Gd-Zn-Zr caused by Chlorella vulgaris (C. vulgaris), a typical marine microalga, was studied. The results showed that the biomineralization process in the artificial seawater containing a low concentration of C. vulgaris cells was accelerated compared with that in the abiotic artificial seawater, leading to the deposition of CaCO3 on the surface to inhibit the localized corrosion of the Mg alloy, whereas a high concentration of C. vulgaris cells produced a high content of organic acids at some sites through photosynthesis to significantly accelerate the surface film rupture at some sites and severe localized corrosion there, but meanwhile, it resulted in the formation of a more protective biomineralized film in the other areas to greatly alleviate the corrosion. The contradictory biocorrosion behaviors on the Mg-3Nd-2Gd-Zn-Zr alloy induced by C. vulgaris were finally explained by a mechanism proposed in the paper. Full article
(This article belongs to the Section Corrosion)
21 pages, 5279 KiB  
Article
The Influence of Zn and Ca Addition on the Microstructure, Mechanical Properties, Cytocompatibility, and Electrochemical Behavior of WE43 Alloy Intended for Orthopedic Applications
by Mircea Cătălin Ivănescu, Corneliu Munteanu, Ramona Cimpoeșu, Maria Daniela Vlad, Bogdan Istrate, Fabian Cezar Lupu, Eusebiu Viorel Șindilar, Alexandru Vlasa, Cristinel Ionel Stan, Maria Larisa Ivănescu and Georgeta Zegan
Medicina 2025, 61(7), 1271; https://doi.org/10.3390/medicina61071271 - 14 Jul 2025
Viewed by 359
Abstract
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop [...] Read more.
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop a novel Mg-Zn-Ca alloy system based on WE43 alloy, evaluating the influence of Zn and Ca additions on microstructure, mechanical properties, cytocompatibility, and electrochemical behavior for potential use in biodegradable orthopedic applications. Materials and Methods: The WE43-Zn-Ca alloy system was developed by alloying standard WE43 (Mg–Y–Zr–RE) with 1.5% Zn and Ca concentrations of 0.2% (WE43_0.2Ca alloy) and 0.3% (WE43_0.3Ca alloy). Microstructural analysis was performed utilizing scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS), while the chemical composition was validated through optical emission spectroscopy and X-ray diffraction (XRD). Mechanical properties were assessed through tribological tests. Electrochemical corrosion behavior was evaluated using potentiodynamic polarization in a 3.5% NaCl solution. Cytocompatibility was assessed in vitro on MG63 cells using cell viability assays (MTT). Results: Alloys WE43_0.2Ca and WE43_0.3Ca exhibited refined, homogeneous microstructures with grain sizes between 70 and 100 µm, without significant structural defects. Mechanical testing indicated reduced stiffness and an elastic modulus similar to human bone (19.2–20.3 GPa), lowering the risk of stress shielding. Cytocompatibility tests confirmed non-cytotoxic behavior for alloys WE43_0.2Ca and WE43_0.3Ca, with increased cell viability and unaffected cellular morphology. Conclusions: The study validates the potential of Mg-Zn-Ca alloys (especially WE43_0.3Ca) as biodegradable biomaterials for orthopedic implants due to their favorable combination of mechanical properties, corrosion resistance, and cytocompatibility. The optimization of these alloys contributed to obtaining an improved microstructure with a reduced degradation rate and a non-cytotoxic in vitro outcome, which supports efficient bone tissue regeneration and its integration into the body for complex biomedical applications. Full article
Show Figures

