Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Meijer’s G function

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4015 KiB  
Article
Performance Analysis of FSO-UWOC Mixed Dual-Hop Relay System with Decode-and-Forward Protocol
by Yu Zhou, Yueheng Li, Meiyan Ju and Yong Lv
Electronics 2025, 14(11), 2227; https://doi.org/10.3390/electronics14112227 - 30 May 2025
Viewed by 313
Abstract
This study investigates the performance of a mixed dual-hop free-space optical/underwater wireless optical communication (FSO-UWOC) system employing a decode-and-forward (DF) relay protocol, particularly under a comprehensive hybrid channel fading model. The FSO link is assumed to experience Gamma–Gamma atmospheric turbulence fading, combined with [...] Read more.
This study investigates the performance of a mixed dual-hop free-space optical/underwater wireless optical communication (FSO-UWOC) system employing a decode-and-forward (DF) relay protocol, particularly under a comprehensive hybrid channel fading model. The FSO link is assumed to experience Gamma–Gamma atmospheric turbulence fading, combined with air path loss and pointing errors. Meanwhile, the UWOC link is modeled with generalized Gamma distribution (GGD) oceanic turbulence fading, along with underwater path loss and pointing errors. Based on the proposed hybrid channel fading model, closed-form expressions for the average outage probability (OP) and average bit error rate (BER) of the mixed dual-hop system are derived using the higher transcendental Meijer-G function. Similarly, the closed-form expression for the average ergodic capacity of the mixed relay system is obtained via the bivariate Fox-H function. Additionally, asymptotic performance analyses for the average outage probability and BER under high signal-to-noise ratio (SNR) conditions are provided. Finally, Monte Carlo simulations are conducted to validate the accuracy of the derived theoretical expressions and to illustrate the effects of key system parameters on the performance of the mixed relay FSO-UWOC system. Full article
Show Figures

Graphical abstract

20 pages, 364 KiB  
Article
New Fractional Integral Inequalities Involving the Fox-H and Meijer-G Functions for Convex and Synchronous Functions
by Asifa Tassaddiq, Carlo Cattani, Rabab Alharbi, Dalal Khalid Almutairi and Ruhaila Md Kasmani
Fractal Fract. 2025, 9(4), 256; https://doi.org/10.3390/fractalfract9040256 - 17 Apr 2025
Viewed by 363
Abstract
On the one hand, convex functions are important to derive rigorous convergence rates, and on the other, synchronous functions are significant to solve statistical problems using Chebyshev inequalities. Therefore, fractional integral inequalities involving such functions play a crucial role in creating new models [...] Read more.
On the one hand, convex functions are important to derive rigorous convergence rates, and on the other, synchronous functions are significant to solve statistical problems using Chebyshev inequalities. Therefore, fractional integral inequalities involving such functions play a crucial role in creating new models and methods. Although a large class of fractional operators have been used to establish inequalities, nevertheless, these operators having the Fox-H and the Meijer-G functions in their kernel have been applied to establish fractional integral inequalities for such important classes of functions. Taking motivation from these facts, the primary objective of this work is to develop fractional inequalities involving the Fox-H function for convex and synchronous functions. Since the Fox-H function generalizes several important special functions of fractional calculus, our results are significant to innovate the existing literature. The inventive features of these functions compel researchers to formulate deeper results involving them. Therefore, compared with the ongoing research in this field, our results are general enough to yield novel and inventive fractional inequalities. For instance, new inequalities involving the Meijer-G function are obtained as the special cases of these outcomes, and certain generalizations of Chebyshev inequality are also included in this article. Full article
19 pages, 2018 KiB  
Article
Secrecy Analysis of LEO Satellite-to-Ground Station Communication System Influenced by Gamma-Shadowed Ricean Fading
by Ivan Radojkovic, Jelena Anastasov, Dejan N. Milic, Predrag Ivaniš and Goran T. Djordjevic
Electronics 2025, 14(2), 293; https://doi.org/10.3390/electronics14020293 - 13 Jan 2025
Viewed by 1272
Abstract
The Low Earth Orbit (LEO) small satellites are extensively used for global connectivity to enable services in underpopulated, remote or underdeveloped areas. Their inherent broadcast nature exposes LEO–terrestrial communication links to severe security threats, which always reveal new challenges. The secrecy performance of [...] Read more.
The Low Earth Orbit (LEO) small satellites are extensively used for global connectivity to enable services in underpopulated, remote or underdeveloped areas. Their inherent broadcast nature exposes LEO–terrestrial communication links to severe security threats, which always reveal new challenges. The secrecy performance of the satellite-to-ground user link in the presence of a ground eavesdropper is studied in this paper. We observe both scenarios of the eavesdropper’s channel state information (CSI) being known or unknown to the satellite. Throughout the analysis, we consider that locations of the intended and unauthorized user are both arbitrary in the satellite’s footprint. On the other hand, we analyze the case when the user is in the center of the satellite’s central beam. In order to achieve realistic physical layer security features of the system, the satellite channels are assumed to undergo Gamma-shadowed Ricean fading, where both line-of-site and scattering components are influenced by shadowing effect. In addition, some practical effects, such as satellite multi-beam pattern and free space loss, are considered in the analysis. Capitalizing on the aforementioned scenarios, we derive the novel analytical expressions for the average secrecy capacity, secrecy outage probability, probability of non-zero secrecy capacity, and probability of intercept events in the form of Meijer’s G functions. In addition, novel asymptotic expressions are derived from previously mentioned metrics. Numerical results are presented to illustrate the effects of beam radius, satellite altitude, receivers’ position, as well as the interplay of the fading or/and shadowing impacts over main and wiretap channels on the system security. Analytical results are confirmed by Monte Carlo simulations. Full article
(This article belongs to the Special Issue New Advances of Microwave and Optical Communication)
Show Figures

