Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = Magnetorheological (MR) Fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2612 KB  
Article
Miniature Magnetorheological Fluid Device Using Cylindrical Rotor for Handheld Haptic Interface
by Asahi Higashiguchi, Isao Abe and Takehito Kikuchi
Actuators 2026, 15(2), 101; https://doi.org/10.3390/act15020101 - 4 Feb 2026
Abstract
Magnetorheological (MR) fluids are composite materials composed of ferromagnetic particles, medium oils, and several types of additives. MR fluids are particularly suitable for haptic applications, because their rheological properties can be rapidly, stably, and reversibly controlled using an applied magnetic field, MR fluids [...] Read more.
Magnetorheological (MR) fluids are composite materials composed of ferromagnetic particles, medium oils, and several types of additives. MR fluids are particularly suitable for haptic applications, because their rheological properties can be rapidly, stably, and reversibly controlled using an applied magnetic field, MR fluids are particularly suitable for haptic applications. Moreover, with recent advances in virtual reality technologies, handheld haptic interfaces that offer high portability and operability, owing to their lightweight and compact design, have become increasingly important for enhancing immersion in teleoperation systems. In this study, we design and develop a miniature MR fluid device for handheld haptic interfaces using a cylindrical rotor. The proposed device is compact and light, and exhibits a high output. We analyzed the magnetic field distribution inside the device using an analytical model and confirmed that the serpentine magnetic flux path effectively increased the magnetic flux density in the MR fluid working region. According to the experimental characterization, the device generated a maximum torque of 0.3 Nm. The resulting interface had a total mass of 122 g and provided a maximum force of 4.5 N to the user, demonstrating its suitability for teleoperation and virtual reality applications. Full article
29 pages, 3377 KB  
Review
Application of Magnetorheological Damper in Aircraft Landing Gear: A Systematic Review
by Quoc-Viet Luong
Machines 2026, 14(1), 106; https://doi.org/10.3390/machines14010106 - 16 Jan 2026
Viewed by 233
Abstract
During takeoff and landing, aircraft operate in a variety of situations, posing significant challenges to landing gear systems. Passive hydraulic–pneumatic dampers are commonly used in conventional landing gear to absorb impact energy and reduce vibration. However, due to their fixed damping characteristics and [...] Read more.
During takeoff and landing, aircraft operate in a variety of situations, posing significant challenges to landing gear systems. Passive hydraulic–pneumatic dampers are commonly used in conventional landing gear to absorb impact energy and reduce vibration. However, due to their fixed damping characteristics and inability to adjust to changing operating conditions, these passive systems have several limitations. Recent research has focused on creating intelligent landing gear systems with magnetic dampers (MR) to overcome these limitations. By changing the magnetic field acting on the MR fluid, MR dampers provide semi-active control of the landing gear dynamics and adjust the damping force in real time. This flexibility reduces structural load during landing, increases riding comfort, and improves energy absorption efficiency. This study examines the current state of MR damper application for aircraft landing gear. The review categorizes current control techniques and highlights the structural integration of MR dampers in landing gear assemblies. Purpose: The magnetorheological (MR) damper has become a promising semiactive system to replace the conventional passive damper in aircraft landing gear. However, the mechanical structure and control strategy of the MR damper must be designed to be suitable for aircraft landing gear applications. Methods: Researchers have explored the potential structure designed, the mathematical model of the MR landing gear system, and the control algorithm that was developed for aircraft landing gear applications. Results: According to the mathematical model of the MR damper, three types of models, which are pseudo-static models, parametric models, and unparameterized models, are detailed with their application. Based on these mathematical models, many control algorithms were studied, from classical control, such as PID and skyhook control, to modern control, such as intelligent control and SMC control. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