Figure 1

20 pages, 6807 KiB  
Article
Enhancing Electrochemical Kinetics and Stability of Biodegradable Mg-Y-Zn Alloys with LPSO Phases via Strategic Micro-Alloying with Ca, Sr, Mn, and Zr
by Lisha Wang, Huiping Wang, Chenchen Zhang, Wei Sun, Yue Wang, Lijuan Wang and Xiaoyan Kang
Crystals 2025, 15(7), 639; https://doi.org/10.3390/cryst15070639 - 11 Jul 2025
Viewed by 301
Abstract
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), [...] Read more.
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS). Electrochemical properties were assessed through potentiodynamic polarization in Hank’s solution, and corrosion rates were determined by hydrogen evolution and weight loss methods. Microalloying significantly enhanced the corrosion resistance of the base Mg-Y-Zn alloy, with corrosion rates decreasing from 2.67 mm/year (unalloyed) to 1.65 mm/year (Ca), 1.36 mm/year (Sr), 1.18 mm/year (Zr), and 1.02 mm/year (Mn). Ca and Sr additions introduced Mg2Ca and Mg17Sr2, while Mn and Zr refined the existing LPSO structure without new phases. Sr refined the LPSO phase and formed a uniformly distributed Mg17Sr2 network, promoting uniform corrosion and suppressing deep localized attacks. Ca-induced Mg2Ca acted as a temporary sacrificial phase, with corrosion eventually propagating along LPSO interfaces. The Mn-containing alloy exhibited the lowest corrosion rate; this is attributed to the suppression of both anodic and cathodic reaction kinetics and the formation of a stable protective surface film. Zr improved general corrosion resistance but increased susceptibility to localized attacks due to dislocation-rich zones. These findings elucidate the corrosion mechanisms in LPSO-containing Mg alloys and offer an effective strategy to enhance the electrochemical stability of biodegradable Mg-based implants. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

13 pages, 2079 KiB  
Article
Preparation and Properties of a Composite Glass Protective Lubricating Coating for the Forging of Ti-6Al-4V Alloy
by Zunqi Xiao, Qiuyue Xie, Bin Zhang, Bing Ren and Shujian Tian
Coatings 2025, 15(7), 792; https://doi.org/10.3390/coatings15070792 - 5 Jul 2025
Viewed by 368
Abstract
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with [...] Read more.
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with distinct softening temperatures, extending its operational window to 700–950 °C. The composite glass showed initial softening at 700 °C and complete melting at 800 °C, with contact angle measurements confirming superior wettability (θ < 90°) across the forging range (800~950 °C). With an increase in temperature, the surface tension of the composite glass melt decreased, and subsequently, the wettability of the composite glass melt was significantly improved. XRD revealed that the uncoated Ti-6Al-4V formed a 22 μm thick rutile TiO2 scale with a porous structure and interfacial cracks, while the coated sample retained an amorphous glass layer with no TiO2. Cross-sectional SEM showed a crack-free, poreless interface with strong metallurgical bonding, in contrast to the uncoated sample’s spalled oxide layer. EDS showed minimal oxygen diffusion of the glass coating into the substrate. Ring upsetting tests showed that the coating reduced friction from 0.5–0.7 to 0.3 (50–57% decrease). Collectively, the glass protective lubricant coating showed good performance in terms of protection and lubrication. Full article
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Study of Corrosion Characteristics of AlMg3.5 Alloy by Hydrogen-Induced Pressure and Mass Loss Evaluation Under Simulated Cementitious Repository Conditions
by Marvin Schobel, Christian Ekberg, Teodora Retegan Vollmer, Fredrik Wennerlund, Svante Hedström and Anders Puranen
Corros. Mater. Degrad. 2025, 6(3), 27; https://doi.org/10.3390/cmd6030027 - 30 Jun 2025
Viewed by 410
Abstract
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which [...] Read more.
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which leads to alkaline conditions with pH values of 12 and higher. This can be advantageous for some radionuclides due to their precipitation at high pH. For other materials, such as reactive metals, however, it can be disadvantageous because it might foster their corrosion. The Studsvik R2 research reactor contained an AlMg3.5 alloy with a composition close to that of commercial Al5154 for its core internals and the reactor tank. Aluminum corrosion is known to start rapidly due to the formation of an oxidation layer, which later functions as natural protection for the surface. The corrosion can lead to pressure build-up through the accompanied production of hydrogen gas. This can lead to cracks in the concrete, which can be pathways for radioactive nuclides to migrate and must therefore be prevented. In this study, unirradiated rod-shaped samples were cut from the same material as the original reactor tank manufacture. They were embedded in concrete with elevated water–cement ratios of 0.7 compared to regular commercial concrete (ca. 0.45) to ensure water availability throughout all of the experiments. The sample containers were stored in pressure vessels with attached high-definition pressure gauges to read the hydrogen-induced pressure build-up. A second set of samples were exposed in simplified artificial cement–water to study similarities in corrosion characteristics between concrete and cement–water. Additionally, the samples were exposed to concrete and cement–water in free-standing sample containers for deconstructive examinations. In concrete, the corrosion rates started extremely high, with values of more than 10,000 µm/y, and slowed down to less than 500 µm/y after 2000 h, which resulted in visible channels inside the concrete. In the cement–water, the samples showed similar behavior after early fluctuations, most likely caused by the surface coverage of hydrogen bubbles. These trends were further supported by mass loss evaluations. Full article
Show Figures

