Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = Magnetic Induction Tomography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12348 KiB  
Article
Copper(II)-Complexed Polyethylenimine-Entrapped Gold Nanoparticles Enable Targeted CT/MR Imaging and Chemodynamic Therapy of Tumors
by Lingxiu He, Na Liu, Risong Pan and Jingyi Zhu
Polymers 2025, 17(3), 423; https://doi.org/10.3390/polym17030423 - 6 Feb 2025
Cited by 1 | Viewed by 921
Abstract
Transition-metal ion copper(II) (Cu(II)) has drawn increasing attention as a small-molecular cancer theranostic agent. However, delivering a sufficient dosage of Cu(II) to the tumor site and integrating multiple imaging modalities to achieve precise and effective cancer theranostics remains a critical challenge. Herein, an [...] Read more.
Transition-metal ion copper(II) (Cu(II)) has drawn increasing attention as a small-molecular cancer theranostic agent. However, delivering a sufficient dosage of Cu(II) to the tumor site and integrating multiple imaging modalities to achieve precise and effective cancer theranostics remains a critical challenge. Herein, an emerging Cu(II)-based nanocomposite has been synthesized for targeted tumor computed tomography (CT)/magnetic resonance (MR) dual-mode imaging and chemodynamic therapy (CDT). Briefly, 2-picolinic acid (PA-COOH), polyethylene glycol (PEG)-linked folic acid (FA), and fluorescein isothiocyanate (FI) were sequentially conjugated with polyethylenimine (PEI.NH2) and then in situ fabrication of gold nanoparticles (Au NPs) occurred within the PEI.NH2 internal cavity. After acetylation of PEI.NH2 terminal amines and Cu(II) complexation, the Cu(II)-based nanocomposites FA-Au/Cu(II) PENPs with a mean diameter of 2.87 nm were generated. The synthesized FA-Au/Cu(II) PENPs showed favorable stability of colloidal dispersion, sustainable Cu(II) release properties in a pH-dependent manner, and Fenton-like catalytic activity specifically. With the FA-mediated targeting pathway, FA-Au/Cu(II) PENPs can specifically accumulate in cancer cells with high expression of FA receptors. Meanwhile, the complementary CT/MR dual-mode imaging in vitro and in vivo can be afforded by FA-Au/Cu(II) PENPs based on the excellent X-ray attenuation properties of Au NPs and the applicable r1 relaxivity (0.7378 mM−1s−1) of Cu(II). Notably, the Cu(II)-mediated CDT mechanism enables FA-Au/Cu(II) PENPs to elicit the generation of toxic hydroxyl radicals (·OH), depletion of glutathione (GSH), promotion of lipid peroxidation (LPO), and induction of cancer cell apoptosis in vitro, and further demonstrates remarkable anti-tumor efficacy in a xenograft tumor model. With the illustrated targeted theranostic capacity of FA-Au/Cu(II) PENPs towards tumors, this Cu(II)-based nanocomposite paradigm inspires the construction of advanced theranostic nanoplatforms incorporating alternative transition metal ions. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Medical Applications)
Show Figures

Figure 1

14 pages, 652 KiB  
Article
Performance of a Radio-Frequency Two-Photon Atomic Magnetometer in Different Magnetic Induction Measurement Geometries
by Lucas Martin Rushton, Laura Mae Ellis, Jake David Zipfel, Patrick Bevington and Witold Chalupczak
Sensors 2024, 24(20), 6657; https://doi.org/10.3390/s24206657 - 16 Oct 2024
Viewed by 1283
Abstract
Measurements monitoring the inductive coupling between oscillating radio-frequency magnetic fields and objects of interest create versatile platforms for non-destructive testing. The benefits of ultra-low-frequency measurements, i.e., below 3 kHz, are sometimes outweighed by the fundamental and technical difficulties related to operating pick-up coils [...] Read more.
Measurements monitoring the inductive coupling between oscillating radio-frequency magnetic fields and objects of interest create versatile platforms for non-destructive testing. The benefits of ultra-low-frequency measurements, i.e., below 3 kHz, are sometimes outweighed by the fundamental and technical difficulties related to operating pick-up coils or other field sensors in this frequency range. Inductive measurements with the detection based on a two-photon interaction in rf atomic magnetometers address some of these issues as the sensor gains an uplift in its operational frequency. The developments reported here integrate the fundamental and applied aspects of the two-photon process in magnetic induction measurements. In this paper, all the spectral components of the two-photon process are identified, which result from the non-linear interactions between the rf fields and atoms. For the first time, a method for the retrieval of the two-photon phase information, which is critical for inductive measurements, is also demonstrated. Furthermore, a self-compensation configuration is introduced, whereby high-contrast measurements of defects can be obtained due to its insensitivity to the primary field, including using simplified instrumentation for this configuration by producing two rf fields with a single rf coil. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