Figure 1

12 pages, 2094 KiB  
Article
Secrecy Performance Analysis of Hybrid RF/FSO System under Different Eavesdropping Strategies
by Xinkang Song, Xiang Wang, Xin Li, Shanghong Zhao and Qin Tian
Photonics 2024, 11(10), 897; https://doi.org/10.3390/photonics11100897 - 24 Sep 2024
Cited by 1 | Viewed by 890
Abstract
In this paper, we analyze the confidentiality of a hybrid radio frequency (RF)/free-space optical (FSO) system with regard to physical layer security (PLS). In this system, signals are transmitted between the source and destination using RF and FSO links, with the destination employing [...] Read more.
In this paper, we analyze the confidentiality of a hybrid radio frequency (RF)/free-space optical (FSO) system with regard to physical layer security (PLS). In this system, signals are transmitted between the source and destination using RF and FSO links, with the destination employing the maximal-ratio combining (MRC) scheme. A non-cooperative target (NCT) is assumed to have eavesdropping capabilities for RF and FSO signals in both collusion and non-collusion strategies. The Nakagami-m distribution models fading RF links, while FSO links are characterized by the Málaga (M) distribution. Exact closed-form expressions for the system’s secrecy outage probability (SOP) and effective secrecy throughput (EST) are derived based on the generalized Meijer G-function with two variables. Asymptotic expressions for the SOP are also obtained under high-signal-to-noise-ratio (SNR) regimes. These conclusions are validated through Monte Carlo simulations. The superiority of the hybrid RF/FSO system in improving the communication security of a single link is confirmed in its comparison with conventional means of RF communication. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