Figure 1

19 pages, 4071 KiB  
Article
Surface Characteristics of TiO2 Coatings Formed by Micro-Arc Oxidation in Ti-25Ta-xNb Alloys: The Influence of Microstructure and Applied Voltage
by Fernanda de Freitas Quadros, Diego Rafael Nespeque Corrêa, Marco Fosca, Marco Ortenzi, Olga N. Plakhotnaia, Carlos Roberto Grandini and Julietta V. Rau
Coatings 2025, 15(6), 730; https://doi.org/10.3390/coatings15060730 - 19 Jun 2025
Viewed by 536
Abstract
Due to their excellent mechanical properties and good biocompatibility, titanium (Ti) and its alloys are widely used as biomaterials. However, when implanted in the body, metallic materials may cause serious complications such as wear and infection, leading to patient discomfort and, in some [...] Read more.
Due to their excellent mechanical properties and good biocompatibility, titanium (Ti) and its alloys are widely used as biomaterials. However, when implanted in the body, metallic materials may cause serious complications such as wear and infection, leading to patient discomfort and, in some cases, the need for revision surgery. Micro-arc oxidation (MAO) is a surface modification technique that offers a promising strategy to overcome these challenges. This study investigated the impact of the microstructure of Ti-25 Ta-xNb alloys (x = 10, 20, and 30 wt%) and the variation in applied voltage during the MAO process on the characteristics of the TiO2 oxide coatings formed. The alloys were treated by MAO at 200, 250, and 300 V using a bioactive electrolyte containing Ca, P, Mg, and Ag. EDS, SEM, XRD, Raman spectroscopy, and adhesion tests performed characterization. Results indicated that Nb addition stabilized the β phase and anticipated the potentiostatic regime. Increasing the voltage supplied to the system provides greater energy, prolonging the galvanostatic regime and promoting the formation of larger and more uniform pores. The oxide coating thickness ranged from approximately 3 to 10 μm, with a tendency to decrease at higher voltages. The coatings exhibited low c, with anatase and rutile phases predominating, the applied voltage and Nb concentration influencing their relative proportions. Even in small amounts, all electrolyte elements (P, Mg, and Ag) were successfully incorporated into the coatings under all conditions. Raman and XRD analyses confirmed a decrease in anatase and an increase in rutile phases with increasing voltage and Nb content. Mechanical testing revealed good adhesion of the coatings in all samples, with the best results obtained at 200 V. The findings demonstrate that the developed coatings exhibit promising characteristics for future surface engineering strategies aimed at improving the performance of metallic biomaterials. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

