The COVID-19 Impact on the Trends in Yellow Fever and Lassa Fever Infections in Nigeria
(This article belongs to the Section Viral Infections)
Abstract
:1. Introduction
2. COVID-19 Impact on Lassa Fever Infection Rate
3. COVID-19 Impact on Yellow Fever Infection Rate
- Sylvan YF: also known as “jungle” yellow fever infestation, this occurs in the temperate climate regions (tropical rainforests commonly seen in Africa and South America) where the primary carriers of the virus are monkeys following bites by wild mosquitoes of the Aedes and Haemogogus species. Humans become infected when they tour or work in the rainforest and are bitten by infected mosquitoes [25].
- Intermediate YF: here, the semi-domestic mosquitoes (wild and household bred) infect monkeys and humans. Increased contact between people and infected mosquitoes leads to increased transmission, especially in densely populated regions. this type of transmission is the most typical type of outbreak in Africa [26].
- Urban YF: this is slightly like the intermediate type, as transmission occurs when the infected group of people spread the YF virus in heavily populated regions with several breeding grounds for Aedes aegypti mosquitoes and where people with no immunity due to lack of vaccination live. In this condition, infected mosquitoes transmit the virus from person to person [26].
4. Public Health Interventions Necessary for Reducing the Spread of LF and YF Viruses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. (2020, March). Coronavirus Disease (COVID-19). Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1 (accessed on 21 June 2022).
- Nigeria Center for Disease Control. Disease Situation Report. 2021. Available online: https://ncdc.gov.ng/ (accessed on 21 June 2022).
- Nigeria Center for Disease Control. (2021, April). Lassa Fever Project Report. Available online: https://ncdc.gov.ng/reports/projects (accessed on 20 June 2022).
- World Health Organization. (2020, May). Yellow Fever. Available online: https://cdn.who.int/media/docs/default-source/immunization/vpd_surveillance/vpd-surveillance-standards-publication/who-surveillancevaccinepreventable-23-yellowfever-r1.pdf?sfvrsn=a8d50bc6_10&download=true (accessed on 20 June 2022).
- Frame, J.D.; Baldwin, J.M.; Gocke, D.J.; Troup, J.M. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am. J. Trop. Med. Hyg. 1970, 19, 670–676. [Google Scholar] [CrossRef]
- Fichet-Calvet, E.; Rogers, D.J. Risk maps of Lassa fever in West Africa. PLoS Negl. Trop. Dis. 2009, 3, e388. [Google Scholar] [CrossRef]
- Sogoba, N.; Feldmann, H.; Safronetz, D. Lassa fever in West Africa: Evidence for an expanded region of endemicity. Zoonoses Public Health 2012, 59 (Suppl. 2), 43–47. [Google Scholar] [CrossRef]
- Ogbu, O.; Ajuluchukwu, E.; Uneke, C.J. Lassa fever in West Africa sub-region: An overview. J. Vector Borne Dis. 2007, 44, 1. [Google Scholar]
- Paweska, J.T.; Sewlall, N.H.; Ksiazek, T.G.; Blumberg, L.H.; Hale, M.J.; Lipkin, W.I.; Weyer, J.; Nichol, S.T.; Rollin, P.E.; McMullan, L.K.; et al. Nosocomial outbreak of novel arenavirus infection, southern Africa. Emerg. Infect. Dis. 2009, 15, 1598. [Google Scholar] [CrossRef]
- Fisher-Hoch, S.P.; Tomori, O.; Nasidi, A.; Perez-Oronoz, G.I.; Fakile, Y.; Hutwagner, L.; McCormick, J.B. Review of cases of nosocomial Lassa fever in Nigeria: The high price of poor medical practice. BMJ 1995, 311, 857–859. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Holbrook, M.R.; Gowen, B.B. Animal models of viral hemorrhagic fever. Antivir. Res. 2014, 112, 59–79. [Google Scholar] [CrossRef]
- Gunther, S.; Lenz, O. Lassa virus. Crit. Rev. Clin. Lab. Sci. 2004, 41, 339–390. [Google Scholar] [CrossRef]
- World Health Organization (WHO). 2020 Lassa Fever-Nigeria. Available online: https://www.who.int/csr/don/20-february-2020-lassa-fever-nigeria/en/2020 (accessed on 5 July 2022).
- Nigeria Center for Disease Control. (2021, January). Yellow Fever. Available online: https://ncdc.gov.ng/diseases/info/Y (accessed on 19 June 2022).
- Nigeria Center for Disease Control. (2022, July). Yellow Fever. Available online: https://acrobat.adobe.com/link/review?uri=urn:aaid:scds:US:2d6b8512-bdbe-4d60-83bd-d467c44f1a86 (accessed on 7 November 2022).
- Versteeg, G.A.; Garcia-Sastre, A. Viral tricks to gridlock the type 1 interferon system. Curr. Opin. Microbiol. 2010, 13, 508–516. [Google Scholar] [CrossRef]
- Xing, J.; Ly, H.; Liang, Y. The Z proteins of pathogenic but not nonpathogenic arenaviruses inhibit RIG-1-like receptor-dependent interferon production. J. Virol. 2015, 89, 2944–2955. [Google Scholar] [CrossRef] [Green Version]
- Hastie, K.M.; King, L.B.; Zandonatti, M.A.; Saphire, E.O. Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease. PLoS ONE 2012, 7, e44211. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Huang, Q.; Wang, W.; Dong, H.; Ly, H.; Liang, Y.; Dong, C. Structures of arenaviral nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune suppression. J. Biol. Chem. 2013, 288, 16949–16959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pythoud, C.; Rodrigo, W.W.S.; Pasqual, G.; Rothenberger, S.; Martnez-Sobrido, L.; Torre, J.C.; Kunz, S. Arenavirus nucleoprotein targets interferon regulatory actor-activating kinase IKKe. J. Virol. 2012, 86, 7728–7738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo, W.W.; Ortiz-Riano, E.; Pythoud, C.; Kunz, S.; Torre, J.C.; Martinez-Sobrido, L. Arenavirus nucleoproteins prevent activation of nuclear factor kappa B. J. Virol. 2012, 86, 8185–8197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiel, V.; Weber, F. Interferon, and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev. 2008, 19, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host response to SARS-CoV-2 drives development of COVID-19. Cell 2022, 181, 1036–1045.e9. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Kanneganti, T.D. Innate immunity: The first line of defense against SARS-CoV-2. Nat. Immunol. 2022, 23, 165–176. [Google Scholar] [CrossRef]
- Gardner, C.L.; Ryman, K.D. Yellow Fever: A Reemerging Threat. Clin. Lab. Med. 2010, 30, 237–260. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. (2019, May). Yellow Fever. Available online: https://www.who.int/news-room/fact-sheets/detail/yellow-fever (accessed on 5 July 2022).
- The U.S Center for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases. (2014, March). Available online: https://www.cdc.gov/vhf/lassa/transmission/index.html (accessed on 18 June 2022).
- Pan American Health Organization. (2016, September). Yellow Fever. Available online: https://www.paho.org/en/topics/yellow-fever (accessed on 21 June 2022).
- Monath, T.P. Microbe Hunters—Then and Now; Oldstone, M., Koprowski, H., Eds.; Medi-Ed: Bloomington, IL, USA, 1996. [Google Scholar]
- World Health Organization. Nigeria: WHO and UNICEF Estimates of Immunization Coverage: 2018 Revision. 2019. Available online: https://www.who.int/immunization/monitoring_surveillance/data/phl.pdf (accessed on 18 June 2022).
- WHO Countries with Risk of Yellow Fever Transmission and Countries Requiring Yellow Fever Vaccination. Available online: https://www.who.int/publications/m/item/countries-with-risk-of-yellowfever-transmission-and-countries-requiring-yellow-fever-vaccination-(july-2020) (accessed on 18 June 2022).