14 pages, 673 KiB  
Article
Fox’s H-Functions: A Gentle Introduction to Astrophysical Thermonuclear Functions
by Hans J. Haubold, Dilip Kumar and Ashik A. Kabeer
Axioms 2024, 13(8), 532; https://doi.org/10.3390/axioms13080532 - 6 Aug 2024
Cited by 2 | Viewed by 1409
Abstract
Needed for cosmological and stellar nucleosynthesis, we are studying the closed-form analytic evaluation of thermonuclear reaction rates. In this context, we undertake a comprehensive analysis of three largely distinct velocity distributions, namely the Maxwell–Boltzmann distribution, the pathway distribution, and the Mittag-Leffler distribution. Moreover, [...] Read more.
Needed for cosmological and stellar nucleosynthesis, we are studying the closed-form analytic evaluation of thermonuclear reaction rates. In this context, we undertake a comprehensive analysis of three largely distinct velocity distributions, namely the Maxwell–Boltzmann distribution, the pathway distribution, and the Mittag-Leffler distribution. Moreover, a natural generalization of the Maxwell–Boltzmann velocity distribution is discussed. Furthermore, an explicit evaluation of the reaction rate integral in the high-energy cut-off case is carried out. Generalized special functions of mathematical physics like Meijer’s G-function and Fox’s H-functions and their utilization in mathematical physics are the prime focus of this paper. Full article
Show Figures

Figure 1

31 pages, 2716 KiB  
Article
Uncertain Asymptotic Stability Analysis of a Fractional-Order System with Numerical Aspects
by Safoura Rezaei Aderyani, Reza Saadati, Donal O’Regan and Fehaid Salem Alshammari
Mathematics 2024, 12(6), 904; https://doi.org/10.3390/math12060904 - 19 Mar 2024
Cited by 1 | Viewed by 1206
Abstract
We apply known special functions from the literature (and these include the Fox Hfunction, the exponential function, the Mittag-Leffler function, the Gauss Hypergeometric function, the Wright function, the Gfunction, the Fox–Wright function and the Meijer Gfunction) and [...] Read more.
We apply known special functions from the literature (and these include the Fox Hfunction, the exponential function, the Mittag-Leffler function, the Gauss Hypergeometric function, the Wright function, the Gfunction, the Fox–Wright function and the Meijer Gfunction) and fuzzy sets and distributions to construct a new class of control functions to consider a novel notion of stability to a fractional-order system and the qualified approximation of its solution. This new concept of stability facilitates the obtention of diverse approximations based on the various special functions that are initially chosen and also allows us to investigate maximal stability, so, as a result, enables us to obtain an optimal solution. In particular, in this paper, we use different tools and methods like the Gronwall inequality, the Laplace transform, the approximations of the Mittag-Leffler functions, delayed trigonometric matrices, the alternative fixed point method, and the variation of constants method to establish our results and theory. Full article
(This article belongs to the Special Issue Fractional Calculus: Advances and Applications)
Show Figures

