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Abstract: This research is inspired from monitoring the process covariance structure of q attributes
where samples are independent, having been collected from a multivariate normal distribution with
known mean vector and unknown covariance matrix. The focus is on two matrix random variables,
constructed from different Wishart ratios, that describe the process for the two consecutive time
periods before and immediately after the change in the covariance structure took place. The product
moments of these constructed random variables are highlighted and set the scene for a proposed
measure to enable the practitioner to calculate the run-length probability to detect a shift immediately
after a change in the covariance matrix occurs. Our results open a new approach and provides
insight for detecting the change in the parameter structure as soon as possible once the underlying
process, described by a multivariate normal process, encounters a permanent/sustained upward or
downward shift.

Keywords: generalised bimatrix variate beta type II distribution; Meijer’s G-function; run-length;
sequential; shift

1. Introduction
1.1. Problem Description and Approach

Ref. [1] investigated the problem of monitoring an attribute from the start of produc-
tion, whether or not prior information is available, and presented Q-charts assuming that
the observations from each sample are independent and identically distributed normal ran-
dom variables. The run-length is a measure to gain insight into the performance of a control
chart. Ref. [2] proposed an accurate, analytic approximation, while the approach of [3] was
embedded in a nonstationary, discrete-time Markov chain to compute the run-length distri-
bution. Ref. [4] considered independent samples observed from a normal distribution and
monitors the variance of the sequential process when it encounters an unknown sustained
shift. Only a permanent upward or downward step shift in the variance was considered.
The focus of [5,6] were to develop exact expressions for the probabilities of run-lengths,
and as a result the joint distribution of the charting statistics is needed. The statistical
property that is of interest is the moments of the random variables (charting statistics) to
illustrate the behaviour of this distribution. The property is of relevance since, once the
process is out-of-control, the charting statistics are no longer independent. The correlation
structure is then of particular interest. We refer to the papers of [4–6] that provide an
overview of the practical problem which is the genesis of the following random variables:

Q0 =
λT0

Z
and Qj =

λTj

Z + λ
j−1
∑

k=0
Tk

, j = 1, 2, . . . , p with λ > 0 (1)
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(see expression (6) p. 1049 of [5]) where Z and Tj, j = 0, 1, . . . , p are central chi-squared
random variables and λ indicates the shift parameter when the process variance parameter
has changed from σ2 to σ2

1 = λσ2.
The direct focus of this paper is, however, on a multivariate process. Suppose the

covariance structure of q attributes of the items of a single process are monitored simultane-
ously where the samples are independently observed, and at each point in time (i) a sample
of size ni is collected. Assume that these samples are collected from a multivariate normal
distribution with known mean vector (µ

0
) and unknown covariance matrix (Σ :q× q) which

we’ll denote as MVN
(

µ
0
, Σ
)

. Let Y(i) : ni × q denote the matrix of observations for time

period i, where Y(i)
1 , Y(i)

2 , . . . , Y(i)
q denote the column vectors (i.e., the ni observations of

each attribute) and Y(i)
(1), Y(i)

(2), . . . , Y(i)
(ni)

denote the row vectors (i.e., observations of each

sample) of Y(i), i.e.,

Y(i) : ni × q =


Y(i)

11 Y(i)
12 · · · Y(i)

1q

Y(i)
21 Y(i)

22 · · · Y(i)
2q

...
...

...
Y(i)

ni1
Y(i)

ni2
· · · Y(i)

niq

.

Assume further that the observations within each sample are independent, therefore
the row vectors Y(i)

(1), Y(i)
(2), . . . , Y(i)

(ni)
represent independent observations from a MVN

(
µ

0
, Σ
)

distribution. The sample covariance matrix at time i is denoted by Si : q× q, where it is
known that Si follows a Wishart distribution (see [7]). Since we assume that Σ is unknown,
the first sample is used to obtain an initial point estimate of Σ, i.e., the sample covariance
matrix S1. At sample number two, S2 is compared to S1 to investigate whether the covari-
ance structure is still the same. If so, a pooled sample covariance matrix is calculated (based
on the observations in samples 1 and 2) which will be compared to S3 at time period three.
This sequential updating and testing procedure continues until the process is observed (or
rather, declared) to be out-of-control.

The scenario under consideration in this paper is described in Figure 1, and, with-
out loss of generality it is assumed that the mean vector is the null vector. Suppose that
between samples κ − 1 and κ the covariance structure changes as shown in Figure 1, i.e.,
from Σ to λΣ where λ > 0 and λ 6= 1, where the location of the shift between these samples
is unknown. In this paper the two matrix random variables, U0 and U1, that correspond
to the two successive time periods immediately after the change in the covariance struc-
ture occurred (i.e., sample κ and sample κ + 1) will be the focus. Formally this can be
described as

U0 = X−
1
2 λW0X−

1
2 (2)

U1 = (X + λW0)
− 1

2 λW1(X + λW0)
− 1

2

where C
1
2 denotes the unique positive definite square root of a matrix C. In this case X has a

Wishart distribution with parameters v1 and Σ, denoted Wq(v1, Σ), W0 is Wq(v2, Σ) distributed
and W1 has a Wq(v3, Σ) distribution with X, W0 and W1 independent (vi ≥ q, i = 1, 2, 3).
In terms of the statistical process control (SPC) literature the parameters are interpretable as
v1 = ∑κ−1

i=1 ni, v2 = nκ and v3 = nκ+1.
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Figure 1. Schematic description of the multivariate process.