15 pages, 4658 KiB  
Article
Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy
by Qingrong Tan, Ying Zhang, Min Jiang and Jiyuan Zhu
Coatings 2025, 15(6), 722; https://doi.org/10.3390/coatings15060722 - 17 Jun 2025
Viewed by 643
Abstract
Magnesium alloys are widely used in all kinds of fields because of their excellent mechanical properties, but their application has been prevented by poor corrosion resistance. In this paper, Mg(OH)2-Ca(OH)2/Al(OH)3/Al2O3 composite coatings with long-term [...] Read more.
Magnesium alloys are widely used in all kinds of fields because of their excellent mechanical properties, but their application has been prevented by poor corrosion resistance. In this paper, Mg(OH)2-Ca(OH)2/Al(OH)3/Al2O3 composite coatings with long-term corrosion resistance were fabricated on the surface of Mg alloys using the hydrothermal method. Among them, the calcium hydroxide/calcium nitrate–alumina coating successfully filled the cracks in the magnesium hydroxide coating. Meanwhile, we explored the influences of different heating times and temperatures on the coating and analyzed its composition. After immersing the coating in a 3.5% NaCl solution for 168 h, only a small portion of the surface dissolved. Electrochemical test results indicated that the corrosion potential and corrosion current density of the coating increased by three orders of magnitude, significantly improving corrosion resistance in comparison to bare samples. Adhesion tests showed that the coating exhibited good bonding performance to the substrate. This method features a simple, pollution-free preparation process and does not require complex instrumentation, thereby enhancing the longevity of the magnesium alloy. Full article
Show Figures

Graphical abstract

14 pages, 2896 KiB  
Article
The Influence of the Addition of Ca, Zn, and Zr on the Corrosion Properties of As-Homogenized Mg-3Sn Alloys
by Zheng Jia, Yongzhi Yu, Zhiwen Mao, Sichao Du, Qiuli Chen and Xiaowei Niu
Crystals 2025, 15(6), 537; https://doi.org/10.3390/cryst15060537 - 3 Jun 2025
Cited by 1 | Viewed by 379
Abstract
The influences of the addition of Ca, Zn, and Zr on the corrosion behavior and mechanism of as-homogenized Mg-3Sn (T3) alloys in a 3.5% NaCl solution were systematically investigated via hydrogen evolution, mass loss, and electrochemical tests. The results indicated that the addition [...] Read more.
The influences of the addition of Ca, Zn, and Zr on the corrosion behavior and mechanism of as-homogenized Mg-3Sn (T3) alloys in a 3.5% NaCl solution were systematically investigated via hydrogen evolution, mass loss, and electrochemical tests. The results indicated that the addition of Ca resulted in a decrease in the corrosion resistance of the T3 alloy. However, the subsequent addition of Zn and Zr could enhance the corrosion resistance of the Mg-3Sn-1Ca (TX31) alloy. The primary cause for the decline in the corrosion resistance of the TX31 alloy was that Ca altered the type of the second phase and the corrosion mechanism of the T3 alloy. This was attributed to the fact that the addition of Ca in the T3 alloy induced the precipitation of the CaMgSn phase and inhibited the precipitation of the Mg2Sn phase. Simultaneously, both the average grain size and the area fraction of the second phase increased, which provided more initiation sites for pitting and accelerated the corrosion of the alloy. The addition of Zr in the TX31 alloy could remarkably refine grains, inhibit anodic corrosion, and improve corrosion resistance. Nevertheless, the corrosion resistance of the Mg-3Sn-1Ca-1Zr (TXK311) alloy was still inferior to that of the T3 alloy. In this study, the Mg-3Sn-1Ca-1Zn (TXZ311) alloy exhibited the best corrosion resistance, with a hydrogen-evolution corrosion rate of 2.82 mm·year−1. This was because the addition of Zn refined the grains of the TX31 alloy and facilitated the formation of a relatively stable passivation film, which effectively prevented the intrusion of Cl, thereby enhancing the corrosion resistance of the alloy. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 6108 KiB  
Article
Mg–Zn–Ca Alloy with Ultra-High Ductility and Strength Processed by Screw Rolling
by Haoran Zheng, Weitao Sun, Lijun Deng, Li Zhao, Kwang Seon Shin and Jian Zhang
Materials 2025, 18(11), 2586; https://doi.org/10.3390/ma18112586 - 1 Jun 2025
Viewed by 641
Abstract
Mg alloys are highly attractive for biodegradable surgical clips because of their low density and good biocompatibility; however, their limited strength and ductility restrict their widespread application. To overcome this limitation, this study employed screw rolling (SR) to produce a Mg–3Zn–0.2Ca alloy with [...] Read more.
Mg alloys are highly attractive for biodegradable surgical clips because of their low density and good biocompatibility; however, their limited strength and ductility restrict their widespread application. To overcome this limitation, this study employed screw rolling (SR) to produce a Mg–3Zn–0.2Ca alloy with a fine microstructure and an average grain size of 1.6 µm. Experimental results showed that the SR process improved the comprehensive tensile properties of the alloy, increasing the yield strength, ultimate tensile strength, and elongation from 192.6, 234.4 MPa, and 21.7% for the pre-extruded alloy to 252.3, 289 MPa, and 39.5%, respectively. Quantitative analysis of the strengthening behaviour identified grain refinement as the primary strengthening mechanism, along with considerable contributions from Orowan and dislocation strengthening. The ultra-high-tensile ductility was primarily attributed to the low internal stress, nano-sized precipitates, texture weakening, and activation of multiple slip systems. These findings provide a strategy for simultaneously increasing the ductility and strength of Mg alloys and lay a foundation for applying them as biodegradable clips. Full article
Show Figures