26 pages, 29595 KiB  
Article
Induction Heating of Laminated Composite Structures with Magnetically Responsive Nanocomposite Interlayers for Debonding-on-Demand Applications
by Eleni Gkartzou, Konstantinos Zafeiris, Christos Tsirogiannis, Alberto Pedreira, Adrián Rodríguez, Pablo Romero-Rodriguez, Giorgos P. Gakis, Tatjana Kosanovic-Milickovic, Apostolos Kyritsis and Costas A. Charitidis
Polymers 2024, 16(19), 2760; https://doi.org/10.3390/polym16192760 - 30 Sep 2024
Cited by 3 | Viewed by 2167
Abstract
In the present study, the feasibility to achieve localized induction heating and debonding of multi-material composite structures is assessed in testing coupons prepared by Automated Fiber Placement (AFP) and extrusion-based additive manufacturing (AM) technologies. Nano-compounds of Polyether-ketone-ketone (PEKK) with iron oxide nanoparticles acting [...] Read more.
In the present study, the feasibility to achieve localized induction heating and debonding of multi-material composite structures is assessed in testing coupons prepared by Automated Fiber Placement (AFP) and extrusion-based additive manufacturing (AM) technologies. Nano-compounds of Polyether-ketone-ketone (PEKK) with iron oxide nanoparticles acting as electromagnetic susceptors have been processed in a parallel co-rotating twin-screw extruder to produce filament feedstock for extrusion-based AM. The integration of nanocomposite interlayers as discrete debonding zones (DZ) by AFP-AM manufacturing has been investigated for two types of sandwich-structured laminate composites, i.e., laminate-DZ-laminate panels (Type I) and laminate-DZ-AM gyroid structures (Type II). Specimens were exposed to an alternating magnetic field generated by a radio frequency generator and a flat spiral copper induction coil, and induction heating parameters (frequency, power, heating time, sample standoff distance from coil) have been investigated in correlation with real-time thermal imaging to define the debonding process window without compromising laminate quality. For the optimized process parameters, i.e., 2–3 kW generator power and 20–25 mm standoff distance, corresponding to magnetic field intensities in the range of 3–5 kA m−1, specimens were effectively heated above PEKK melting temperature, exhibiting high heating rates within the range of 5.3–9.4 °C/s (Type I) and 8.0–17.5 °C/s (Type II). The results demonstrated that localized induction heating successfully facilitated debonding, leading to full unzipping of the debonding zones in both laminate structures. Further insight on PEKK nanocomposites debonding performance was provided by thermal, morphological characterization and non-destructive inspection via X-ray micro-computed tomography at different processing stages. The developed framework aims to contribute to the development of rapid, on-demand joining, repair and disassembly technologies for thermoplastic composites, towards more efficient maintenance, repair and overhaul operations in the aviation sector and beyond. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 3727 KiB  
Article
Two-Field Excitation for Contactless Inductive Flow Tomography
by Max Sieger, Katharina Gudat, Rahul Mitra, Stefanie Sonntag, Frank Stefani, Sven Eckert and Thomas Wondrak
Sensors 2024, 24(14), 4458; https://doi.org/10.3390/s24144458 - 10 Jul 2024
Cited by 2 | Viewed by 1177
Abstract
Contactless inductive flow tomography (CIFT) is a flow measurement technique allowing for visualization of the global flow in electrically conducting fluids. The method is based on the principle of induction by motion: very weak induced magnetic fields arise from the fluid motion under [...] Read more.
Contactless inductive flow tomography (CIFT) is a flow measurement technique allowing for visualization of the global flow in electrically conducting fluids. The method is based on the principle of induction by motion: very weak induced magnetic fields arise from the fluid motion under the influence of a primary excitation magnetic field and can be measured precisely outside of the fluid volume. The structure of the causative flow field can be reconstructed from the induced magnetic field values by solving the according linear inverse problem using appropriate regularization methods. The concurrent use of more than one excitation magnetic field is necessary to fully reconstruct three-dimensional liquid metal flows. In our laboratory demonstrator experiment, we impose two excitation magnetic fields perpendicular to each other to a mechanically driven flow of the liquid metal alloy GaInSn. In the first approach, the excitation fields are multiplexed. Here, the temporal resolution of the measurement needs to be kept as high as possible. Consecutive application by multiplexing enables determining the flow structure in the liquid with a temporal resolution down to 3 s with the existing equipment. In another approach, we concurrently apply two sinusoidal excitation fields with different frequencies. The signals are disentangled on the basis of the lock-in principle, enabling a successful reconstruction of the liquid metal flow. Full article
(This article belongs to the Special Issue Tomographic and Multi-Dimensional Sensors)
Show Figures