Figure 1

23 pages, 354 KiB  
Article
Integral Representations over Finite Limits for Quantum Amplitudes
by Jack C. Straton
Axioms 2024, 13(2), 120; https://doi.org/10.3390/axioms13020120 - 14 Feb 2024
Viewed by 1478
Abstract
We extend previous research to derive three additional M-1-dimensional integral representations over the interval [0,1]. The prior version covered the interval [0,]. This extension applies to products of M Slater orbitals, since they [...] Read more.
We extend previous research to derive three additional M-1-dimensional integral representations over the interval [0,1]. The prior version covered the interval [0,]. This extension applies to products of M Slater orbitals, since they (and wave functions derived from them) appear in quantum transition amplitudes. It enables the magnitudes of coordinate vector differences (square roots of polynomials) |x1x2|=x122x1x2cosθ+x22 to be shifted from disjoint products of functions into a single quadratic form, allowing for the completion of its square. The M-1-dimensional integral representations of M Slater orbitals that both this extension and the prior version introduce provide alternatives to Fourier transforms and are much more compact. The latter introduce a 3M-dimensional momentum integral for M products of Slater orbitals (in M separate denominators), followed in many cases by another set of M-1-dimensional integral representations to combine those denominators into one denominator having a single (momentum) quadratic form. The current and prior methods are also slightly more compact than Gaussian transforms that introduce an M-dimensional integral for products of M Slater orbitals while simultaneously moving them into a single (spatial) quadratic form in a common exponential. One may also use addition theorems for extracting the angular variables or even direct integration at times. Each method has its strengths and weaknesses. We found that these M-1-dimensional integral representations over the interval [0,1] are numerically stable, as was the prior version, having integrals running over the interval [0,], and one does not need to test for a sufficiently large upper integration limit as one does for the latter approach. For analytical reductions of integrals arising from any of the three, however, there is the possible drawback for large M of there being fewer tabled integrals over [0,1] than over [0,]. In particular, the results of both prior and current representations have integration variables residing within square roots asarguments of Macdonald functions. In a number of cases, these can be converted to Meijer G-functions whose arguments have the form (ax2+bx+c)/x, for which a single tabled integral exists for the integrals from running over the interval [0,] of the prior paper, and from which other forms can be found using the techniques given therein. This is not so for integral representations over the interval [0,1]. Finally, we introduce a fourth integral representation that is not easily generalizable to large M but may well provide a bridge for finding the requisite integrals for such Meijer G-functions over [0,1]. Full article
39 pages, 570 KiB  
Review
Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey
by Virginia Kiryakova and Jordanka Paneva-Konovska
Mathematics 2024, 12(2), 319; https://doi.org/10.3390/math12020319 - 18 Jan 2024
Cited by 8 | Viewed by 1618
Abstract
In the survey Kiryakova: “A Guide to Special Functions in Fractional Calculus” (published in this same journal in 2021) we proposed an overview of this huge class of special functions, including the Fox H-functions, the Fox–Wright generalized hypergeometric functions pΨq [...] Read more.
In the survey Kiryakova: “A Guide to Special Functions in Fractional Calculus” (published in this same journal in 2021) we proposed an overview of this huge class of special functions, including the Fox H-functions, the Fox–Wright generalized hypergeometric functions pΨq and a large number of their representatives. Among these, the Mittag-Leffler-type functions are the most popular and frequently used in fractional calculus. Naturally, these also include all “Classical Special Functions” of the class of the Meijer’s G- and pFq-functions, orthogonal polynomials and many elementary functions. However, it so happened that almost simultaneously with the appearance of the Mittag-Leffler function, another “fractionalized” variant of the exponential function was introduced by Le Roy, and in recent years, several authors have extended this special function and mentioned its applications. Then, we introduced a general class of so-called (multi-index) Le Roy-type functions, and observed that they fall in an “Extended Class of SF of FC”. This includes the I-functions of Rathie and, in particular, the H¯-functions of Inayat-Hussain, studied also by Buschman and Srivastava and by other authors. These functions initially arose in the theory of the Feynman integrals in statistical physics, but also include some important special functions that are well known in math, like the polylogarithms, Riemann Zeta functions, some famous polynomials and number sequences, etc. The I- and H¯-functions are introduced by Mellin–Barnes-type integral representations involving multi-valued fractional order powers of Γ-functions with a lot of singularities that are branch points. Here, we present briefly some preliminaries on the theory of these functions, and then our ideas and results as to how the considered Le Roy-type functions can be presented in their terms. Next, we also introduce Gelfond–Leontiev generalized operators of differentiation and integration for which the Le Roy-type functions are eigenfunctions. As shown, these “generalized integrations” can be extended as kinds of generalized operators of fractional integration, and are also compositions of “Le Roy type” Erdélyi–Kober integrals. A close analogy appears with the Generalized Fractional Calculus with H- and G-kernel functions, thus leading the way to its further development. Since the theory of the I- and H¯-functions still needs clarification of some details, we consider this work as a “Discussion Survey” and also provide a list of open problems. Full article