Graphical abstract

14 pages, 3237 KiB  
Article
Effect of Si and HA on the Mechanical Characteristics of Spark-Plasma-Sintered Mg–Zn–Mn–(Si–HA) Composites
by Abdulaziz Kurdi, Doaa Almalki, Sayan Sarkar, Alaa Aldurihem, Ahmed Degnah and Animesh Kumar Basak
Coatings 2025, 15(6), 655; https://doi.org/10.3390/coatings15060655 - 29 May 2025
Viewed by 830
Abstract
Mg–Zn–Mn-based biocomposites hold prospects as potential orthopedic material. The composition of these composites can be modulated, based on applications, by selective elemental alloying. Towards that, the addition of silicon (Si), hydroxyapatite (HA), or both is considered, followed by the consolidation method, such as [...] Read more.
Mg–Zn–Mn-based biocomposites hold prospects as potential orthopedic material. The composition of these composites can be modulated, based on applications, by selective elemental alloying. Towards that, the addition of silicon (Si), hydroxyapatite (HA), or both is considered, followed by the consolidation method, such as spark plasma sintering (SPS). In this study, the micro-mechanical properties of Mg–Zn–Mn–(Si–HA) composites were investigated through the micro-pillar compression method. The effect of Si and HA incorporation on the mechanical characteristics and deformation mechanism was also elucidated. The microstructure of the composite presents porosity, together with different bioactive phases, such as Mg–Zn, CaMg, Mn–P, MgSi2, Mn–Si, Mn–CaO, CaMgSi, and Ca–Mn–O. Such porous structures were determined to facilitate cell growth when used as an implant, particularly for musculoskeletal-related disabilities. The yield stress (YS) and compressive stress of the Mg–Zn–Mn–Si–HA were about 1543 ± 99 MPa and 1825 ± 102 MPa, respectively. These values were about 5.8 and 4.8 times higher, respectively, than those of Mg–Zn–Mn–HA composites (266 ± 42 MPa and 380 ± 10 MPa, respectively), and the same was observed for the elastic modulus. Besides that, alloying with HA and Si alters the deformation mechanism from brittle (for Mg–Zn–Mn–Si composites) or ductile (for Mg–Zn–Mn–HA composites) to predominant ductile failure without compromising the attained mechanical properties. Full article
Show Figures

