Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Marburg hemorrhagic fever

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 904 KiB  
Perspective
Rwandan National Reference Laboratory Championing Biosafety and Biosecurity While Leading the Response to Marburg Virus Outbreak in the Country
by Emmanuel Edwar Siddig, Ayman Ahmed, Jean Claude Semuto Ngabonziza, Isabelle Mukagatare and Claude Mambo Muvunyi
Laboratories 2025, 2(2), 12; https://doi.org/10.3390/laboratories2020012 - 27 May 2025
Cited by 1 | Viewed by 528
Abstract
The Marburg virus (MARV) is an extremely contagious zoonotic virus that leads to severe hemorrhagic fever in humans, with a fatality rate as high as 90%. It is known for causing nosocomial outbreaks in hospitals and laboratories globally. The recent outbreak of MARV [...] Read more.
The Marburg virus (MARV) is an extremely contagious zoonotic virus that leads to severe hemorrhagic fever in humans, with a fatality rate as high as 90%. It is known for causing nosocomial outbreaks in hospitals and laboratories globally. The recent outbreak of MARV in Rwanda highlighted significant challenges to infection prevention and control (IPC) protocols in two major hospitals, leading to outbreaks in intensive care units (ICUs) where the majority of infections occurred among healthcare providers. In contrast, the Rwandan National Reference Laboratory (NRL) demonstrated remarkable preparedness and resilience due to systematic investments and capacity building, which resulted in zero contamination, exposure, or infection, despite handling thousands of samples from across the country. This stark difference in infection dynamics between laboratory personnel at the NRL and healthcare providers underscores the effectiveness of the strict biosafety and biosecurity measures in place. Consequently, this situation underscores the urgent need for cross-facility training, the sharing of best practices, and the role of the NRL in reinforcing IPC measures throughout the country. This report delves into the preparedness and resilience of the NRL by examining its exemplary laboratory biosafety and biosecurity practices, emphasizing the crucial need for ongoing training, supervision, adherence to safety protocols, and improvements in the structure and operations of healthcare settings to prevent future outbreaks. Full article
Show Figures

Figure 1

15 pages, 1455 KiB  
Article
Successful Inactivation of High-Consequence Pathogens in PrimeStore Molecular Transport Media
by Briana Spruill-Harrell, Gregory Kocher, Maurice Boda, Kristen Akers, Denise Freeburger, Nicole Murphy, Jens H. Kuhn, Gerald Fischer, Irina Maljkovic Berry, Prabha Chandrasekaran and Jerry Torrison
Viruses 2025, 17(5), 639; https://doi.org/10.3390/v17050639 - 29 Apr 2025
Viewed by 927
Abstract
Handling cultured isolates and clinical, environmental, or wildlife surveillance samples containing Risk Group 3 and 4 pathogens presents considerable biosafety challenges in minimizing human exposure during processing and transport. Safe handling typically requires high- or maximum-containment facilities, demanding substantial logistical planning and resources. [...] Read more.
Handling cultured isolates and clinical, environmental, or wildlife surveillance samples containing Risk Group 3 and 4 pathogens presents considerable biosafety challenges in minimizing human exposure during processing and transport. Safe handling typically requires high- or maximum-containment facilities, demanding substantial logistical planning and resources. We evaluated PrimeStore Molecular Transport Medium (PS-MTM), a guanidine-based solution created to kill pathogens and preserve nucleic acids at ambient temperatures, for inactivating Crimean-Congo hemorrhagic fever, eastern equine encephalitis, Ebola, Hendra, Japanese encephalitis, Lassa, Marburg, Nipah, Rift Valley fever, and West Nile viruses. To mimic diagnostic conditions, human whole blood spiked with any of these viruses was incubated with PS-MTM for 20-, 30-, or 60-min. Samples with titers up to 107 PFU/mL exposed to PS-MTM at all time points resulted in complete loss of infectivity judged by plaque assays. A 30-min incubation provided a 50% safety margin over the minimum inactivation time and was used for quantification with the tissue culture infectious dose (TCID50) assay, enabling evaluation of PS-MTM’s activity for viruses that do or do not produce well-defined plaques. Results confirmed that PS-MTM inactivated all tested viruses at titers up to 107 TCID50/mL, underscoring its reliability for enhancing biosafety in diagnostics, outbreak management, and surveillance. Full article
Show Figures