Figure 1

16 pages, 10966 KiB  
Article
Biplane Enhancement Coil for Magnetic Induction Tomography of Cerebral Hemorrhage
by Zhongkai Cao, Bo Ye, Honggui Cao, Yangkun Zou, Zhizhen Zhu and Hongbin Xing
Biosensors 2024, 14(5), 217; https://doi.org/10.3390/bios14050217 - 26 Apr 2024
Cited by 1 | Viewed by 1837
Abstract
Magnetic Induction Tomography (MIT) is a non-invasive imaging technique used for dynamic monitoring and early screening of cerebral hemorrhage. Currently, there is a significant challenge in cerebral hemorrhage MIT due to weak detection signals, which seriously affects the accuracy of the detection results. [...] Read more.
Magnetic Induction Tomography (MIT) is a non-invasive imaging technique used for dynamic monitoring and early screening of cerebral hemorrhage. Currently, there is a significant challenge in cerebral hemorrhage MIT due to weak detection signals, which seriously affects the accuracy of the detection results. To address this issue, a dual-plane enhanced coil was proposed by combining the target field method with consideration of the spatial magnetic field attenuation pattern within the imaging target region. Simulated detection models were constructed using the proposed coil and cylindrical coil as excitation coils, respectively, and simulation imaging tests were conducted using the detection results. The simulation results indicate that compared to the cylindrical coil, the proposed coil enhances the linearity of the magnetic field within the imaging target region by 60.43%. Additionally, it effectively enhances the detection voltage and phase values. The simulation results of hemorrhage detection show that the proposed coil improves the accuracy of hemorrhage detection by 18.26%. It provides more precise detection results, offering a more reliable solution for cerebral hemorrhage localization and detection. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

20 pages, 2695 KiB  
Article
Image Reconstruction Requirements for Short-Range Inductive Sensors Used in Single-Coil MIT
by Joe R. Feldkamp
Sensors 2024, 24(9), 2704; https://doi.org/10.3390/s24092704 - 24 Apr 2024
Viewed by 1081
Abstract
MIT (magnetic induction tomography) image reconstruction from data acquired with a single, small inductive sensor has unique requirements not found in other imaging modalities. During the course of scanning over a target, measured inductive loss decreases rapidly with distance from the target boundary. [...] Read more.
MIT (magnetic induction tomography) image reconstruction from data acquired with a single, small inductive sensor has unique requirements not found in other imaging modalities. During the course of scanning over a target, measured inductive loss decreases rapidly with distance from the target boundary. Since inductive loss exists even at infinite separation due to losses internal to the sensor, all other measurements made in the vicinity of the target require subtraction of the infinite-separation loss. This is accomplished naturally by treating infinite-separation loss as an unknown. Furthermore, since contributions to inductive loss decline with greater depth into a conductive target, regularization penalties must be decreased with depth. A pair of squared L2 penalty norms are combined to form a 2-term Sobolev norm, including a zero-order penalty that penalizes solution departures from a default solution and a first-order penalty that promotes smoothness. While constraining the solution to be non-negative and bounded from above, the algorithm is used to perform image reconstruction on scan data obtained over a 4.3 cm thick phantom consisting of bone-like features embedded in agarose gel, with the latter having a nominal conductivity of 1.4 S/m. Full article
(This article belongs to the Collection 3D Imaging and Sensing System)
Show Figures