Figure 1

11 pages, 4296 KiB  
Article
Relaxation and Devitrification of Mg66Zn30Ca4 Metallic Glass
by Karel Saksl, Juraj Ďurišin, Martin Fujda, Zuzana Molčanová, Beáta Ballóková, Miloš Matvija and Katarína Gáborová
Materials 2025, 18(11), 2464; https://doi.org/10.3390/ma18112464 - 24 May 2025
Viewed by 415
Abstract
Mg66Zn30Ca4 metallic glass is a promising biodegradable material due to its high strength, corrosion resistance, and excellent glass-forming ability. In this study, we investigated its thermal stability, structural relaxation, and crystallization behavior using high-energy synchrotron-based X-ray diffraction and [...] Read more.
Mg66Zn30Ca4 metallic glass is a promising biodegradable material due to its high strength, corrosion resistance, and excellent glass-forming ability. In this study, we investigated its thermal stability, structural relaxation, and crystallization behavior using high-energy synchrotron-based X-ray diffraction and DSC analysis. The glass exhibits a wide supercooled liquid region of 58 K, allowing for thermoplastic forming. Structural relaxation experiments revealed nearly a complete relaxation in the first cycle below the first crystallization peak. Upon heating, the alloy undergoes a complex, multi-step devitrification involving successive formation of crystalline phases: Mg51Zn20 (orthorhombic), Mg (hexagonal), and a Ca–Mg–Zn intermetallic compound Ca8Mg26.1Zn57.9, denoted as IM3. Phase identification was carried out by Rietveld refinement, and the evolution of lattice parameters demonstrated anisotropic thermal expansion, particularly in the Mg51Zn20 phase. Notably, the presence of the IM1 Ca3MgxZn15−x, with the 4.6 ≤ x ≤ 12 phase reported in earlier studies, was not confirmed. This work deepens the understanding of phase stability and crystallization mechanisms in Mg-based metallic glasses and supports their future application in biodegradable implants. Full article
Show Figures

Figure 1

17 pages, 23065 KiB  
Article
The Influence of Ca on Mechanical Properties of the Mg–Ca–Zn–RE–Zr Alloy for Orthopedic Applications
by Mircea Cătălin Ivănescu, Corneliu Munteanu, Ramona Cimpoeșu, Bogdan Istrate, Fabian Cezar Lupu, Marcelin Benchea, Eusebiu Viorel Șindilar, Alexandru Vlasa, Ovidiu Stamatin and Georgeta Zegan
J. Funct. Biomater. 2025, 16(5), 170; https://doi.org/10.3390/jfb16050170 - 9 May 2025
Viewed by 480
Abstract
Background: This study examined how the concentration of calcium (Ca) influences the microstructure, mechanical characteristics, and tribological attributes of Mg–Ca–Zn–RE–Zr alloys for orthopedic medicine. Materials and methods: Experimental alloys with 0.1 and 0.5 wt% Ca were prepared in a controlled atmosphere induction furnace. [...] Read more.
Background: This study examined how the concentration of calcium (Ca) influences the microstructure, mechanical characteristics, and tribological attributes of Mg–Ca–Zn–RE–Zr alloys for orthopedic medicine. Materials and methods: Experimental alloys with 0.1 and 0.5 wt% Ca were prepared in a controlled atmosphere induction furnace. The microstructure of the alloys was investigated by scanning electron microscopy, the chemical composition by X-ray fluorescence and energy-dispersive spectroscopy, the mechanical properties by indentation and scratching, and the corrosion resistance by linear and cyclic potentiometry. Results: The alloy with 0.1% Ca exhibited greater fluctuations in the coefficient of friction, while the sample with 0.5% Ca showed a higher susceptibility to cracking. Regarding corrosion resistance, both samples exhibited a generalized corrosion trend with similar corrosion currents. At lower Ca concentrations (0.1%), the refined microstructure of the alloys provided an elastic modulus closer to that of human bone, minimizing the risk of excessive local stress and promoting uniform load distribution at the bone-implant interface. Conclusion: The 0.5% Ca alloy offered superior tribological stability and better shock absorption, making it suitable for applications requiring long-term stability. The study highlighted the potential of both compositions based on the specific requirements of biodegradable orthopedic implants. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Bone Tissue Engineering)
Show Figures