Graphical abstract

25 pages, 1311 KiB  
Review
Emerging Strategies and Progress in the Medical Management of Marburg Virus Disease
by Sanctus Musafiri, Emmanuel Edwar Siddig, John Baptist Nkuranga, Athanase Rukundo, Tharcisse Mpunga, Augustin Sendegeya, Theogene Twagirumugabe, Ayman Ahmed and Claude Mambo Muvunyi
Pathogens 2025, 14(4), 322; https://doi.org/10.3390/pathogens14040322 - 27 Mar 2025
Cited by 1 | Viewed by 1428
Abstract
During the current outbreak of Marburg virus disease (MVD) in Rwanda, we synthesized evidence from the literature to improve case management. Accordingly, experimental treatment was offered to patients under close follow-up. Remdesivir alone or in combination with monoclonal antibody treatment (MBP091) complemented with [...] Read more.
During the current outbreak of Marburg virus disease (MVD) in Rwanda, we synthesized evidence from the literature to improve case management. Accordingly, experimental treatment was offered to patients under close follow-up. Remdesivir alone or in combination with monoclonal antibody treatment (MBP091) complemented with supportive care has improved the clinical outcomes of patients. Additionally, we have identified several experimental therapies currently under investigation, including antiviral drugs such as favipiravir, galidesivir, obeldesivir, and remdesivir, along with monoclonal and polyclonal antibodies (e.g., polyclonal IgG, monoclonal antibody MR-78-N; MR82-N; MR191-N; monoclonal antibodies MR186-YTE and MBP091). Furthermore, substantial progress is being made in vaccine development, with promising candidates including adenovirus-vectored vaccines, DNA vaccines, and the recombinant vesicular stomatitis virus (rVSV) vaccine. Moreover, innovative preventive and treatment strategies—such as synthetic hormones like estradiol benzoate, small interfering RNA (siRNA), interferon-β therapy, and phosphorodiamidate morpholino oligomers—are emerging as potential options for MVD management. Further investment is needed to accelerate research and optimize these therapeutics and preventive modalities. Additional epidemiological, preclinical, and clinical studies are warranted to generate the evidence required to inform policymaking, resource mobilization, and the implementation of cost-effective interventions for the prevention, control, and treatment of MVD. Full article
Show Figures