If q = 1 in Equation (2), then the random variables simplify to the case for two succes-
sive time periods (Q0 and Q1) in Equation (1), and so Equation (2) can be represented as

U0 = X−
1
2 W0X−

1
2 (3)

U1 = (X + W0)
− 1

2 W1(X + W0)
− 1

2

where X ∼ Wq(v1, Σ), W0 ∼ Wq(v2, λΣ) and W1 ∼ Wq(v3, λΣ). Refs. [8,9] previously
described constructions of this nature. The advantage of this approach lies in the mathe-
matical and statistical formulation of observing a change in the covariance matrix in such
a sequential process, and to present this matrix-based framework and results for further
future study within SPC.

1.2. Outline of Paper

In Section 2, the distribution of the matrix random variables (3) is unknown and will
be investigated; and expressions for the marginal distributions and moments E

[
|Ui|hj |

]
are given for i = 0, 1, j = 1, 2, which are used to obtain exact expressions for the pdfs
of |U0| and |U1| (relying on mathematical tools reviewed in Section 1.3. The cumulative
distribution function (cdf) of |U0| and |U1| are given and used as part of the numerical
example within an SPC environment in Section 3. In particular, a measure is proposed to
determine the probability that a control chart will signal immediately after a change in the
covariance matrix. The expressions are given in computable terms of Meijer’s G-function,
and also theoretical terms involving zonal polynomials and hypergeometric functions
with matrix argument which are often encountered in the literature (see [7,10–15]). Finally,
Section 4 contains discussions and conclusions.

1.3. Mathematical Toolbox

Some essential mathematical tools and definitions for this paper are listed below.

• (Ref. [16]) The multivariate gamma function, denoted Γq(α), is defined as

Γq(α) =
∫

S>0
etr(−S)|S|α−

1
2 (q+1)dS

= π
1
4 q(q−1)

q

∏
i=1

Γ
[

α− 1
2
(i− 1)

]
(4)
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where <(α) > 1
2 (q− 1), and the integral is over the space of q× q positive definite

matrices. For q = 1 it simplifies to the gamma function. The generalised gamma
function of weight τ is defined as

Γq(α, τ) = π
1
4 q(q−1)

q

∏
j=1

Γ
[

α + tj −
1
2
(j− 1)

]
= (α)τΓq(α) (5)

where the integral is over the space of q × q positive definite matrices, (α)τ is the
generalised hypergeometric coefficient, <(α) ≥ 1

2 (q− 1)− tq, τ =
(
t1, . . . , tq

)
, t1 ≥

· · · ≥ tq ≥ 0, t1 + · · · + tq = t and Γq(α, 0) = Γq(α). Finally then, the following
Laplace transform is used subsequently and given by (see also [12]):∫

S>0
etr(−SX)|S|α−

1
2 (q+1)dS = Γq(α)|S|−α. (6)

• (Ref. [16]) The multivariate beta function, denoted by βq(α, b), is defined as

βq(α, β) =
∫

0<S<Iq
|S|α−

1
2 (q+1)∣∣Iq − S

∣∣β− 1
2 (q+1)dS =

Γq(α)Γq(β)

Γq(α + β)
(7)

where <(α) > 1
2 (q− 1), <(β) > 1

2 (q− 1) and Γq(·) is the multivariate gamma
function. For q = 1 it simplifies to the usual beta function.

• (Ref. [15]) Meijer’s G-function with the parameters α1, . . . , αr and β1, . . . , βs is de-
fined as

Gm,n
r,s

(
x|α1,...,αr

β1,...,βs

)
=

1
2πi

∫
L

g(h)x−hdh (8)

where i =
√
−1, L is a suitable contour, x 6= 0, and

g(h) =
∏m

j=1 Γ
(

β j + h
)

∏n
j=1 Γ

(
1− αj − h

)
∏s

j=m+1 Γ
(
1− β j − h

)
∏r

j=n+1 Γ
(
αj + h

)
where m, n, r and s are integers with 0 ≤ n ≤ r and 0 ≤ m ≤ s.

• (Refs. [15,17,18]) The hypergeometric function of matrix argument is defined by

rFs(α1, . . . , αr; β1, . . . , βs; S) =
∞

∑
t=0

∑
τ

(α1)τ · · · (αr)τ

(β1)τ · · · (βs)τ

1
t!

Cτ(S), (9)

where αi, i = 1, . . . , r; β j, j = 1, . . . , s are arbitrary numbers, S (q× q) is a real symmet-
ric matrix, ∑τ denotes summation over all partitions τ, Cτ(S) is the zonal polynomial
of S, (α)τ is the generalised hypergeometric coefficient.

• Two special cases of Equation (9) are of interest:

1. If X : (q× q) is a symmetric matrix where ‖X‖ < 1, then

1F0(α; X) =
1

Γq(α)

∫
S>0

etr
[
−S
(
Iq − X

)]
|S|α−

1
2 (q+1)dS =

∣∣Iq − X
∣∣−α, (10)

where <(α) > 1
2 (q− 1).