Figure 1

20 pages, 7246 KiB  
Article
Coated Mg Alloy Implants: A Spontaneous Wettability Transition Process with Excellent Antibacterial and Osteogenic Functions
by Sijia Yan, Shu Cai, You Zuo, Hang Zhang, Ting Yang, Lei Ling, Huanlin Zhang, Jiaqi Lu and Baichuan He
Materials 2025, 18(9), 1908; https://doi.org/10.3390/ma18091908 - 23 Apr 2025
Viewed by 534
Abstract
AZ31B magnesium alloy (wt.%: Al 2.94; Zn 0.87; Mn 0.57; Si 0.0112; Fe 0.0027; Cu 0.0008; Ni 0.0005; Mg remaining) has appropriate mechanical properties, good biodegradability and biocompatibility and can be used as a good orthopedic implant material. AZ31B magnesium alloy with a [...] Read more.
AZ31B magnesium alloy (wt.%: Al 2.94; Zn 0.87; Mn 0.57; Si 0.0112; Fe 0.0027; Cu 0.0008; Ni 0.0005; Mg remaining) has appropriate mechanical properties, good biodegradability and biocompatibility and can be used as a good orthopedic implant material. AZ31B magnesium alloy with a superhydrophobic surface exhibits excellent corrosion resistance and antibacterial adhesion performance, but superhydrophobic surfaces also hinder osteoblast adhesion and proliferation on the implants, resulting in unsatisfactory osteogenic properties. Therefore, it is necessary to achieve the wettability transition of the superhydrophobic surface at an early stage of implantation. In this work, superhydrophobic hydroxyapatite (HA)/calcium myristate (CaMS)/myristic acid (MA) composite coatings were prepared on AZ31B magnesium alloy using the hydrothermal and immersion methods. The composite coatings can spontaneously undergo the wettability transition from superhydrophobic to hydrophilic after complete exposure to simulated body fluid (SBF, a solution for modeling the composition and concentration of human plasma ions) for 9 h. The wettability transition mainly originated from the deposition and growth of the newly formed CaMS among the HA nanopillars during immersing, which deconstructed the micro-nano structure of the superhydrophobic coatings and directly exposed the HA to the water molecules, thereby significantly altering the wettability of the coatings. Benefiting from the superhydrophobic surface, the composite coating exhibited excellent antibacterial properties. After the wettability transition, the HA/CaMS/MA composite coating exhibited superior osteoblast adhesion performance. This work provides a strategy to enable a superhydrophobic coating to undergo spontaneous wettability transition in SBF, thereby endowing the coated magnesium alloy with a favorable osteogenic property. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