Figure 1

13 pages, 3248 KiB  
Review
Personalized Approach to Olfactory Neuroblastoma Care
by David K. Lerner and James N. Palmer
J. Pers. Med. 2024, 14(4), 423; https://doi.org/10.3390/jpm14040423 - 16 Apr 2024
Cited by 2 | Viewed by 3044
Abstract
Olfactory neuroblastoma (ONB) is an uncommon neuroendocrine malignancy arising from the olfactory neuroepithelium. ONB frequently presents with nonspecific sinonasal complaints, including nasal obstruction and epistaxis, and diagnosis can be obtained through a combination of physical examination, nasal endoscopy, and computed tomography and magnetic [...] Read more.
Olfactory neuroblastoma (ONB) is an uncommon neuroendocrine malignancy arising from the olfactory neuroepithelium. ONB frequently presents with nonspecific sinonasal complaints, including nasal obstruction and epistaxis, and diagnosis can be obtained through a combination of physical examination, nasal endoscopy, and computed tomography and magnetic resonance imaging. Endoscopic resection with negative margins, with or without craniotomy, as necessary, is the standard of care for definitive treatment of ONB. Regional metastasis to the neck is often detected at presentation or may occur in a delayed fashion and should be addressed through elective neck dissection or radiation. Adjuvant radiotherapy should be considered, particularly in the case of high grade or tumor stage, as well as positive surgical margins. Systemic therapy is an area of active investigation in both the neoadjuvant and adjuvant setting, with many advocating in favor of induction chemotherapy for significant orbital or intracranial involvement prior to surgical resection. Various targeted immunotherapies are currently being studied for the treatment of recurrent or metastatic ONB. Prolonged locoregional and distant surveillance are indicated following definitive treatment, given the tendency for delayed recurrence and metastasis. Full article
Show Figures

Figure 1

20 pages, 9014 KiB  
Article
Regenerative Effect of Mesenchymal Stem Cell on Cartilage Damage in a Porcine Model
by Sheng-Chuan Lin, Sankar Panthi, Yu-Her Hsuuw, Shih-Hsien Chen, Ming-Ju Huang, Martin Sieber and Yan-Der Hsuuw
Biomedicines 2023, 11(7), 1810; https://doi.org/10.3390/biomedicines11071810 - 24 Jun 2023
Cited by 5 | Viewed by 3698
Abstract
Osteoarthritis (OA) is a major public and animal health challenge with significant economic consequences. Cartilage degradation plays a critical role in the initiation and progression of degenerative joint diseases, such as OA. Mesenchymal stem cells (MSCs) have become increasingly popular in the field [...] Read more.
Osteoarthritis (OA) is a major public and animal health challenge with significant economic consequences. Cartilage degradation plays a critical role in the initiation and progression of degenerative joint diseases, such as OA. Mesenchymal stem cells (MSCs) have become increasingly popular in the field of cartilage regeneration due to their promising results. The objective of this preclinical study was to evaluate the regenerative effects of mesenchymal stem cells (MSCs) in the repair of knee cartilage defects using a porcine model. Seven healthy LYD breed white pigs, aged 9–10 weeks and weighing approximately 20 ± 3 kg, were used in the experimental protocol. Full-thickness defects measuring 8 mm in diameter and 5 mm in depth were induced in the lateral femoral condyle of the posterior limbs in both knee joints using a sterile puncture technique while the knee was maximally flexed. Following a 1-week induction phase, the pig treatment groups received a 0.3 million/kg MSC transplant into the damaged knee region, while the placebo group received a control solution as a treatment. Magnetic resonance imaging (MRI), computerized tomography (CT), visual macroscopic examination, histological analysis, and cytokine concentration analysis were used to assess cartilage regeneration. The findings revealed that human adipose-derived mesenchymal stem cells (hADSCs) were more effective in repairing cartilage than pig umbilical cord-derived mesenchymal stem cells (pUCMSCs). These results suggest that MSC-based treatments hold promise as a treatment option for cartilage repair, which aid in the treatment of OA. However, further studies with larger sample sizes and longer follow-up periods are required to fully demonstrate the safety and efficacy of these therapies in both animals and humans. Full article
(This article belongs to the Special Issue Mechanisms and Therapeutic Potential of Mesenchymal Stem Cells (MSCs))
Show Figures