Figure 1

28 pages, 13098 KiB  
Systematic Review
Seroprevalence of Antibodies to Filoviruses with Outbreak Potential in Sub-Saharan Africa: A Systematic Review to Inform Vaccine Development and Deployment
by Christopher S. Semancik, Hilary S. Whitworth, Matt A. Price, Heejin Yun, Thomas S. Postler, Marija Zaric, Andrew Kilianski, Christopher L. Cooper, Monica Kuteesa, Sandhya Talasila, Nina Malkevich, Swati B. Gupta and Suzanna C. Francis
Vaccines 2024, 12(12), 1394; https://doi.org/10.3390/vaccines12121394 - 11 Dec 2024
Viewed by 1673
Abstract
Background/Objectives: Orthoebolaviruses and orthomarburgviruses are filoviruses that can cause viral hemorrhagic fever and significant morbidity and mortality in humans. The evaluation and deployment of vaccines to prevent and control Ebola and Marburg outbreaks must be informed by an understanding of the transmission [...] Read more.
Background/Objectives: Orthoebolaviruses and orthomarburgviruses are filoviruses that can cause viral hemorrhagic fever and significant morbidity and mortality in humans. The evaluation and deployment of vaccines to prevent and control Ebola and Marburg outbreaks must be informed by an understanding of the transmission and natural history of the causative infections, but little is known about the burden of asymptomatic infection or undiagnosed disease. This systematic review of the published literature examined the seroprevalence of antibodies to orthoebolaviruses and orthomarburgviruses in sub-Saharan Africa. Methods: The review protocol was registered on PROSPERO (ID: CRD42023415358) and previously published. Eighty-seven articles describing 85 studies were included, of which seventy-six measured antibodies to orthoebolaviruses and forty-one measured antibodies to orthomarburgviruses. Results: The results highlight three central findings that may have implications for vaccine development and deployment. First, substantial antibody seropositivity to Ebola virus (EBOV) and Sudan virus (SUDV) was observed in populations from outbreak-affected areas (≤33% seroprevalence among general populations; ≤41% seroprevalence among healthcare workers and close contacts of disease cases). Second, antibody seropositivity to EBOV, SUDV, and Marburg virus (MARV) was observed among populations from areas without reported outbreaks, with seroprevalence ranging from <1 to 21%. Third, in Central and East Africa, MARV antibody seroprevalence was substantially lower than EBOV or SUDV antibody seroprevalence, even in outbreak-affected areas and in populations at a moderate or high risk of infection (with MARV seroprevalence mostly ranging from 0 to 3%). Conclusions: Whilst gaps remain in our understanding of the significance of antibody seropositivity in some settings and contexts, these findings may be important in considering target indications for novel filovirus vaccines, in defining study designs and strategies for demonstrating vaccine efficacy or effectiveness, and in planning and evaluating vaccine deployment strategies to prevent and control outbreaks. Full article
Show Figures

Figure 1

24 pages, 5421 KiB  
Article
Rapid Development of Modified Vaccinia Virus Ankara (MVA)-Based Vaccine Candidates Against Marburg Virus Suitable for Clinical Use in Humans
by Alina Tscherne, Georgia Kalodimou, Alexandra Kupke, Cornelius Rohde, Astrid Freudenstein, Sylvia Jany, Satendra Kumar, Gerd Sutter, Verena Krähling, Stephan Becker and Asisa Volz
Vaccines 2024, 12(12), 1316; https://doi.org/10.3390/vaccines12121316 - 24 Nov 2024
Cited by 1 | Viewed by 2328
Abstract
Background/Objectives: Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and [...] Read more.
Background/Objectives: Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and confirmed human cases outside Africa are, so far, exclusively imported by returning travelers. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics. Although MARV-specific vaccines are evaluated in preclinical and clinical research, none have been approved for human use. Modified Vaccinia virus Ankara (MVA), a well-established viral vector used to generate vaccines against emerging pathogens, can deliver multiple antigens and has a remarkable clinical safety and immunogenicity record, further supporting its evaluation as a vaccine against MARV. The rapid availability of safe and effective MVA-MARV vaccine candidates would expand the possibilities of multi-factored intervention strategies in endemic countries. Methods: We have used an optimized methodology to rapidly generate and characterize recombinant MVA candidate vaccines that meet the quality requirements to proceed to human clinical trials. As a proof-of-concept for the optimized methodology, we generated two recombinant MVAs that deliver either the MARV glycoprotein (MVA-MARV-GP) or the MARV nucleoprotein (MVA-MARV-NP). Results: Infections of human cell cultures with recombinant MVA-MARV-GP and MVA-MARV-NP confirmed the efficient synthesis of MARV-GP and MARV-NP proteins in mammalian cells, which are non-permissive for MVA replication. Prime-boost immunizations in C57BL/6J mice readily induced circulating serum antibodies binding to recombinant MARV-GP and MARV-NP proteins. Moreover, the MVA-MARV-candidate vaccines elicited MARV-specific T-cell responses in C57BL/6J mice. Conclusions: We confirmed the suitability of our two backbone viruses MVA-mCherry and MVA-GFP in a proof-of-concept study to rapidly generate candidate vaccines against MARV. However, further studies are warranted to characterize the protective efficacy of these recombinant MVA-MARV vaccines in other preclinical models and to evaluate them as vaccine candidates in humans. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Figure 1

14 pages, 19599 KiB  
Article
Lysosome-Associated Membrane Protein Targeting Strategy Improved Immunogenicity of Glycoprotein-Based DNA Vaccine for Marburg Virus
by Xiyang Zhang, Yubo Sun, Junqi Zhang, Hengzheng Wei, Jing Wang, Chenchen Hu, Yang Liu, Sirui Cai, Qinghong Yuan, Yueyue Wang, Yuanjie Sun, Shuya Yang, Dongbo Jiang and Kun Yang
Vaccines 2024, 12(9), 1013; https://doi.org/10.3390/vaccines12091013 - 4 Sep 2024
Cited by 1 | Viewed by 1896
Abstract
Marburg hemorrhagic fever (MHF) is a fatal infectious disease caused by Marburg virus (MARV) infection, and MARV has been identified as a priority pathogen for vaccine development by the WHO. The glycoprotein (GP) of MARV mediates viral adhesion and invasion of host cells [...] Read more.
Marburg hemorrhagic fever (MHF) is a fatal infectious disease caused by Marburg virus (MARV) infection, and MARV has been identified as a priority pathogen for vaccine development by the WHO. The glycoprotein (GP) of MARV mediates viral adhesion and invasion of host cells and therefore can be used as an effective target for vaccine development. Moreover, DNA vaccines have unique advantages, such as simple construction processes, low production costs, and few adverse reactions, but their immunogenicity may decrease due to the poor absorption rate of plasmids. Lysosome-associated membrane protein 1 (LAMP1) can direct antigens to lysosomes and endosomes and has great potential for improving the immunogenicity of nucleic acid vaccines. Therefore, we constructed a DNA vaccine based on a codon-optimized MARV GP (ID MF939097.1) fused with LAMP1 and explored the effect of a LAMP targeting strategy on improving the immunogenicity of the MARV DNA vaccine. ELISA, ELISpot, and flow cytometry revealed that the introduction of LAMP1 into the MARV DNA candidate vaccine improved the humoral and cellular immune response, enhanced the secretion of cytokines, and established long-term immune protection. Transcriptome analysis revealed that the LAMP targeting strategy significantly enriched antigen processing and presentation-related pathways, especially the MHC class II-related pathway, in the candidate vaccine. Our study broadens the strategic vision for enhanced DNA vaccine design and provides a promising candidate vaccine for MHF prevention. Full article
(This article belongs to the Special Issue Advances in Vaccines against Infectious Diseases)
Show Figures

Figure 1

22 pages, 3367 KiB  
Article
Efficacy and Immunogenicity of a Recombinant Vesicular Stomatitis Virus-Vectored Marburg Vaccine in Cynomolgus Macaques
by Vidyleison N. Camargos, Shannan L. Rossi, Terry L. Juelich, Jennifer K. Smith, Nikos Vasilakis, Alexander N. Freiberg, Rick Nichols and Joan Fusco
Viruses 2024, 16(8), 1181; https://doi.org/10.3390/v16081181 - 24 Jul 2024
Cited by 2 | Viewed by 1784
Abstract
Filoviruses, like the Marburg (MARV) and Ebola (EBOV) viruses, have caused outbreaks associated with significant hemorrhagic morbidity and high fatality rates. Vaccines offer one of the best countermeasures for fatal infection, but to date only the EBOV vaccine has received FDA licensure. Given [...] Read more.
Filoviruses, like the Marburg (MARV) and Ebola (EBOV) viruses, have caused outbreaks associated with significant hemorrhagic morbidity and high fatality rates. Vaccines offer one of the best countermeasures for fatal infection, but to date only the EBOV vaccine has received FDA licensure. Given the limited cross protection between the EBOV vaccine and Marburg hemorrhagic fever (MHF), we analyzed the protective efficacy of a similar vaccine, rVSV-MARV, in the lethal cynomolgus macaque model. NHPs vaccinated with a single dose (as little as 1.6 × 107 pfu) of rVSV-MARV seroconverted to MARV G-protein prior to challenge on day 42. Vaccinemia was measured in all vaccinated primates, self-resolved by day 14 post vaccination. Importantly, all vaccinated NHPs survived lethal MARV challenge, and showed no significant alterations in key markers of morbid disease, including clinical signs, and certain hematological and clinical chemistry parameters. Further, apart from one primate (from which tissues were not collected and no causal link was established), no pathology associated with Marburg disease was observed in vaccinated animals. Taken together, rVSV-MARV is a safe and efficacious vaccine against MHF in cynomolgus macaques. Full article
(This article belongs to the Special Issue Vesicular Stomatitis Virus (VSV))
Show Figures

Figure 1

23 pages, 2561 KiB  
Review
Non-Ebola Filoviruses: Potential Threats to Global Health Security
by Yannick Munyeku-Bazitama, Francois Edidi-Atani and Ayato Takada
Viruses 2024, 16(8), 1179; https://doi.org/10.3390/v16081179 - 23 Jul 2024
Cited by 3 | Viewed by 2718
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has [...] Read more.
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013–2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

24 pages, 4190 KiB  
Article
Bioinformatic, Biochemical, and Immunological Mining of MHC Class I Restricted T Cell Epitopes for a Marburg Nucleoprotein Microparticle Vaccine
by Paul E. Harris, Scott Burkholz, Charles V. Herst and Reid M. Rubsamen
Vaccines 2024, 12(3), 322; https://doi.org/10.3390/vaccines12030322 - 18 Mar 2024
Viewed by 2443
Abstract
The Marburg virus (MARV), the virus responsible for Marburg hemorrhagic fever (MHF), is considered a top-priority pathogen for vaccine development. Recent outbreaks in Equatorial Africa have highlighted the urgency of MARV because of its high fatality rate and historical concerns about potential weaponization. [...] Read more.
The Marburg virus (MARV), the virus responsible for Marburg hemorrhagic fever (MHF), is considered a top-priority pathogen for vaccine development. Recent outbreaks in Equatorial Africa have highlighted the urgency of MARV because of its high fatality rate and historical concerns about potential weaponization. Currently, there are no licensed vaccines for MARV. Existing vaccine candidates rely on attenuated recombinant vesicular stomatitis virus carrying MARV glycoprotein (VSVΔG) or the chimpanzee replication-defective adenovirus 3 vector ChAd3-MARV. Although these platforms provide significant protection in animal models, they face challenges because of their limited thermal stability and the need for cold storage during deployment in resource-poor areas. An alternative approach involves using adjuvanted poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with synthetic peptides representing MHC class I—restricted T cell epitopes. This vaccine platform has demonstrated effectiveness in protecting against SARS-CoV-2 and EBoV disease in animal models and has the advantage of not requiring cold storage and remaining stable at room temperature for over six months. This report outlines the design, manufacturing, and in vivo immunogenicity testing of PLGA microparticle human vaccines designed to prevent Marburg hemorrhagic fever. Full article
(This article belongs to the Special Issue Recent Vaccine Development for Emerging Infectious Diseases)
Show Figures

Graphical abstract

10 pages, 256 KiB  
Review
Developing Vaccines to Improve Preparedness for Filovirus Outbreaks: The Perspective of the USA Biomedical Advanced Research and Development Authority (BARDA)
by Lindsay A. Parish, Eric J. Stavale, Christopher R. Houchens and Daniel N. Wolfe
Vaccines 2023, 11(6), 1120; https://doi.org/10.3390/vaccines11061120 - 19 Jun 2023
Cited by 11 | Viewed by 2942
Abstract
Outbreaks of viral hemorrhagic fever caused by filoviruses have become more prevalent in recent years, with outbreaks of Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV) all occurring in 2022 and 2023. While licensed vaccines are now available for EBOV, vaccine [...] Read more.
Outbreaks of viral hemorrhagic fever caused by filoviruses have become more prevalent in recent years, with outbreaks of Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV) all occurring in 2022 and 2023. While licensed vaccines are now available for EBOV, vaccine candidates for SUDV and MARV are all in preclinical or early clinical development phases. During the recent outbreak of SUDV virus disease, the Biomedical Advanced Research and Development Authority (BARDA), as part of the Administration for Strategic Preparedness and Response within the U.S. Department of Health and Human Services, implemented key actions with our existing partners to advance preparedness and enable rapid response to the outbreak, while also aligning with global partners involved in the implementation of clinical trials in an outbreak setting. Beyond pre-existing plans prior to the outbreak, BARDA worked with product sponsors to expedite manufacturing of vaccine doses that could be utilized in clinical trials. While the SUDV outbreak has since ended, a new outbreak of MARV disease has emerged. It remains critical that we continue to advance a portfolio of vaccines against SUDV and MARV while also expediting manufacturing activities ahead of, or in parallel if needed, outbreaks. Full article
24 pages, 3139 KiB  
Article
One Health Surveillance Highlights Circulation of Viruses with Zoonotic Potential in Bats, Pigs, and Humans in Viet Nam
by Alice Latinne, Nguyen Thi Thanh Nga, Nguyen Van Long, Pham Thi Bich Ngoc, Hoang Bich Thuy, PREDICT Consortium, Nguyen Van Long, Pham Thanh Long, Nguyen Thanh Phuong, Le Tin Vinh Quang, Nguyen Tung, Vu Sinh Nam, Vu Trong Duoc, Nguyen Duc Thinh, Randal Schoepp, Keersten Ricks, Ken Inui, Pawin Padungtod, Christine K. Johnson, Jonna A. K. Mazet, Chris Walzer, Sarah H. Olson and Amanda E. Fineadd Show full author list remove Hide full author list
Viruses 2023, 15(3), 790; https://doi.org/10.3390/v15030790 - 20 Mar 2023
Cited by 10 | Viewed by 9903
Abstract
A One Health cross-sectoral surveillance approach was implemented to screen biological samples from bats, pigs, and humans at high-risk interfaces for zoonotic viral spillover for five viral families with zoonotic potential in Viet Nam. Over 1600 animal and human samples from bat guano [...] Read more.
A One Health cross-sectoral surveillance approach was implemented to screen biological samples from bats, pigs, and humans at high-risk interfaces for zoonotic viral spillover for five viral families with zoonotic potential in Viet Nam. Over 1600 animal and human samples from bat guano harvesting sites, natural bat roosts, and pig farming operations were tested for coronaviruses (CoVs), paramyxoviruses, influenza viruses, filoviruses and flaviviruses using consensus PCR assays. Human samples were also tested using immunoassays to detect antibodies against eight virus groups. Significant viral diversity, including CoVs closely related to ancestors of pig pathogens, was detected in bats roosting at the human–animal interfaces, illustrating the high risk for CoV spillover from bats to pigs in Viet Nam, where pig density is very high. Season and reproductive period were significantly associated with the detection of bat CoVs, with site-specific effects. Phylogeographic analysis indicated localized viral transmission among pig farms. Our limited human sampling did not detect any known zoonotic bat viruses in human communities living close to the bat cave and harvesting bat guano, but our serological assays showed possible previous exposure to Marburg virus-like (Filoviridae), Crimean–Congo hemorrhagic fever virus-like (Bunyaviridae) viruses and flaviviruses. Targeted and coordinated One Health surveillance helped uncover this viral pathogen emergence hotspot. Full article
(This article belongs to the Special Issue Viruses and Bats 2023)
Show Figures