(This article belongs to the Special Issue Integral Transforms and Special Functions in Applied Mathematics)
16 pages, 944 KiB  
Article
Performance Analysis of Relay-Aided Hybrid FSO/RF Cooperation Communication System over the Generalized Turbulence Channels with Pointing Errors and Nakagami-m Fading Channels
by Yan Wu, Gang Li and Dejin Kong
Sensors 2023, 23(13), 6191; https://doi.org/10.3390/s23136191 - 6 Jul 2023
Cited by 6 | Viewed by 1434
Abstract
To improve the performance of fee-space optical communication systems, this paper analyzes the performance of a relay-aided hybrid fee-space optical (FSO)/radio frequency (RF) cooperation system based on a selective combination and decoding forward transmission scheme. In this system, the FSO sub-link experienced Málaga [...] Read more.
To improve the performance of fee-space optical communication systems, this paper analyzes the performance of a relay-aided hybrid fee-space optical (FSO)/radio frequency (RF) cooperation system based on a selective combination and decoding forward transmission scheme. In this system, the FSO sub-link experienced Málaga turbulence with pointing errors and the RF sub-link suffered Nakagami-m fading. Firstly, the probability density function (PDF) and cumulative distribution function (CDF) of the end-to-end output signal-to-noise ratio (SNR) of the relay-aided hybrid FSO/RF system are derived. Then, using the extended generalized bivariate Meijer’s G-function (EGBMGF) and the approximate analytical formula of the generalized Gauss–Laguerre integral, mathematical expressions of the end-to-end average bit error rate (ABER) and outage probability of the relay-aided hybrid FSO/RF system with different subcarrier intensity modulation and different detection schemes are derived. Through a simulation analysis of the system, the results show that compared with the other three modulation technologies, the hybrid FSO/RF direct link and relay-aided hybrid FSO/RF system with coherent binary phase shift keying (CBPSK) modulation have the best bit error performance. Compared with direct detection, the hybrid direct link and relay-aided hybrid system with coherent detection can significantly improve the communication performance. Increasing the RF fading parameter m can further improve the bit error and outage performance of the hybrid direct link and relay-aided hybrid system; the hybrid direct link can significantly mitigate the degradation of communication performance in the FSO system caused by pointing errors, and the relay-aided hybrid system can further improve the communication performance; under weak turbulence conditions, the impact of pointing errors on the performance of the relay-aided hybrid system can even be ignored. The greater the total number of paths in the relay-aided hybrid system, the better the communication performance of the system; however, the more hops, the worse the performance of the system. The outage probability of the hybrid direct link and relay-aided hybrid system are very sensitive to the decision threshold, and the larger the decision threshold, the worse the outage performance. The transmission distance of different hybrid direct links has little impact on the performance of hybrid direct links and relay-aided hybrid systems. Improving the signal-to-noise ratio of RF sub-links significantly improves the performance of hybrid direct links and relay-aided hybrid systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 15253 KiB  
Article
Performance Study of Generalized Space Time Block Coded Enhanced Fully Optical Generalized Spatial Modulation System Based on Málaga Distribution Model
by Yi Wang and Rui Zhou
Photonics 2023, 10(3), 285; https://doi.org/10.3390/photonics10030285 - 8 Mar 2023
Cited by 1 | Viewed by 1528
Abstract
This paper proposes a generalized space time block coded (GSTBC) enhanced fully optical generalized spatial modulation (EFOGSM) system based on Málaga (M) turbulent channel. GSTBC-EFOGSM adopts the hybrid concept of generalized space time block coded and optical spatial modulation to further utilize the [...] Read more.
This paper proposes a generalized space time block coded (GSTBC) enhanced fully optical generalized spatial modulation (EFOGSM) system based on Málaga (M) turbulent channel. GSTBC-EFOGSM adopts the hybrid concept of generalized space time block coded and optical spatial modulation to further utilize the high transmission rate of EFOGSM and the diversity advantage of GSTBC in free space optical (FSO) communication systems. Considering the combined effects of path loss, pointing error and atmospheric turbulence, the Meijer G function is used to derive the closed-form expression for the average bit error rate (ABER) of GSTBC-EFOGSM. Then, the ABER performance, data transmission rate, energy efficiency and computational complexity at the receiver of GSTBC-EFOGSM are compared with other optical spatial modulation schemes by simulation. In addition, the effects of key factors, such as data transmission rate, encoding ratio, number of photodetectors and modulation order, on the ABER performance of the system are also analyzed via simulation. Monte Carlo (MC) simulation is used to verify the correctness of the numerical simulation. The simulation results show that the GSTBC-EFOGSM system has better ABER performance and good performance gain. Full article
Show Figures