- Shearer, F.M.; Moyes, C.L.; Pigott, D.M.; Brady, O.J.; Marinho, F.; Deshpande, A.; Longbottom, J.; Browne, A.J.; Kraemer, M.U.; O’Reilly, K.M.; et al. Global yellow fever vaccination coverage from 1970 to 2016: An adjusted retrospective analysis. Lancet Infect Dis. 2017, 17, 1209–1217. [Google Scholar] [CrossRef] [Green Version]
- Ryman, K.D.; Xie, H.; Ledger, T.N.; Campbell, G.A.; Barrett, A.D. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice. Virology 1997, 230, 376–380. [Google Scholar] [CrossRef] [Green Version]
- Guirakhoo, F.; Zhang, Z.; Myers, G.; Johnson, B.W.; Pugachev, K.; Nichols, R.; Brown, N. A single amino acid substitution in the envelope protein of chimeric yellow fever-dengue 1 vaccine virus reduces neurovirulence for suckling mice and viremia/viscerotropism for monkeys. J. Virol. 2004, 78, 9998–19998. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Arroyo, J.; Levenbook, I.; Zhang, Z.; Catalan, J.; Draper, K.; Guirakhoo, F. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: Relevance to development and safety testing of live, attenuated vaccines. J. Virol. 2002, 76, 1932–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. (2022, June). Yellow Fever Virus. Available online: https://www.cdc.gov/yellowfever/index.html (accessed on 21 June 2022).
- Diaz-Munoz, S.L. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 2017, 3, vex011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Barua, S.; Riyesh, T.; Chaubey, K.K.; Rawat, K.D.; Khandelwal, N.; Mishra, A.K.; Sharma, N.; Chandel, S.S.; Sharma, S.; et al. Complexities in Isolation and Purification of Multiple Viruses from Mixed viral Infections: Viral Interference, Persistence and Exclusion. PLoS ONE 2016, 11, e0156110. [Google Scholar] [CrossRef] [Green Version]
- Salas-Benito, J.; Nova-Ocampo, M. Viral Interference and Persistence in Mosquito-Borne Flaviviruses. J. Immunol Res. 2015, 2015, 873404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanneganti, T.D. Intracellular innate immune receptors: Life inside the cell. Immunol. Rev. 2020, 297, 5–12. [Google Scholar] [CrossRef]
- Sharma, S.; Thomas, P. The two faces of heterologous immunity: Protection or immunopathology. J. Leukoc. Biol. 2014, 95, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Barua, S.; Denes, A.; Ibrahim, M.A. A seasonal model to assess intervention strategies for preventing periodic recurrence of Lassa fever. Heliyon 2021, 7, e07760. [Google Scholar] [CrossRef]
- World Health Organization. Managing Yellow Fever Epidemics; Geneva (WHO/WHE/IHM/201911) License: CC BY-NC-SA 30 IGO; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opara, N.U.; Nwagbara, U.I.; Hlongwana, K.W. The COVID-19 Impact on the Trends in Yellow Fever and Lassa Fever Infections in Nigeria. Infect. Dis. Rep. 2022, 14, 932-941. https://doi.org/10.3390/idr14060091
Opara NU, Nwagbara UI, Hlongwana KW. The COVID-19 Impact on the Trends in Yellow Fever and Lassa Fever Infections in Nigeria. Infectious Disease Reports. 2022; 14(6):932-941. https://doi.org/10.3390/idr14060091
Chicago/Turabian StyleOpara, Nnennaya U., Ugochinyere I. Nwagbara, and Khumbulani W. Hlongwana. 2022. "The COVID-19 Impact on the Trends in Yellow Fever and Lassa Fever Infections in Nigeria" Infectious Disease Reports 14, no. 6: 932-941. https://doi.org/10.3390/idr14060091