Figure 1

10 pages, 975 KiB  
Review
The COVID-19 Impact on the Trends in Yellow Fever and Lassa Fever Infections in Nigeria
by Nnennaya U. Opara, Ugochinyere I. Nwagbara and Khumbulani W. Hlongwana
Infect. Dis. Rep. 2022, 14(6), 932-941; https://doi.org/10.3390/idr14060091 - 21 Nov 2022
Cited by 4 | Viewed by 4135
Abstract
Lassa fever (LF) and yellow fever (YF) belong to a group of viral hemorrhagic fevers (VHFs). These viruses have common features and damages the organs and blood vessels; they also impair the body’s homeostasis. Some VHFs cause mild disease, while some cause severe [...] Read more.
Lassa fever (LF) and yellow fever (YF) belong to a group of viral hemorrhagic fevers (VHFs). These viruses have common features and damages the organs and blood vessels; they also impair the body’s homeostasis. Some VHFs cause mild disease, while some cause severe disease and death such as in the case of Ebola or Marburg. LF virus and YF virus are two of the most recent emerging viruses in Africa, resulting in severe hemorrhagic fever in humans. Lassa fever virus is continuously on the rise both in Nigeria and neighboring countries in West Africa, with an estimate of over 500,000 cases of LF, and 5000 deaths, annually. YF virus is endemic in temperate climate regions of Africa, Central America (Guatemala, Honduras, Nicaragua, El Salvador), and South America (such as Brazil, Argentina, Peru, and Chile) with an annual estimated cases of 200,000 and 30,000 deaths globally. This review examines the impact of the COVID-19 pandemic on the trend in epidemiology of these two VHFs to delineate responses that are associated with protective or pathogenic outcomes. Full article
(This article belongs to the Topic Ecosystem Change, Infectious Diseases Transmission and Early Warning)
(This article belongs to the Section Viral Infections)
Show Figures

Figure 1

16 pages, 2289 KiB  
Article
Natural History of Marburg Virus Infection to Support Medical Countermeasure Development
by Jason E. Comer, Trevor Brasel, Shane Massey, David W. Beasley, Chris M. Cirimotich, Daniel C. Sanford, Ying-Liang Chou, Nancy A. Niemuth, Joseph Novak, Carol L. Sabourin, Michael Merchlinsky, James P. Long, Eric J. Stavale and Daniel N. Wolfe
Viruses 2022, 14(10), 2291; https://doi.org/10.3390/v14102291 - 18 Oct 2022
Cited by 11 | Viewed by 3165
Abstract
The Biomedical Advanced Research and Development Authority, part of the Administration for Strategic Preparedness and Response within the U.S. Department of Health and Human Services, recognizes that the evaluation of medical countermeasures under the Animal Rule requires well-characterized and reproducible animal models that [...] Read more.
The Biomedical Advanced Research and Development Authority, part of the Administration for Strategic Preparedness and Response within the U.S. Department of Health and Human Services, recognizes that the evaluation of medical countermeasures under the Animal Rule requires well-characterized and reproducible animal models that are likely to be predictive of clinical benefit. Marburg virus (MARV), one of two members of the genus Marburgvirus, is characterized by a hemorrhagic fever and a high case fatality rate for which there are no licensed vaccines or therapeutics available. This natural history study consisted of twelve cynomolgus macaques challenged with 1000 PFU of MARV Angola and observed for body weight, temperature, viremia, hematology, clinical chemistry, and coagulation at multiple time points. All animals succumbed to disease within 8 days and exhibited signs consistent with those observed in human cases, including viremia, fever, systemic inflammation, coagulopathy, and lymphocytolysis, among others. Additionally, this study determined the time from exposure to onset of disease manifestations and the time course, frequency, and magnitude of the manifestations. This study will be instrumental in the design and development of medical countermeasures to Marburg virus disease. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 2305 KiB  
Article
A Cloned Recombinant Vesicular Stomatitis Virus-Vectored Marburg Vaccine, PHV01, Protects Guinea Pigs from Lethal Marburg Virus Disease
by Wenjun Zhu, Guodong Liu, Wenguang Cao, Shihua He, Anders Leung, Ute Ströher, Michael J. Fairchild, Rick Nichols, Joseph Crowell, Joan Fusco and Logan Banadyga
Vaccines 2022, 10(7), 1004; https://doi.org/10.3390/vaccines10071004 - 23 Jun 2022
Cited by 15 | Viewed by 3422
Abstract
Marburg virus (MARV) is a negative-sense, single-stranded RNA virus that belongs to the Filoviridae family. Despite having caused numerous outbreaks of severe hemorrhagic fever with high case fatality rates, there are still no clinically approved therapeutics or vaccines to treat or prevent MARV [...] Read more.
Marburg virus (MARV) is a negative-sense, single-stranded RNA virus that belongs to the Filoviridae family. Despite having caused numerous outbreaks of severe hemorrhagic fever with high case fatality rates, there are still no clinically approved therapeutics or vaccines to treat or prevent MARV disease. Recombinant vesicular stomatitis viruses (rVSVs) expressing heterologous viral glycoproteins have shown remarkable promise as live-attenuated vaccine vectors, with an rVSV-based Ebola virus vaccine having received regulatory approval in the United States and numerous other countries. Analogous rVSV vaccine vectors have also been developed for MARV and have shown efficacy in several preclinical studies conducted in nonhuman primates. Here, we used a guinea pig model to confirm the protective efficacy of a cloned, rVSV-based candidate vaccine, termed PHV01, expressing the MARV variant Angola glycoprotein. Our results demonstrated that a single dose (2 × 106 PFU) of vaccine administered 28 days prior to challenge with a uniformly lethal dose of guinea-pig-adapted MARV variant Angola provided complete protection from death and disease. Moreover, protection was robust, with as little as 200 PFU of vaccine conferring significant protection. Not only does this study highlight the potential predictive value of the guinea pig model in the evaluation of MARV countermeasures, but it also demonstrates consistent and reproducible protection afforded by a clonal vaccine candidate. Indeed, this study identifies PHV01 as a suitable vaccine candidate for advanced development. Full article
Show Figures