2. If X : (q× q) is a symmetric matrix where ‖X‖ < 1, then
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2F1(α, β; c; X)

=
Γq(c)

Γq(α)Γq(c− α)

∫
0<S<Iq

|S|α−
1
2 (q+1)∣∣Iq − S

∣∣c−α− 1
2 (q+1)∣∣Iq − XS

∣∣−βdS

(11)

where <(c) > 1
2 (q− 1) and <(c− α) > 1

2 (q− 1). This is known as the Gauss
hypergeometric function of matrix argument.

• (Ref. [4]) Two particular results are of interest here.

1. If S : (q× q) > 0, B : (q× q) > 0, B free of elements of S, then∫
S>0
|S|α−

1
2 (q+1)∣∣Iq + S

∣∣−β∣∣Iq + BS
∣∣−cdS (12)

= βq(α, β + c− α)|B|−c
2F1

(
β + c− α, c; β + c; Iq − B−1

)
where

∥∥Iq − B−1
∥∥ < 1, <(β + c− α) > 1

2 (q− 1), and <(α) > 1
2 (q− 1).

2. The confluent hypergeometric function Ψ(·) of symmetric matrix R : (q× q) is
defined by

Ψ(α, c, R) =
1

Γq(α)

∫
S>0

etr(−RS)|S|α−
1
2 (q+1)∣∣Iq + S

∣∣c−α− 1
2 (q+1)dS (13)

where R > 0 and <(α) > 1
2 (q− 1). Then∫

Y>0
|Y|β−

1
2 (q+1) etr(−XY)Ψ(α, c, Y)dY (14)

=
Γq(β)Γq

(
β− c + 1

2 (q + 1)
)

Γq

(
α + β− c + 1

2 (q + 1)
)

×2F1

(
β− c +

1
2
(q + 1), β; α + β− c +

1
2
(q + 1); Iq − X

)
where

∥∥Iq − X
∥∥ < 1 and <(α) > 1

2 (q− 1), <(β− c) > −1. Furthermore, let
B > 0. It can then be shown that∫

Y>0
|Y|β−

1
2 (q+1) etr(−XY)Ψ

(
α, c, B

1
2 YB

1
2

)
dY (15)

= |B|−β
Γq(β)Γq

(
β− c + 1

2 (q + 1)
)

Γq

(
α + β− c + 1

2 (q + 1)
)

×2F1

(
β− c +

1
2
(q + 1), β;

(
α + β− c +

1
2
(q + 1)

)
; Iq − B−

1
2 XB−

1
2

)
where

∥∥∥Iq − B−
1
2 XB−

1
2

∥∥∥ < 1 and <(α) > 1
2 (q− 1), <(β− c) > −1.

2. Methodology

In this section the focus is to derive the joint distribution of U0 and U1 that capture
the change in the covariance structure as depicted in Figure 1. From this joint distribution,
the distributions of |U0| and |U1| are investigated to pave the way for the calculation of run-
length probabilities in this matrix setting. The joint distribution of U0 and U1 is referred to
as a generalised bimatrix variate beta type II distribution (functional symmetry is assumed
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as the symmetrization technique of [19] is inappropriate for this scenario). Without loss of
generality, we assume that Σ = Iq.

Theorem 1. Suppose that X ∼ Wq(v1, Σ) is independent of W0 ∼ Wq(v2, λΣ) and W1 ∼
Wq(v3, λΣ). Let C−1 = 2

1
2 q(v1+v2+v3) ∑3

i=1 Γq

(
1
2 vi

)
λ

1
2 q(v2+v3). Then, the pdf of:

1. Equation (3) is given by

f (U0, U1) (16)

= C|U0|
1
2 v2− 1

2 (q+1)∣∣Iq + U0
∣∣ 1

2 v3

×|U1|
1
2 v3− 1

2 (q+1)
∫

U>0
|U|

1
2 (v1+v2+v3)− 1

2 (q+1)

× etr
(
−1

2
U
(

Iq +
1
λ

U0

))
etr
(
− 1

2λ
U

1
2
(
Iq + U0

)
U

1
2 U1

)
dU,

2. U0 is given by

f (U0) =
Γq

(
1
2 (v1 + v2)

)
Γq

(
1
2 v1

)
Γq

(
1
2 v2

)λ
1
2 qv1 |U0|

1
2 v2− 1

2 (q+1)∣∣λIq + U0
∣∣− 1

2 (v1+v2), (17)

3. U1 is given by

f (U1) (18)

=
Γq

(
1
2 (v1 + v2 + v3)

)
Γq

(
1
2 (v1 + v2)

)
Γq

(
1
2 v3

)λ
1
2 qv1 |U1|

1
2 v3− 1

2 (q+1)∣∣λIq + U1
∣∣− 1

2 (v1+v2+v3)

× 2F1

(
1
2

v2,
1
2
(v1+v2+v3);

1
2
(v1+v2); Iq−

(
Iq+U1

) 1
2
(
λIq+U1

)−1(Iq+U1
) 1

2

)
where U i > 0, i = 0, 1 with <(vi) > q− 1, i = 1, 2, 3, and∥∥∥∥Iq −

(
Iq + U1

) 1
2
(
λIq + U1

)−1(Iq + U1
) 1

2

∥∥∥∥ < 1.