Figure 1

16 pages, 363 KiB  
Article
Certain q-Analogue of Fractional Integrals and Derivatives Involving Basic Analogue of the Several Variable Aleph-Function
by Dinesh Kumar, Frédéric Ayant, Norbert Südland and Junesang Choi
Axioms 2023, 12(1), 51; https://doi.org/10.3390/axioms12010051 - 3 Jan 2023
Cited by 5 | Viewed by 1813
Abstract
Using Mellin-Barnes contour integrals, we aim at suggesting a q-analogue (q-extension) of the several variable Aleph-function. Then we present Riemann Liouville fractional q-integral and q-differential formulae for the q-extended several variable Aleph-function. Using the q-analogue of [...] Read more.
Using Mellin-Barnes contour integrals, we aim at suggesting a q-analogue (q-extension) of the several variable Aleph-function. Then we present Riemann Liouville fractional q-integral and q-differential formulae for the q-extended several variable Aleph-function. Using the q-analogue of the Leibniz rule for the fractional q-derivative of a product of two basic functions, we also provide a formula for the q-extended several variable Aleph-function, which is expressed in terms of an infinite series of the q-extended several variable Aleph-function. Since the three main formulas presented in this article are so general, they can be reduced to yield a number of identities involving q-extended simpler special functions. In this connection, we choose only one main formula to offer some of its particular instances involving diverse q-extended special functions, for example, the q-extended I-function, the q-extended H-function, and the q-extended Meijer’s G-function. The results presented here are hoped and believed to find some applications, in particular, in quantum mechanics. Full article
(This article belongs to the Special Issue Advances in Quantum Theory and Quantum Computing)
31 pages, 462 KiB  
Article
Beyond the Beta Integral Method: Transformation Formulas for Hypergeometric Functions via Meijer’s G Function
by Dmitrii Karp and Elena Prilepkina
Symmetry 2022, 14(8), 1541; https://doi.org/10.3390/sym14081541 - 27 Jul 2022
Cited by 4 | Viewed by 1832
Abstract
The beta integral method proved itself as a simple but nonetheless powerful method for generating hypergeometric identities at a fixed argument. In this paper, we propose a generalization by substituting the beta density with a particular type of Meijer’s G function. By the [...] Read more.
The beta integral method proved itself as a simple but nonetheless powerful method for generating hypergeometric identities at a fixed argument. In this paper, we propose a generalization by substituting the beta density with a particular type of Meijer’s G function. By the application of our method to known transformation formulas, we derive about forty hypergeometric identities, the majority of which are believed to be new. Full article
17 pages, 1427 KiB  
Article
On the Communication Performance of Airborne Distributed Coherent Radar
by Qinhao Wu, Bo Zhang, Hongqiang Wang and Jinlin Peng
Appl. Sci. 2022, 12(13), 6351; https://doi.org/10.3390/app12136351 - 22 Jun 2022
Cited by 3 | Viewed by 1823
Abstract
Compared with a monostatic radar, airborne distributed coherent radar (ADCR) has been widely applied thanks to its flexibility, greater degree of freedom, stronger detection, and anti-jamming ability. Unlike distributed ground-based radar, the precondition for ADCR to perform tasks is maintenance of stable wireless [...] Read more.
Compared with a monostatic radar, airborne distributed coherent radar (ADCR) has been widely applied thanks to its flexibility, greater degree of freedom, stronger detection, and anti-jamming ability. Unlike distributed ground-based radar, the precondition for ADCR to perform tasks is maintenance of stable wireless communication links among the unmanned aerial vehicles (UAVs). Therefore, the communication channel modeling of ADCR is very important. This paper mainly analyzes the performance of a communication system composed of radar UAVs, communication UAV (relay), and ground base station. The probability density function (PDF) and outage probability (OP) of signal-to-noise ratio (SNR) at the ground terminal are derived analytically in the cases of transmission power error, UAV position error, and multi-path fading. Numerical simulation shows the validity of the derived results. Full article
(This article belongs to the Special Issue Perception, Navigation, and Control for Unmanned Aerial Vehicles)
Show Figures