Figure 1

35 pages, 4492 KiB  
Review
Monitoring Symptoms of Infectious Diseases: Perspectives for Printed Wearable Sensors
by Ala’aldeen Al-Halhouli, Ahmed Albagdady, Ja’far Alawadi and Mahmoud Abu Abeeleh
Micromachines 2021, 12(6), 620; https://doi.org/10.3390/mi12060620 - 27 May 2021
Cited by 20 | Viewed by 7726
Abstract
Infectious diseases possess a serious threat to the world’s population, economies, and healthcare systems. In this review, we cover the infectious diseases that are most likely to cause a pandemic according to the WHO (World Health Organization). The list includes COVID-19, Crimean-Congo Hemorrhagic [...] Read more.
Infectious diseases possess a serious threat to the world’s population, economies, and healthcare systems. In this review, we cover the infectious diseases that are most likely to cause a pandemic according to the WHO (World Health Organization). The list includes COVID-19, Crimean-Congo Hemorrhagic Fever (CCHF), Ebola Virus Disease (EBOV), Marburg Virus Disease (MARV), Lassa Hemorrhagic Fever (LHF), Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), Nipah Virus diseases (NiV), and Rift Valley fever (RVF). This review also investigates research trends in infectious diseases by analyzing published research history on each disease from 2000–2020 in PubMed. A comprehensive review of sensor printing methods including flexographic printing, gravure printing, inkjet printing, and screen printing is conducted to provide guidelines for the best method depending on the printing scale, resolution, design modification ability, and other requirements. Printed sensors for respiratory rate, heart rate, oxygen saturation, body temperature, and blood pressure are reviewed for the possibility of being used for disease symptom monitoring. Printed wearable sensors are of great potential for continuous monitoring of vital signs in patients and the quarantined as tools for epidemiological screening. Full article
(This article belongs to the Special Issue Recent Advances in Inkjet Technology)
Show Figures

Figure 1

Back to TopTop