Figure 1

16 pages, 2696 KiB  
Review
Magneto-Acoustic Imaging in Biology
by Bradley J. Roth
Appl. Sci. 2023, 13(6), 3877; https://doi.org/10.3390/app13063877 - 18 Mar 2023
Cited by 3 | Viewed by 3179
Abstract
This review examines the use of magneto-acoustic methods to measure electrical conductivity. It focuses on two techniques developed in the last two decades: Magneto-Acoustic Tomography with Magnetic Induction (MAT-MI) and Magneto-Acousto-Electrical Tomography (MAET). These developments have the potential to change the way medical [...] Read more.
This review examines the use of magneto-acoustic methods to measure electrical conductivity. It focuses on two techniques developed in the last two decades: Magneto-Acoustic Tomography with Magnetic Induction (MAT-MI) and Magneto-Acousto-Electrical Tomography (MAET). These developments have the potential to change the way medical doctors image biological tissue. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

20 pages, 5437 KiB  
Article
Magnetic Induction Tomography: Separation of the Ill-Posed and Non-Linear Inverse Problem into a Series of Isolated and Less Demanding Subproblems
by Tatiana Schledewitz, Martin Klein and Dirk Rueter
Sensors 2023, 23(3), 1059; https://doi.org/10.3390/s23031059 - 17 Jan 2023
Cited by 5 | Viewed by 2402
Abstract
Magnetic induction tomography (MIT) is based on remotely excited eddy currents inside a measurement object. The conductivity distribution shapes the eddies, and their secondary fields are detected and used to reconstruct the conductivities. While the forward problem from given conductivities to detected signals [...] Read more.
Magnetic induction tomography (MIT) is based on remotely excited eddy currents inside a measurement object. The conductivity distribution shapes the eddies, and their secondary fields are detected and used to reconstruct the conductivities. While the forward problem from given conductivities to detected signals can be unambiguously simulated, the inverse problem from received signals back to searched conductivities is a non-linear ill-posed problem that compromises MIT and results in rather blurry imaging. An MIT inversion is commonly applied over the entire process (i.e., localized conductivities are directly determined from specific signal features), but this involves considerable computation. The present more theoretical work treats the inverse problem as a non-retroactive series of four individual subproblems, each one less difficult by itself. The decoupled tasks yield better insights and control and promote more efficient computation. The overall problem is divided into an ill-posed but linear problem for reconstructing eddy currents from given signals and a nonlinear but benign problem for reconstructing conductivities from given eddies. The separated approach is unsuitable for common and circular MIT designs, as it merely fits the data structure of a recently presented and planar 3D MIT realization for large biomedical phantoms. For this MIT scanner, in discretization, the number of unknown and independent eddy current elements reflects the number of ultimately searched conductivities. For clarity and better representation, representative 2D bodies are used here and measured at the depth of the 3D scanner. The overall difficulty is not substantially smaller or different than for 3D bodies. In summary, the linear problem from signals to eddies dominates the overall MIT performance. Full article
Show Figures