Figure 1

16 pages, 430 KiB  
Article
Capturing a Change in the Covariance Structure of a Multivariate Process
by Andriette Bekker, Johannes T. Ferreira, Schalk W. Human and Karien Adamski
Symmetry 2022, 14(1), 156; https://doi.org/10.3390/sym14010156 - 13 Jan 2022
Cited by 1 | Viewed by 1989
Abstract
This research is inspired from monitoring the process covariance structure of q attributes where samples are independent, having been collected from a multivariate normal distribution with known mean vector and unknown covariance matrix. The focus is on two matrix random variables, constructed from [...] Read more.
This research is inspired from monitoring the process covariance structure of q attributes where samples are independent, having been collected from a multivariate normal distribution with known mean vector and unknown covariance matrix. The focus is on two matrix random variables, constructed from different Wishart ratios, that describe the process for the two consecutive time periods before and immediately after the change in the covariance structure took place. The product moments of these constructed random variables are highlighted and set the scene for a proposed measure to enable the practitioner to calculate the run-length probability to detect a shift immediately after a change in the covariance matrix occurs. Our results open a new approach and provides insight for detecting the change in the parameter structure as soon as possible once the underlying process, described by a multivariate normal process, encounters a permanent/sustained upward or downward shift. Full article
(This article belongs to the Special Issue Symmetry in Multivariate Analysis)
Show Figures

Figure 1

17 pages, 6120 KiB  
Article
A Mixed FSO/RF Integrated Satellite-High Altitude Platform Relaying Networks for Multiple Terrestrial Users with Presence of Eavesdropper: A Secrecy Performance
by Kehinde O. Odeyemi and Pius A. Owolawi
Photonics 2022, 9(1), 32; https://doi.org/10.3390/photonics9010032 - 4 Jan 2022
Cited by 12 | Viewed by 3324
Abstract
In this paper, the secrecy performance of a mixed free space optical (FSO)/radio frequency (RF) integrated satellite-high altitude platform (HAP) relaying networks for terrestrial multiusers with the existence of an eavesdropper is investigated. In this network, FSO is adopted to establish the link [...] Read more.
In this paper, the secrecy performance of a mixed free space optical (FSO)/radio frequency (RF) integrated satellite-high altitude platform (HAP) relaying networks for terrestrial multiusers with the existence of an eavesdropper is investigated. In this network, FSO is adopted to establish the link between the satellite and HAP for which it experiences Gamma-Gamma distributions under different detection schemes (i.e., heterodyne and intensity modulation direct detection). The transmission between the amplify-and-forward (AF) relaying HAP and terrestrial multiusers is through the RF and is modeled as shadowed-Rician fading distribution. Owning to broadcasting nature of RF link, it is assumed that an eavesdropper attempts to intercept the users’ confidential message, and the eavesdropper link is subjected to Rician distributions. Specifically, the closed-form expression for the system equivalent end-to-end cumulative distribution function is derived by exploiting the Meijer’s G and Fox’s H functions. Based on this expression, the exact closed-form expressions of the system connection outage probability, secrecy outage probability, and strictly positive secrecy capacity are obtained under the different detection schemes at HAP. Moreover, the asymptotic analyze of the system secrecy outage probability is provided to obtain more physical insights. Furthermore, the accuracy of all the derived analytical closed-form expressions is verified through the Monte-Carlo simulations. In addition, the impact of atmospheric turbulence, pointing errors, shadowing severity parameters, and Rician factor are thoroughly evaluated. Under the same system conditions, the results depict that heterodyne detection outperforms the intensity modulation direct detection. Full article
(This article belongs to the Special Issue Optical Wireless Communication (OWC) Systems)
Show Figures

Figure 1

Back to TopTop