27 pages, 25194 KiB  
Article
As-Cast Magnesium Alloys with Ca Addition as a Replacement for Magnesium Alloys with Rare Earth Metals
by Tomasz Rzychoń and Agnieszka Fornalczyk
Materials 2025, 18(8), 1860; https://doi.org/10.3390/ma18081860 - 18 Apr 2025
Viewed by 436
Abstract
This article evaluates the possibility of replacing creep-resistant magnesium Mg-Zn-RE-Zr alloys (EZ33) with Mg-Al-Ca-Sr alloys. (1) Background: Mg alloys with RE metals show excellent properties. Due to their high cost, new, more economical Mg alloys are being developed. Replacing RE metals with cheaper [...] Read more.
This article evaluates the possibility of replacing creep-resistant magnesium Mg-Zn-RE-Zr alloys (EZ33) with Mg-Al-Ca-Sr alloys. (1) Background: Mg alloys with RE metals show excellent properties. Due to their high cost, new, more economical Mg alloys are being developed. Replacing RE metals with cheaper elements such as Al and Ca allows us to obtain high mechanical properties at elevated temperatures due to the tendency to form stable intermetallic phases. (2) Methods: Microstructure analysis (LM, SEM, TEM, and XRD) was performed and mechanical properties were tested at ambient and elevated temperatures. (3) Results: Increasing the Ca content and decreasing the Al content leads to the formation of a continuous skeleton of high-melting and brittle Ca-rich Laves phases and Sr-rich intermetallic phases and the formation of plate-like precipitates of the C15 phase inside the α-Mg solid solution. The crystallographic orientation of plate-like precipitates contributes to the blocking of dislocations in slip systems activated at elevated temperatures. Increasing the Ca and Sr content allows for the regulation of the Al concentration in the α-Mg, providing solution strengthening and stability of the α-Mg solid solution. These factors contribute to a significant improvement in creep resistance of Mg-Al-Ca-Sr alloys. (4) Conclusions: The strength properties and elongation at ambient temperature of the Mg alloys with Ca and Sr addition are comparable to those of the EZ33 alloy, and due to the presence of lighter alloying elements, a better specific strength is achieved. Ca-rich Mg-Al-Ca-Sr alloys exhibit better creep resistance at temperatures of up to 200 °C compared to the EZ33 alloy. Full article
(This article belongs to the Special Issue Manufacturing, Characterization and Modeling of Advanced Materials)
Show Figures

Figure 1

18 pages, 7346 KiB  
Article
Optimizing the Mechanical Properties and Corrosion Performance of Low-Alloyed Mg-Zn-Ca Alloy by Regulating Zn/Ca Atomic Ratios
by Yuan Jin, Shaoyuan Lyu, Qianqian Yu and Minfang Chen
Solids 2025, 6(2), 17; https://doi.org/10.3390/solids6020017 - 14 Apr 2025
Viewed by 757
Abstract
The microstructural, mechanical and corrosion properties of low-alloyed Mg-Zn-Ca alloys with different Zn/Ca atomic ratios were investigated. The results show that the microstructure of the extruded Mg-1Zn-0.3Ca (ZX1.0) alloy mainly consists of α-Mg and Ca2Mg6Zn3 phases and a [...] Read more.
The microstructural, mechanical and corrosion properties of low-alloyed Mg-Zn-Ca alloys with different Zn/Ca atomic ratios were investigated. The results show that the microstructure of the extruded Mg-1Zn-0.3Ca (ZX1.0) alloy mainly consists of α-Mg and Ca2Mg6Zn3 phases and a small amount of Mg2Ca phase. In contrast, the Mg2Ca phase disappears in the alloys Mg-1.4Zn-0.3Ca (ZX1.4), Mg-1.8Zn-0.3Ca (ZX1.8) and Mg-2.3Zn-0.5Ca (ZX2.3). The Ca2Mg6Zn3 phases are mainly distributed along the extrusion direction, showing irregular particle shapes and banded particles. Meanwhile, the grain size of the extruded Mg-Zn-Ca alloy is reduced gradually with the increase of the Zn and Ca contents, decreasing from 1.87 μm in ZX1.0 to 1.28 μm in ZX2.3 alloy. Fine grain strengthening and second-phase strengthening increase the yield strength and ultimate tensile strength of the alloy. In addition, when the Zn/Ca ratio is the same, the total elemental content dominates the effect on alloy properties. When increasing the Zn/Ca ratio, the potential difference between Ca2Mg6Zn3 and the Mg matrix increased, resulting in an increase in galvanic corrosion. The negative effect of the volume fraction of the second phase and the positive effect of the fine grain size determine the corrosion performance together. Therefore, ZX1.8 exhibits the best corrosion resistance, of 0.14 mm/y. Full article
Show Figures

Graphical abstract

Back to TopTop