Figure 1

19 pages, 5888 KiB  
Article
Electro-Magnetic Geophysical Dynamics under Conservation and Conventional Farming
by Alberto Carrera, Matteo Longo, Ilaria Piccoli, Benjamin Mary, Giorgio Cassiani and Francesco Morari
Remote Sens. 2022, 14(24), 6243; https://doi.org/10.3390/rs14246243 - 9 Dec 2022
Cited by 7 | Viewed by 2066
Abstract
In the context of global warming, agriculture faces severe challenges such as water scarcity and soil erosion. Key to achieving soil sustainability is the choice of farming practices, the consequences of which are generally site-specific. In this study, the ability of Electrical Resistivity [...] Read more.
In the context of global warming, agriculture faces severe challenges such as water scarcity and soil erosion. Key to achieving soil sustainability is the choice of farming practices, the consequences of which are generally site-specific. In this study, the ability of Electrical Resistivity Tomography (ERT) and Electro Magnetic Induction (EMI) methods were assessed for monitoring the effects of conventional (CONV) and conservation (CONS) agricultural practices. The aim is to highlight differences in soil water distribution caused by both short- and long-term effects of the two different practices. Results demonstrated that both ERT and EMI provided sufficient information to distinguish between the effects of CONV and CONS, while traditional direct measurements, being punctual techniques, lacked sufficient spatial resolution. The ERT transects showed that the soil was much more homogeneous as a result of CONS practices, resulting in a higher sensitivity to changes in the water content. Conversely, due to the heterogeneous soil structure under CONV, water distribution was more irregular and difficult to predict. Similar patterns were also observed with the EMI surveys, with a strong link to spatial variability. Finally, we conclude that for CONV soil, the accessible water for the plant is clearly controlled by the soil heterogeneities rather than by the forcing atmospheric conditions. This study is a first step towards paving the way for more refined hydrology models to identify which soil parameters are key to controlling spatial and temporal changes in soil water content. Full article
Show Figures

Figure 1

17 pages, 13655 KiB  
Article
Current State of the Gold Mining Waste from the Ores of the Ursk Deposit (Western Siberia, Russia)
by Nataliya Yurkevich, Polina Osipova, Leonid Tsibizov, Ekaterina Tsibizova, Irina Fadeeva, Sergey Volynkin, Kristina Tulisova and Tatyana Kuleshova
Appl. Sci. 2022, 12(20), 10610; https://doi.org/10.3390/app122010610 - 20 Oct 2022
Cited by 6 | Viewed by 2006
Abstract
The article presents the original results of the investigation of sulfide-bearing mine tailings dumps (Ursk, Western Siberia, Russia), the adjacent territory, and acid mine drainage flows. The novelty of this study is related to integration of geophysical and geochemical data. The geoelectrical structure [...] Read more.
The article presents the original results of the investigation of sulfide-bearing mine tailings dumps (Ursk, Western Siberia, Russia), the adjacent territory, and acid mine drainage flows. The novelty of this study is related to integration of geophysical and geochemical data. The geoelectrical structure of the dump and the drainage valley was determined using the electrical resistivity tomography (ERT) method. Magnetic anomalies above the surface of the site were identified using ground magnetic surveys. The orthophotomap and a digital elevation model were obtained on the basis of aerial photography from an unmanned aircraft. The model of thermal imaging allows us to identify a number of temperature anomalies in the upper part of the dump slope and filtration zone in the drainage valley, caused by exothermic reactions. The digital relief model was constructed comprising three zones: (1) oxidation, (2) leaching, and (3) mixing and dilution. The oxidation zone is marked by low electrical resistivity (1–10 Ω·m), low pH values of the drainage waters (pH 3.61), low values of the modulus of the magnetic induction vector, and heating by +5 °C compared to the solid dump material that is not actively exposed to water. The oxidative conditions and low pH values favor the dilution of the Fe2+ compounds in the drainage solutions, which also contain Cu (3000 μg/L), Pb (1200 μg/L), As (1300 μg/L), and Hg (34 μg/L). The zone of the primary geochemical barrier is formed within the first 400 m, where the major proportion of dissolved elements if deposited. The second iron–aluminum sorption geochemical barrier is formed at a distance of 1000 m at the mixing zone with the Ur River. The stable geochemistry of surface waters, formed due to the inflow of drainage waters into the Ur River and further into the reservoir, persists at a distance of up to 7.7 km from the dump. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 3240 KiB  
Article
A Deep Residual Neural Network for Image Reconstruction in Biomedical 3D Magnetic Induction Tomography
by Anna Hofmann, Martin Klein, Dirk Rueter and Andreas Sauer
Sensors 2022, 22(20), 7925; https://doi.org/10.3390/s22207925 - 18 Oct 2022
Cited by 9 | Viewed by 2469
Abstract
In recent years, it has become increasingly popular to solve inverse problems of various tomography methods with deep learning techniques. Here, a deep residual neural network (ResNet) is introduced to reconstruct the conductivity distribution of a biomedical, voluminous body in magnetic induction tomography [...] Read more.
In recent years, it has become increasingly popular to solve inverse problems of various tomography methods with deep learning techniques. Here, a deep residual neural network (ResNet) is introduced to reconstruct the conductivity distribution of a biomedical, voluminous body in magnetic induction tomography (MIT). MIT is a relatively new, contactless and noninvasive tomography method. However, the ill-conditioned inverse problem of MIT is challenging to solve, especially for voluminous bodies with conductivities in the range of biological tissue. The proposed ResNet can reconstruct up to two cuboid perturbation objects with conductivities of 0.0 and 1.0 S/m in the whole voluminous body, even in the difficult-to-detect centre. The dataset used for training and testing contained simulated signals of cuboid perturbation objects with randomised lengths and positions. Furthermore, special care went into avoiding the inverse crime while creating the dataset. The calculated metrics showed good results over the test dataset, with an average correlation coefficient of 0.87 and mean squared error of 0.001. Robustness was tested on three special test cases containing unknown shapes, conductivities and a real measurement that showed error results well within the margin of the metrics of the test dataset. This indicates that a good approximation of the inverse function in MIT for up to two perturbation objects was achieved and the inverse crime was avoided. Full article
(This article belongs to the Special Issue Machine Learning for Biomedical Imaging and Sensing II)
Show Figures