Proof. 1. The joint pdf of X, W0, W1 is given by

f (X, W0, W1) = C|X|
1
2 (v1−q−1)|W0|

1
2 (v2−q−1)|W1|

1
2 (v3−q−1)

× etr
(
−1

2
X
)

etr
(
−1

2
λ−1W0

)
etr
(
−1

2
λ−1W1

)
. (19)

Making the transformation

U = X, U0 = X−
1
2 W0X−

1
2 , U1 = (X + W0)

− 1
2 W1(X + W0)

− 1
2 ,

leaves

X = U, W0 = U
1
2 U0U

1
2 , W1 =

(
U + U

1
2 U0U

1
2

) 1
2 U1

(
U + U

1
2 U0U

1
2

) 1
2 .

From [16] p. 12, the Jacobian of the transformation is given by

J(X, W0, W1→U, U0, U1) = J(X→U)J(W0→U0)J(W1→U1)

= |U|q+1∣∣Iq + U0
∣∣ 1

2 (q+1). (20)
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Therefore, substituting in Equation (19) gives the joint pdf of (U, U0, U1) as

f (U, U0, U1)

= C−1|U|
1
2 (v1+v2+v3)− 1

2 (q+1)|U0|
1
2 v2− 1

2 (q+1)∣∣Iq + U0
∣∣ 1

2 v3 |U1|
1
2 v3− 1

2 (q+1) (21)

× etr
(
−1

2
U
)

etr
(
−1

2
λ−1UU0

)
etr
(
−1

2
λ−1U

1
2
(
Iq + U0

)
U

1
2 U1

)
which leaves the final result.

2. The marginal pdf of U0 is obtained by integrating f (U0, U1) (see Equation (16)) with
respect to U1 using Equation (6):

f (U0)

= C|U0|
1
2 v2− 1

2 (q+1)∣∣Iq + U0
∣∣ 1

2 v3

×
∫

U>0
|U|

1
2 (v1+v2+v3)− 1

2 (q+1) etr
(

1
2

U
(

Iq + λ−1U0

))
×
∫

U1>0
|U1|

1
2 v3− 1

2 (q+1) etr
(
−1

2
λ−1U

1
2
(
Iq + U0

)
U

1
2 U1

)
dU1dU

= CΓq

(
1
2

v3

)
(2λ)

1
2 v3q|U0|

1
2 v2− 1

2 (q+1)

×
∫

U>0
|U|

1
2 (v1+v2)− 1

2 (q+1) etr
(
−1

2
U
(

Iq + λ−1U0

))
dU

from where the result follows immediately.
3. From Equations (16) and (13) and (14) it follows that

f (U1)

= C|U1|
1
2 v3− 1

2 (q+1)
∫

U>0
|U|

1
2 (v1+v2+v3)− 1

2 (q+1) etr
(
−1

2

(
Iq + λ−1U1

)
U
)

∫
U0>0
|U0|

1
2 v2− 1

2 (q+1)∣∣Iq + U0
∣∣ 1

2 v3 etr
(
−1

2
λ−1

(
U + U

1
2 U1U

1
2

)
U0

)
dU0dU (22)

= CΓq

(
1
2

v2

)
|U1|

1
2 v3− 1

2 (q+1)
∫

U>0
|U|

1
2 (v1+v2+v3)− 1

2 (q+1) etr
(
−1

2

(
Iq + λ−1U1

)
U
)

×Ψ
(

1
2

v2,
1
2

v2 +
1
2

v3 +
1
2
(q + 1),

1
2

λ−1(Iq+U1
) 1

2 U(I + U1)
1
2

)
dU

from where the result follows.

Remark 1. Substituting λ = 1 (i.e., there is no change in the covariance structure and therefore
the process remains in-control) in Equation (17) gives the well-known matrix variate beta type II
distribution with parameters ( 1

2 v1, 1
2 v2) with pdf

Γq

(
1
2 (v1 + v2)

)
Γq

(
1
2 v1

)
Γq

(
1
2 v2

) |U0|
1
2 v2− 1

2 (q+1)∣∣Iq + U0
∣∣− 1

2 (v1+v2)

where U0 > 0.

The hth moments of |U0| and |U1| are given in the following corollary. The moments
are used to determine the distribution of |U0| and |U1|, and exact expressions for the pdfs
and cdfs of |U0| and |U1| are subsequently derived.
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Corollary 1. Suppose that X ∼ Wq(v1, Σ) is independent of W0 ∼ Wq(v2, λΣ) and W1 ∼
Wq(v3, λΣ). If the joint pdf of Equation (3) is given by Equation (16), then

1. The product moment E
(
|U0|h1

)
is given by

E
(
|U0|h1

)
=

Γq

(
1
2 v1 − h1

)
Γq

(
1
2 v2 + h1

)
Γq

(
1
2 v1

)
Γq

(
1
2 v2

) λqh1 (23)

where <
(

1
2 v1 − h1

)
> 1

2 (q− 1), <
(

1
2 v2 + h1

)
> 1

2 (q− 1).

2. The product moment E
(
|U1|h2

)
is given by

E
(
|U1|h2

)
=

Γq

(
1
2 (v1 + v2)− h2

)
Γq

(
1
2 v3 + h2

)
λ

1
2 v1q

Γq

(
1
2 v3

)
Γq

(
1
2 (v1 + v2)

) (24)

×2F1

(
1
2

v1,
1
2
(v1 + v2)− h2;

1
2
(v1 + v2); (1− λ)Iq

)
where

∥∥(1− λ)Iq
∥∥ < 1, <

(
1
2 (v1 + v2)− h2

)
> 1

2 (q− 1), <
(

1
2 v3 + h2

)
> 1

2 (q− 1).

Theorem 2. Suppose that X ∼ Wq(v1, Σ) is independent of W0 ∼ Wq(v2, λΣ) and W1 ∼
Wq(v3, λΣ). If the joint pdf of Equation (3) is given by Equation (16) with marginal pdfs given in
Equations (17) and (18) respectively, then

1. the pdf of |U0| is given by

f (|U0|) =
π

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v2

)λ−qGq,q
q,q

(
λ−q|U0||

a1,...,aq
b1,...,bq

)
, |U0| > 0 (25)

2. with cumulative distribution function (CDF)

F|U0|(c) = Pr(|U0| ≤ c)

=
π

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v2

)Gq,q+1
q+1,q+1

(
λ−qc|1,a1+1,...,aq+1

b1+1,...,bq+1,0

)
, c > 0, (26)

where G(·) denotes Meijer′s G-function Equation (8) and
aj = − 1

2 v1 +
1
2 (j− 1) and bj =

1
2 v2 − 1

2 (j + 1) for j = 1, 2, . . . , q.
3. The pdf of |U1| is given by

f (|U1|) (27)

=
λ

1
2 v1qπ

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v3

)
×

∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!
(1− λ)tCτ

(
Iq
)
Gq,q

q,q

(
|U1||

a1,...,aq
b1,...,bq

)
,

such that |U1| > 0 and where Cτ(·) is the corresponding zonal polynomial, with the values of
the parameters such that f (|U1|) is a valid pdf,
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4. with CDF

F|U1|(c)
= Pr(|U1| ≤ c)

=
λ

1
2 v1qπ

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v3

) (28)

×
∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!
(1− λ)tCτ

(
Iq
)
Gq,q+1

q+1,q+1

(
c|1,a1+1,...,aq+1

b1+1,...,bq+1,0

)

such that c > 0, where aj = − 1
2 (v1 + v2)− tj +

1
2 (j− 1) and bj =

1
2 v3 − 1

2 (j + 1) for
j = 1, . . . , q, with the values of the parameters such that F|U1|(c) is a valid CDF and Γq(·, ·)
denotes the generalised gamma function (see Equation (5)). The proof can be found in the
Appendix A.

As a theoretical validation of the results, consider the case when q = 1 in (25) and (27).
Using [15] p. 130 yields the marginal pdf of U0:

f (u0) =
1

Γ
(

1
2 v1

)
Γ
(

1
2 v2

)λ−1G1,1
1,1

(
λ−1u0|

− 1
2 v1

1
2 v2−1

)

=
Γ
(

1
2 (v1 + v2)

)
Γ
(

1
2 v1

)
Γ
(

1
2 v2

)λ
1
2 v1 u

1
2 v2−1
0 (λ + u0)

− 1
2 (v1+v2)

where u0 > 0 and the marginal pdf of U1:

f (u1)

=
λ

1
2 v1

Γ
(

1
2 v1

)
Γ
(

1
2 v3

) ∞

∑
t=0

Γ1

(
1
2 v1, t

)
Γ1

(
1
2 (v1 + v2), t

)
t!
(1− λ)tCt(I1)G

1,1
1,1

(
u1|
− 1

2 (v1+v2)−t
1
2 v3−1

)

=
λ

1
2 v1

Γ
(

1
2 v1

)
Γ
(

1
2 v3

) ∞

∑
t=0

(
1
2 v1

)
t
Γ
(

1
2 v1

)
(

1
2 (v1 + v2)

)
t
Γ
(

1
2 (v1 + v2)

)
t!
(1− λ)t

×
Γ
(

1
2 (v1 + v2 + v3) + t

)
u

1
2 v3−1
1

(1 + u1)
1
2 (v1+v2+v3)+t

=
Γ
(

1
2 (v1 + v2 + v3)

)
λ

1
2 v1

Γ
(

1
2 v3

)
Γ
(

1
2 (v1 + v2)

) u
1
2 v3−1
1 (1 + u1)

− 1
2 (v1+v2+v3)

×2F1

(
1
2

v1,
1
2
(v1 + v2 + v3);

1
2
(v1 + v2);

1− λ

1 + u1

)
where u1 > 0,

∣∣∣ 1−λ
1+u1

∣∣∣ < 1. It is valuable to note the special case of both of these preceeding
results (when q = 1) in the case when λ = 1, i.e., no shift occurs. In both cases for U0 and
U1, these marginal pdfs reflect beta type II distributions.

Remark 2. Ref. [20] discussed the two kinds of Wilks’ statistic. If U0 = X−
1
2 W0X−

1
2 with X and

W0 Wishart matrices (Wq(vi, Σ), i = 1, 2), then U0 has the matrix variate beta type II distribution.
They derived the exact expression for the pdf of Wilks’ statistic type II: |U0|, the latter expressed
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as the product of q univariate betas of the second kind, which in turn, can be expressed as Meijer
G-functions. Thus, Equations (25) and (27) can be considered as Wilks’ type II statistics.

3. Numerical Example

This section focusses on the calculation of run-length probabilities for this multivariate
sequential process. In particular, some percentage points are calculated as an illustration
for the probability to detect the shift instantly (i.e., a run-length of one). In this way,
the calculation of run-length probabilities may be feasible and meaningful within the
matrix environment.

The discrete random variable that defines the run-length is called the run-length
random variable and often denoted by N with its distribution called the run-length dis-
tribution. Let Aj be the event that a univariate random variable Uj, j = 0, 1, . . . , p, plots
inside its respective control limits, i.e.,

Aj = LCLκ+j < Uj < UCLκ+j (29)

where LCL and UCL denotes the lower and upper control limits respectively. The probabil-
ity of detecting a shift immediately, in other words, the probability of a run-length of one
is then

Pr(N = 1) = Pr(AC
0 ) = 1− Pr(A0) = 1− Pr(LCLκ < U0 < UCLκ). (30)

This probability is the probability that the charting statistic will plot on or outside
the control limits upon collecting the first sample after the change in the variance (see
Equation (30)). In the matrix environment |U0| is of interest as a test statistic for testing the
null hypothesis at time κ that the covariance matrix structure did not change (practically,
the process is in-control). Therefore, if the statistic |U0| exceeds a critical value (say c0)
it presents evidence that the covariance matrix structure changed and that the process is
declared out-of-control. This proposed method deviates from the univariate case where
a two sided hypothesis is considered (see Equation (30)). Thus, once the covariance
matrix structure changes, the probability to detect this change immediately, in other words,
the probability of a run-length of one is

Pr(N = 1) ≡ P[|U0| ≥ c0]. (31)

Take note that c0 indicates an upper critical value and not a control limit as before (see
Equation (30)). If q = 1 then c0 is comparable to the UCL of a one-sided hypothesis in the
univariate case.

In this example, percentage points are calculated for a run-length of one for the scenario
as illustrated in Figure 1 where the covariance matrix changes with a scale factor from Σ
to λΣ. Two cases with q = 1 and 2 (i.e., a univariate and bimatrix process) is considered.
From Equation (31) Pr(N = 1) = 1− F|U0|(c0), where F|U0|(·) is the CDF of |U0| given in
Equation (26)).

In particular, for q = 1 see that

F|U0|(c0) =
1

Γ
(

1
2 v1

)
Γ
(

1
2 v2

)G1,2
2,2

(
λ−1c0|

1,− 1
2 v1+1

1
2 v2,0

)
, (32)

and for q = 2

F|U0|(c0)

=
1

Γ
(

1
2 v1

)
Γ
(

1
2 v1 − 1

2

)
Γ
(

1
2 v2

)
Γ
(

1
2 v2 − 1

2

)G2,3
3,3

(
λ−2c0|

1,− 1
2 v1+1,− 1

2 v1+
3
2

1
2 v2, 1

2 v2− 1
2 ,0

)
.
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The percentage points c0 of |U0| are obtained numerically by solving the equation

F|U0|(c0) =

c0∫
0

f (|U0|)d|U0| = 1− γ (33)

where γ is a pre-specified probability of detecting a change in the covariance structure when
the process is out-of-control. Solving for this value numerically involves the computation
of Meijer’s G-function which is available in the R software as meijerG; in our case, we used
MeijerG in the software Mathematica.

Table 1 provides the numerical values of c0 for different values of λ and γ for the
case if q = 1 (univariate) and q = 2 (bimatrix). In this example, samples of four equal
sizes are collected at each point in time, i.e., v2 = n = 4. It is assumed that the covariance
matrix changes with a scale factor λ, between samples κ − 1 and κ where κ = 3, therefore
v1 = (κ − 1)× n = 8.

Table 1. Percentage points c0 of |U0|.

λ q γ = 0.01 γ = 0.025 γ = 0.05 γ = 0.1

2 1 7.00608 5.05263 3.83785 2.80643
1 1 3.50304 2.52632 1.91893 1.40321

0.5 1 1.75152 1.26316 0.95946 0.70161

2 2 7.29343 4.50351 2.97902 1.80558
1 2 3.64671 2.25176 1.48951 0.91746

0.5 2 1.82336 1.12588 0.74475 0.46006

Remark 3. The upper percentage points c0 in the simple case when q = 1 can be related to the
control limits (see (30)). In the above example a one-sided test was considered, i.e., the chart would
signal that the process is out-of-control if |U0| ≥ c0. It is well-known that the type I error in
hypothesis testing is P(reject H0 | H0 true). In the SPC context this is similar as the false alarm
rate (FAR). The FAR is defined as the probability for a single charting statistic to plot on or outside
the control limits when the process is in-control. The probability that U0 plots on or outside the
control limits given that the process variance did not encounter a shift, i.e., λ = 1. Therefore

FAR = 1− Pr( LCLκ < U0 < UCLκ | λ = 1)

= 1−
∫ UCLκ

LCLκ

f (u0)du0 (see Equation (17))

= 0.0027.

In the SPC environment it is desirable to have a FAR of 0.0027. Substituting γ = 0.0027
2 = 0.00135

in Equation (33) with q = 1 and λ = 1, gives c0 = 6.58684. This value corresponds to the UCL in the
case of q = 1 when, i.e.,

UCLκ=3 =
F−1

nκ ,Σκ−1
i=1 ni

[Φ(3)]

∑κ−1
i=1 ni
nκ

=
F−1

4,8 [Φ(3)]
8
4

= 6.58684.

where F−1
v1,v2

(.) and Φ(.) denotes the inverse CDF of the Fv1,v2(.) distribution and the CDF of the
standard normal distribution respectively. See also [5,6] in this regard.

4. Discussion and Conclusions

In this paper, we introduced a generalised bimatrix variate beta type II distribution
which originated from “ratios” of Wishart random variates, emanating from monitoring
the process covariance structure of q attributes where samples are independent, having
been collected from a multivariate normal distribution with known mean and unknown
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covariance matrix. In particular, the (i) pdfs of the marginal distributions and (ii) the pdfs
of the determinants of the components of the generalised bimatrix variate beta type II
distribution were derived. This paves the way for the proposed measure to capture the
change in a multivariate process momentarily. An illustrative example was included where
some percentage points were calculated to address the run-length concept in the matrix
environment. In a similar way as described in this paper, the two matrix random variables
U0 and U1 can be used to test if the covariance structure has changed significantly between
time periods κ − 1 and κ as well as κ and κ + 1.

In a similar way the run-length of two implies that even though the covariance matrix
changed, this change is not detected using the control chart at time κ, but that the chart
only signals that the process is out-of-control at time κ + 1. Therefore

Pr(N = 2) ≡ Pr[|U0| < c0, |U1| ≥ c1]

= Pr[|U0| < c0]− Pr[|U0| < c0, |U1| < c1].

(34)

From Equation (34) it is evident that the joint pdf of (|U0|, |U1|) is needed to calculate
the probability of a run-length of two, but a closed form expression is not mathematically
tractable. Another possibility is to assume independence of the statistics |U0| and |U1|,
then the approximate run-length probability is

Pr(N = 2) ≈ Pr[|U0| < c0]− Pr[|U0| < c0]Pr[|U1| < c1].

Even in the case of the above approximation one still encounters computational
challenges, see the pdf of |U1| given in Equation (27).

Furthermore, as a two-sample statistic for testing the hypothesis at time κ that the two
independent samples (i.e., all observations from time i = 1 to κ − 1 vs. the observations
in sample κ) are from the same q−variate multivariate normal distributions with the
same unknown covariance matrix Σ, the statistic |U0|may be of interest as a test statistic.
Subsequently |U1| can be used at time κ + 1. Thus, |U0| and |U1|may be used as charting
statistics for the multivariate process. In this scenario, |U0| is in fact a test statistic to check
whether λ = 1 (i.e., the covariance matrices are the same) versus λ 6= 1 (i.e., the covariance
matrix change with the scale factor λ). For λ = 1, |U0| is the Wilks’ statistic type II ([20]).

Recent trends indicate a continued interest in modelling and theoretical capturing
of shifts within covariance matrices within multivariate settings similar to the one under
consideration in this paper. Ref. [21] develops a distribution-free control chart for this
purpose, and [22,23] also refreshes the literature of methods for statistical surveillance of
covariance structures with particularly developed control charts. The contribution of [24]
is also a valuable contribution in literature based on machine learning approaches for
the monitoring of the covariance matrix in multivariate SPC, and forms a basis for the
departure of potential future studies. The case where there is a change in the mean vector
in this sequential process may be considered as future work. As a future development,
the practitioner may be interested in more than two successive time periods immediately
after the change in the covariance structure occurred, which will lead to new matrix variate
Dirichlet type II distributions.
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Appendix A

Proof of Theorem 2. 1. From Equation (23),

E
(
|U0|h−1

)
=

Γq

(
1
2 v1 − h + 1

)
Γq

(
1
2 v2 + h− 1

)
Γq

(
1
2 v1

)
Γq

(
1
2 v2

) λq(h−1),

therefore

E
(∣∣∣λ−1U0

∣∣∣h−1
)
=

Γq

(
1
2 v1 − h + 1

)
Γq

(
1
2 v2 + h− 1

)
Γq

(
1
2 v1

)
Γq

(
1
2 v2

) . (A1)

Using the well-known Mellin transform of f
(∣∣λ−1U0

∣∣):
M f (h) ≡ E

(∣∣∣λ−1U0

∣∣∣h−1
)

. (A2)

Expressing the multivariate gamma functions in Equation (A1) as a product of gamma
functions and substituting it in the Mellin transform Equation (A2), gives

M f (h) =
π

q(q−1)
2

q
∑

j=1
Γ[1−aj−h]

q
∑

j=1
Γ[bj+h]

Γq( 1
2 v1)Γq( 1

2 v2)
,

where aj = − 1
2 v1 +

1
2 (j− 1) and bj =

1
2 v2 − 1

2 (j + 1), j = 1, 2, . . . , q.

(A3)

The pdf of
∣∣λ−1U0

∣∣ is uniquely obtained from the inverse Mellin transform ([15]) of
Equation (A3) and using Equation (8) and is given by

f
(∣∣∣λ−1U0

∣∣∣)
=

1
2πi

∫ ω+i∞

ω−i∞
M f (h)

∣∣∣λ−1U0

∣∣∣−h
dh

=
π

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v2

) 1
2πi

∫ ω+i∞

ω−i∞

q

∑
j=1

Γ
[
1− aj − h

] q

∑
j=1

Γ
[
bj + h

]∣∣∣λ−1U0

∣∣∣−h
dh

=
π

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v2

)Gq,q
q,q

(
λ−q|U0||

a1,...,aq
b1,...,bq

)
(A4)

and the result follows.
2. Let u = |U0|, u > 0 then from Equation (25) the CDF is defined as

F|U0|(c) = Pr(|U0| ≤ c)

=
π

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v2

)λ−q
∫ c

0
Gq,q

q,q

(
λ−qu|a1,...,aq

b1,...,bq

)
du.
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Applying [15] results from pages 142, 59, and 69, yields

F|U0|(c)

=
π

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v2

)λ−q
∫ c

0
Hq,q

q,q

(
λ−qu|(a1,1),...,(aq ,1)

(b1,1),...,(bq ,1)

)
du

=
π

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v2

)λ−qcHq,q+1
q+1,q+1

(
λ−qc|(0,1),(a1,1),...,(aq ,1)

(b1,1),...,(bq ,1),(−1,1)

)

=
π

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v2

)λ−qcGq,q+1
q+1,q+1

(
λ−qc|0,a1,...,aq

b1,...,bq ,−1

)

and the result follows.
3. From Equation (24) the Mellin transform ([15]) of f (|U1|) is

M f (h) =
Γq( 1

2 (v1+v2)−h+1)Γq( 1
2 v3+h−1)λ

1
2 v1q

Γq( 1
2 v3)Γq( 1

2 (v1+v2))

× 2F1

(
1
2 v1, 1

2 (v1 + v2)− h + 1; 1
2 (v1 + v2); (1− λ)Iq

)
.

(A5)

Using Equations (9) and (5) the Gauss hypergeometric function of matrix argument in
Equation (A5) can be written as

2F1

(
1
2

v1,
1
2
(v1 + v2)− h + 1;

1
2
(v1 + v2); (1− λ)Iq

)

=
∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 v1

) Γq

(
1
2 (v1 + v2)− h + 1, τ

)
Γq

(
1
2 (v1 + v2)− h + 1

) Γq

(
1
2 (v1 + v2)

)
Γq

(
1
2 (v1 + v2), τ

) Cτ

(
(1− λ)Iq

)
t!

.

This gives

M f (h) ≡
Γq

(
1
2 v3 + h− 1

)
λ

1
2 v1q

Γq

(
1
2 v1

)
Γq

(
1
2 v3

) (A6)

×
∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2)− h + 1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!

Cτ

(
(1− λ)Iq

)
.

The multivariate gamma function in Equation (A6) can be written as

Γq

(
1
2 v3 + h− 1

)
= π

q(q−1)
4

q
∑

j=1
Γ
[
bj + h

]
, (A7)

where bj =
1
2 v3 − 1

2 (j + 1) for j = 1, . . . , q,

and using Equation (5), the generalised gamma function of weight τ can be written as

Γq

(
1
2 (v1 + v2)− h + 1, τ

)
= π

q(q−1)
4

q
∑

j=1
Γ
[
1− aj − h

]
, (A8)

where aj = − 1
2 (v1 + v2)− tj +

1
2 (j− 1) for j = 1, 2, . . . , q.

Substituting Equations (A7) and (A8) in Equation (A6) gives
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M f (h) ≡ λ
1
2 v1q

Γq

(
1
2 v1

)
Γq

(
1
2 v3

) ∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!

π
q(q−1)

2 (A9)

×
q

∑
j=1

Γ
[
1− aj − h

] q

∑
j=1

Γ
[
bj + h

]
Cτ

(
(1− λ)Iq

)
.

The pdf of |U1| is obtained from the inverse Mellin transform ([15]) of Equation (A9)
and from the definition of the Meijer’s G-function Equation (8) as

f (|U1|)

=
λ

1
2 v1q

Γq

(
1
2 v1

)
Γq

(
1
2 v3

) ∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!

Cτ

(
(1− λ)Iq

)
π

q(q−1)
2

× 1
2πi

∫ ω+i∞

ω−i∞

q

∑
j=1

Γ
[
1− aj − h

] q

∑
j=1

Γ
[
bj + h

]
|U1|−hdh

=
λ

1
2 v1qπ

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v3

) ∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!
(1− λ)tCτ

(
Iq
)
Gq,q

q,q

(
|U1||

a1,...,aq
b1,...,bq

)
.

4. Let u = |U1|, u > 0 then from Equation (27) the CDF is defined as

F|U1|(c) = Pr(|U1| ≤ c)

=
λ

1
2 v1qπ

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v3

)
×

∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!
(1− λ)tCτ

(
Iq
) ∫ c

0
Gq,q

q,q

(
u|a1,...,aq

b1,...,bq

)
du.

Applying [15] results from page 142, 59, and 69, yields

F|U1|(c)

=
λ

1
2 v1qπ

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v3

)
×

∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!
(1− λ)tCτ

(
Iq
) ∫ c

0
Hq,q

q,q

(
v|(a1,1),...,(aq ,1)

(b1,1),...,(bq ,1)

)
du

=
λ

1
2 v1qπ

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v3

)
×

∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!
(1− λ)tCτ

(
Iq
)
cHq,q+1

q+1,q+1

(
c|(0,1),(a1,1),...,(aq ,1)
(b1,1),...,(bq ,1),(−1,1)

)

=
λ

1
2 v1qπ

q(q−1)
2

Γq

(
1
2 v1

)
Γq

(
1
2 v3

)
×

∞

∑
t=0

∑
τ

Γq

(
1
2 v1, τ

)
Γq

(
1
2 (v1 + v2), τ

)
t!
(1− λ)tCτ

(
Iq
)
cGq,q+1

q+1,q+1

(
c|0,a1,...,aq

b1,...,bq ,−1

)

and the result follows.
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