27 pages, 4784 KB  
Article
Magnetohydrodynamics Simulation Analysis and Optimization of a Three-Coil Magnetorheological Damper Based on a Multiphysics Coupling Model
by Hui Yang, Ming Lei, Yefeng Qin, Tao He and Yang Xia
Appl. Sci. 2026, 16(2), 602; https://doi.org/10.3390/app16020602 - 7 Jan 2026
Viewed by 229
Abstract
A magnetorheological (MR) damper is an intelligent semi-active control device characterized by its output damping force and adjustable coefficient that vary in response to changes in the internal magnetic field. This study proposes a multiphysics coupling model that takes into account the electromotive [...] Read more.
A magnetorheological (MR) damper is an intelligent semi-active control device characterized by its output damping force and adjustable coefficient that vary in response to changes in the internal magnetic field. This study proposes a multiphysics coupling model that takes into account the electromotive force within the magnetorheological fluid, which is related to both the magnetic field intensity and shear stress. The Bingham–Papanastasiou constitutive model was employed to accurately represent the dynamic performance during the simulation of magnetorheological dampers, thereby overcoming its discontinuity. The investigation delves into the unique responses elicited by single-coil and three-coil configurations under identical excitation conditions. Through theoretical and magnetohydrodynamic analyses, the nonlinear rheological behavior of the MR fluid is elucidated. The study also scrutinizes the effects of various internal structural parameters on the mechanical characteristics of the MR damper using the results of simulations. An assessment of parameter sensitivity on the damper’s output was carried out, and the response surface methodology was subsequently utilized to derive a surrogate model expression. Ultimately, an optimized design was obtained, achieving a balance between output damping force and adjustable coefficient. This method lays the groundwork for the mathematical modeling and simulation analysis of multi-coil magnetorheological dampers. Full article
(This article belongs to the Special Issue Advances in Dynamics and Vibrations Analysis in Turbomachinery)
Show Figures

Figure 1

16 pages, 3563 KB  
Article
Development and Performance Validation of a Magnetorheological Damper for Passenger Cars Featuring Ball Screw and MR Brake
by Hieu Minh Diep, Zy-Zy Hai Le, Tri Bao Diep and Quoc Hung Nguyen
Actuators 2026, 15(1), 17; https://doi.org/10.3390/act15010017 - 31 Dec 2025
Viewed by 345
Abstract
This paper introduces a novel Magnetorheological (MR) damper integrated with a ball-screw mechanism (SMRB damper) that is designed to unify translational and rotational motions for enhanced automotive suspension performance. While shear-mode rotary MR dampers offer excellent responsiveness and stability, prior designs face persistent [...] Read more.
This paper introduces a novel Magnetorheological (MR) damper integrated with a ball-screw mechanism (SMRB damper) that is designed to unify translational and rotational motions for enhanced automotive suspension performance. While shear-mode rotary MR dampers offer excellent responsiveness and stability, prior designs face persistent issues such as high off-state torque, structural complexity, or limited damping force. The proposed damper aims to overcome these limitations. Its design and operating principle are presented, followed by the development of a mathematical model based on the Bingham-plastic formulation and finite element analysis. To maximize damping capability, the key structural parameters are optimized using an Adaptive Particle Swarm Optimization (APSO) algorithm. Finally, a prototype is fabricated based on the optimized results, and experimental tests validate its performance against simulation predictions, demonstrating its improved potential for vibration control applications. Full article
Show Figures

Figure 1

19 pages, 5964 KB  
Article
An Innovative Master Haptic Interface Employing Magnetorheological Fluids for Endovascular Catheterization
by Linshuai Zhang, Siyu Huang, Jinshan Zuo, Shuoxin Gu, Lin Xu, Yujie Zhang and Tao Jiang
Sensors 2025, 25(24), 7450; https://doi.org/10.3390/s25247450 - 7 Dec 2025
Viewed by 491
Abstract
Inadequate force feedback and collision warnings in teleoperated surgical instruments elevate risks during intravascular cannulation. This study introduces an innovative master haptic interface that utilizes magnetorheological (MR) fluid to enhance surgeons’ operational perception during robot-assisted intervention surgery. The system delivers real-time haptic feedback [...] Read more.
Inadequate force feedback and collision warnings in teleoperated surgical instruments elevate risks during intravascular cannulation. This study introduces an innovative master haptic interface that utilizes magnetorheological (MR) fluid to enhance surgeons’ operational perception during robot-assisted intervention surgery. The system delivers real-time haptic feedback to enhance surgical operational safety and automatically amplifies the feedback force when the contact force on the slave side surpasses the predefined threshold, enabling timely collision alerts. A series of preliminary experiments has been carried out to validate the efficacy of this particular type of haptic interface. The experimental results clearly indicate that the master haptic interface based on MR fluid and carefully designed can effectively enhance the operator’s haptic perception and provide collision alarms in a timely manner with haptic clues, improving the safety and operability of robot intravascular intervention. This research provides some insights into the functional improvements of safe and reliable robot-assisted catheter systems. Full article
Show Figures

Graphical abstract

23 pages, 5813 KB  
Article
Design and Performance Study on an Annular Magnetorheological Damper for Propeller Shafting
by Wencai Zhu, Yangfan Hu, Guoliang Hu and Ming Xu
Modelling 2025, 6(4), 147; https://doi.org/10.3390/modelling6040147 - 13 Nov 2025
Viewed by 555
Abstract
This paper addresses the issue that traditional magnetorheological (MR) dampers have limited improvements in magnetic field utilization and damping channel length in confined spaces. It proposes an annular MR damper with an annular cylinder for propeller shafting. The piston head forms damping gaps [...] Read more.
This paper addresses the issue that traditional magnetorheological (MR) dampers have limited improvements in magnetic field utilization and damping channel length in confined spaces. It proposes an annular MR damper with an annular cylinder for propeller shafting. The piston head forms damping gaps with the cylinder’s inner and outer walls. This doubles the damping channel length without increasing axial size. The paper explains its working principle, completes the magnetic circuit design and damping force modeling, and utilizes COMSOL 5.6 Multiphysics to construct a magneto-fluid coupling model for analysis. Results show that, under 10 mm amplitude, 1 Hz sinusoidal excitation, and 2.0 A current, the damper outputs a damping force of 67.65 kN, with a damping adjustable coefficient of 10.87. Its force-displacement curve has a full hysteresis loop, showing excellent energy dissipation. The study proves the annular structure boosts the damper’s performance, offering a new way to achieve high damping force and a wide dynamic range in a compact space. Full article
Show Figures

Figure 1

16 pages, 4547 KB  
Article
Semi-Active Vibration Controllers for Magnetorheological Fluid-Based Systems via Frequency Shaping
by Young T. Choi, Norman M. Wereley and Gregory J. Hiemenz
Actuators 2025, 14(9), 425; https://doi.org/10.3390/act14090425 - 30 Aug 2025
Viewed by 1024
Abstract
This study introduces novel semi-active vibration controllers for magnetorheological (MR) fluid-based vibration control systems, specifically a band-pass frequency-shaped semi-active control (FSSC) and a narrow-band FSSC. These algorithms are designed without requiring an accurate damper model or system identification for control current input. Unlike [...] Read more.
This study introduces novel semi-active vibration controllers for magnetorheological (MR) fluid-based vibration control systems, specifically a band-pass frequency-shaped semi-active control (FSSC) and a narrow-band FSSC. These algorithms are designed without requiring an accurate damper model or system identification for control current input. Unlike active controllers, the FSSC algorithms treat the MR damper as a semi-active dissipative device, and their control signal is a control current, not a control force. The performance of both FSSC algorithms is evaluated through simulation using a single-degree-of-freedom (SDOF) MR fluid-based engine mount system. A comparative analysis with the classical semi-active skyhook control demonstrates the advantages of the proposed FSSC algorithms. Full article
Show Figures

Figure 1

37 pages, 3791 KB  
Review
The Advancing Understanding of Magnetorheological Fluids and Elastomers: A Comparative Review Analyzing Mechanical and Viscoelastic Properties
by Salah Rouabah, Fadila-Yasmina Didouche, Abdelmalek Khebli, Salah Aguib and Noureddine Chikh
Magnetochemistry 2025, 11(8), 62; https://doi.org/10.3390/magnetochemistry11080062 - 24 Jul 2025
Cited by 2 | Viewed by 5883
Abstract
Magnetorheological fluids (MRFs) and elastomers (MREs) are two types of smart materials that exhibit modifiable rheological properties in response to an applied magnetic field. Although they share a similarity in their magnetorheological response, these two materials differ in their nature, structure, and mechanical [...] Read more.
Magnetorheological fluids (MRFs) and elastomers (MREs) are two types of smart materials that exhibit modifiable rheological properties in response to an applied magnetic field. Although they share a similarity in their magnetorheological response, these two materials differ in their nature, structure, and mechanical behavior when exposed to a magnetic field. They also have distinct application differences due to their specific rheological properties. These fundamental differences therefore influence their properties and applications in various industrial fields. This review provides a synthesis of the distinct characteristics of MRFs and MREs. The differences in their composition, rheological behavior, mechanical properties, and respective applications are summarized and highlighted. This analysis will enable a comprehensive understanding of these differences, thereby allowing for the appropriate selection of the material based on the specific requirements of a given application and fostering the development of new applications utilizing these MR materials. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

62 pages, 4192 KB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Cited by 1 | Viewed by 1934
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 3610 KB  
Article
Semi-Active Vibration Control for High-Speed Elevator Using Magnetorheological Damper
by Marcos Gonçalves, Maria E. K. Fuziki, Jose M. Balthazar, Giane G. Lenzi and Angelo M. Tusset
Magnetism 2025, 5(2), 13; https://doi.org/10.3390/magnetism5020013 - 8 Jun 2025
Viewed by 2032
Abstract
This paper presents the results of investigating the application of magnetorheological fluids in controlling the lateral and angular vibrations of a high-speed elevator. Numerical simulations are performed for a mathematical model with two degrees of freedom. The lateral and rotational accelerations are analyzed [...] Read more.
This paper presents the results of investigating the application of magnetorheological fluids in controlling the lateral and angular vibrations of a high-speed elevator. Numerical simulations are performed for a mathematical model with two degrees of freedom. The lateral and rotational accelerations are analyzed for different travel speeds to determine passenger comfort levels. To attenuate the elevator vibrations, the introduction of a magnetorheological damper in parallel with the passive damper of the elevator rollers is considered. To semi-actively control the dissipative forces of the magnetorheological fluids, a State-Dependent Riccati Equation (SDRE control) is proposed. The numerical results demonstrate that using an MR damper makes it possible to reduce the acceleration levels of the elevator cabin, thus improving passenger comfort and reducing the elevator’s vibration levels and wear on the mechanical and electronic components of the elevator. In addition to the results, a detailed sensitivity analysis is presented. Full article
Show Figures

Figure 1

12 pages, 3776 KB  
Article
Design and Test of a Magnetorheological Damper of a Multi-Layered Permanent Magnet
by Fang Chen, Qinkui Guo, Yuchen Liu, Yuan Dong, Yangjie Xiao, Ningqiang Zhang and Wangxu Li
Actuators 2025, 14(6), 271; https://doi.org/10.3390/act14060271 - 29 May 2025
Viewed by 2066
Abstract
To effectively suppress spindle vibrations in rotating machinery, magnetorheological (MR) dampers, as an ideal vibration control device, have attracted attention. To enhance the vibration damping effect, in the paper, a MR damper vibration with a multi-layered permanent magnet as the magnetic source is [...] Read more.
To effectively suppress spindle vibrations in rotating machinery, magnetorheological (MR) dampers, as an ideal vibration control device, have attracted attention. To enhance the vibration damping effect, in the paper, a MR damper vibration with a multi-layered permanent magnet as the magnetic source is designed, and the self-made magnetorheological fluid is used as the damping medium. The mechanical properties of the MR damper were obtained through testing and calculation. On this base, both simulation and experimental methods are used to demonstrate the effectiveness of the multi-layered permanent-magnet MR damper. The simulation results show that the critical speed increases greatly for the first four modes. The experimental results show that the Y-direction displacement decreases greatly, especially at 1800 rpm and at 3400 rpm, after applying the MR damper. The vibration displacement at 1× frequency shows a 69.74% reduction at 2600 rpm and a 65.69% reduction at 3200 rpm in the Y-direction after applying the MR damper. The effectiveness of the multi-layered permanent magnet MR damper in rotor vibration suppression was confirmed. Full article
Show Figures

Figure 1

22 pages, 1849 KB  
Article
Investigating Film Thickness and Friction of an MR-Lubricated Journal Bearing
by Gerben van der Meer and Ron van Ostayen
Lubricants 2025, 13(4), 171; https://doi.org/10.3390/lubricants13040171 - 8 Apr 2025
Cited by 3 | Viewed by 1580
Abstract
Magnetorheological (MR) fluids are frequently reported to have potential as lubricants for hydrodynamic bearings operating at high loads, but no comprehensive effort has been made to investigate their performance under a variety of operating conditions. This paper, therefore, presents an extensive experimental and [...] Read more.
Magnetorheological (MR) fluids are frequently reported to have potential as lubricants for hydrodynamic bearings operating at high loads, but no comprehensive effort has been made to investigate their performance under a variety of operating conditions. This paper, therefore, presents an extensive experimental and numerical investigation of an MR-lubricated hydrodynamic journal bearing subjected to different loads and magnetic fields, and compares these results to those of an oil-lubricated bearing. It is shown that by increasing the magnetic field strength, the performance characteristics of the bearing can be changed from low hydrodynamic friction and a high transition speed to high hydrodynamic friction and a low transition speed. Furthermore, it was found that the way in which these characteristics scale with increasing load differs for the MR- and oil-lubricated bearings. With MR lubrication, the relative change in characteristics with the application of a magnetic field is smaller at higher loads, due to the strong shear-thinning rheology of MR fluids. To include these effects in the model, a basic relation for the apparent MR viscosity as a function of shear rate, temperature, and magnetic field strength is introduced. Finally, the bearing was made from a polymer to improve wear resistance under MR lubrication, but a comparison with a Reynolds equation-based numerical model indicates possible performance degradation due to shape errors, which is a known issue with this bearing material. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

20 pages, 5841 KB  
Article
Semi-Active Vibration Control of Water-Conveying Pipeline Based on Magnetorheological Damper
by Sen Pang, Xuesong Zhang, Zihang Jiang, Haixu Yang, Shengming Zhou and Qiang Zhao
Processes 2025, 13(2), 571; https://doi.org/10.3390/pr13020571 - 18 Feb 2025
Cited by 3 | Viewed by 1454
Abstract
In order to mitigate the vibration caused by fluid–structure interaction in water-conveying pipelines, a semi-active control method based on a magnetorheological (MR) damper is proposed. First, the partial differential equation governing the pipeline micro-element, which is simply supported at both ends, is formulated. [...] Read more.
In order to mitigate the vibration caused by fluid–structure interaction in water-conveying pipelines, a semi-active control method based on a magnetorheological (MR) damper is proposed. First, the partial differential equation governing the pipeline micro-element, which is simply supported at both ends, is formulated. This equation is then transformed into state-space expressions through non-dimensionalization and the Galerkin method. Based on passive dissipative control theory, a semi-active control law ensuring Lyapunov global asymptotic stability is derived based on the relative motion between the dynamic vibration-absorbing mass and the pipeline. Next, an on–off control algorithm is designed for the MR damper. The results of simulation and hardware-in-loop experiments demonstrate that the semi-active control law can significantly reduce the vibration of the pipeline system. The contribution of this research is to propose a new MR tuned mass damper (MR-TMD) to suppress vibration in water-conveying pipelines. The proposed MR-TMD scheme and its control method provide a theoretical basis and practical reference for the engineering application of semi-active vibration control in water-conveying pipelines. Full article
(This article belongs to the Special Issue Advances in the Control of Complex Dynamic Systems)
Show Figures

Figure 1

19 pages, 12297 KB  
Article
Multipole Multi-Layered Magnetorheological Brake with Intermediate Slots
by Yaojung Shiao and Mahendra Babu Kantipudi
Appl. Sci. 2024, 14(24), 11763; https://doi.org/10.3390/app142411763 - 17 Dec 2024
Cited by 1 | Viewed by 1525
Abstract
Magnetorheological (MR) brakes are flourishing in low-torque applications due to their dynamic controllability nature. Researchers have introduced multi-layer and multipole concepts to increase the torque–volume ratio (TVR) of the MR brake. However, the combination of these two ideas did not exist due to [...] Read more.
Magnetorheological (MR) brakes are flourishing in low-torque applications due to their dynamic controllability nature. Researchers have introduced multi-layer and multipole concepts to increase the torque–volume ratio (TVR) of the MR brake. However, the combination of these two ideas did not exist due to the design limitations. Therefore, this study aims to design a brake that combines the multipole magnetic field and multi-layered structure concepts. The axial slots were introduced on the brake rotor and the stator drum axial surfaces to achieve a high TVR. These slots stop the flux bypass in the inner layers; therefore, the magnetic flux can also reach the brake’s outer layers. This brake was designed with multiple stator and rotor drums and MR fluid layers. The number of poles was placed so that the magnetic field from these poles traveled in a closed loop via the stator, rotor, and MR layers. A 3D model of the brake was prepared for the virtual study. Electromagnetic simulations were conducted to analyze the effect of axial slots’ and other design parameters of the brake. According to those simulation results, the axial slots’ width and position significantly affect the brake output torque. The maximum torque obtained from the brake is 38 Nm, and the TVR value of the brake is 41 Nm/dm3. Additionally, multiphysics simulations were performed to understand the Joule-heating effect of the magnetic coil and the frictional heating in MR fluid. Results showed that the maximum possible temperature in the brake is under the MR fluid temperature limits. Therefore, this multipole multi-layered (MPML) MR brake with axial slots idea is very useful for high-torque MR brake growth. Full article
Show Figures

Figure 1

28 pages, 30126 KB  
Article
Numerical Analysis of the Vehicle Damping Performance of a Magnetorheological Damper with an Additional Flow Energy Path
by Minje Kim, Seungin Yoo, Dongjin Yoon, Chanyoung Jin, Seongjae Won and Jinwook Lee
Appl. Sci. 2024, 14(22), 10575; https://doi.org/10.3390/app142210575 - 16 Nov 2024
Cited by 6 | Viewed by 2493
Abstract
Vehicles experience various frequency excitations from road surfaces. Recent research has focused on active dampers that adapt their damping forces according to these conditions. However, traditional magnetorheological (MR) dampers face a “block-up phenomenon” that limits their effectiveness. To address this, additional flow-type MR [...] Read more.
Vehicles experience various frequency excitations from road surfaces. Recent research has focused on active dampers that adapt their damping forces according to these conditions. However, traditional magnetorheological (MR) dampers face a “block-up phenomenon” that limits their effectiveness. To address this, additional flow-type MR dampers have been proposed, although revised designs are required to accommodate changes in damping force characteristics. This study investigates the damping performance of MR dampers with an additional flow path to enhance the vehicle ride quality. An optimization model was developed based on fluid dynamics equations and analyzed using electromagnetic simulations in ANSYS Maxwell software. Vibration analysis was conducted using AMESim by applying a sinusoidal road surface model with various frequencies. Results show that the optimized diameter of the additional flow path obtained from the analysis was 1.1 mm, and it was shown that the total damping force variation at low piston velocities decreased by approximately 56% compared to conventional MR dampers. Additionally, vibration analysis of the MR damper with the optimized additional flow path diameter revealed that at 30 km/h, 37.9% acceleration control was achievable, at 60 km/h, 18.7%, and at 90 km/h, 7.73%. This demonstrated the resolution of the block-up phenomenon through the additional flow path and confirmed that the vehicle with the applied damper could control a wider range of vehicle upper displacement, velocity, and acceleration compared to conventional vehicles. Full article
Show Figures

Figure 1

Back to TopTop