Figure 1

15 pages, 1278 KiB  
Article
Object Composition Identification by Measurement of Local Radio Frequency Magnetic Fields with an Atomic Magnetometer
by Jake D. Zipfel, Srikant Santosh, Patrick Bevington and Witold Chalupczak
Appl. Sci. 2022, 12(16), 8219; https://doi.org/10.3390/app12168219 - 17 Aug 2022
Cited by 4 | Viewed by 1545
Abstract
Proof of principle of object composition identification based on inductive measurements with an atomic magnetometer has been demonstrated in highly engineered laboratory conditions. Progress in the development of portable miniaturised magnetometers has encouraged on the parallel development of the measurement technologies involving this [...] Read more.
Proof of principle of object composition identification based on inductive measurements with an atomic magnetometer has been demonstrated in highly engineered laboratory conditions. Progress in the development of portable miniaturised magnetometers has encouraged on the parallel development of the measurement technologies involving this sensor, in particular concepts that would enable operation in complex test scenarios. Here, we explore the problem of material identification in the context of measurements performed with variable distance between the object and the primary radio-frequency field source and sensor. We identify various aspects of the measurement affected by variable distance and discuss possible solutions, based on the signal phase analysis, a combination of frequency and angular signal dependencies and the implementation of a pair of excitation coils. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

15 pages, 6506 KiB  
Article
Propagation Characteristics of Magnetic Tomography Method Detection Signals of Oil and Gas Pipelines Based on Boundary Conditions
by Linlin Liu, Lijian Yang and Songwei Gao
Sensors 2022, 22(16), 6065; https://doi.org/10.3390/s22166065 - 13 Aug 2022
Cited by 7 | Viewed by 3696
Abstract
The magnetic tomography method (MTM) is a non-contact external inspection method for detecting metal magnetic memory signals. It has great potential for application in long-distance oil pipeline and subsea pipeline inspection. However, the spatial distribution characteristics and propagation laws of magnetic signals are [...] Read more.
The magnetic tomography method (MTM) is a non-contact external inspection method for detecting metal magnetic memory signals. It has great potential for application in long-distance oil pipeline and subsea pipeline inspection. However, the spatial distribution characteristics and propagation laws of magnetic signals are not yet clear, which makes the MTM passive detection. In this study, a three-dimensional mathematical model of the magnetic field distribution of the stress concentration zone outside the pipe was established based on the boundary conditions. For the two cases in which the stress concentration zone was located at the top and bottom of the inner wall of the pipe, the model was solved by finite element analysis. The variation law of the magnetic signal outside the pipe was analyzed, and experiments were designed to verify the model. The results show that the shape of the magnetic memory signal remained unchanged after passing through the pipe wall. As the magnetic permeability of the pipe medium is much larger than that of air, the magnetic memory signal is significantly attenuated after penetrating the pipe wall. As the detection height increases, the magnetic induction outside the tube decays exponentially. The results also prove that the magnetic tomography method can detect the stress concentration zone at any position of the pipeline, and the detection accuracy is higher when it is located at the top of the pipeline. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop