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Abstract: Osteoarthritis (OA) is a major public and animal health challenge with significant economic
consequences. Cartilage degradation plays a critical role in the initiation and progression of degener-
ative joint diseases, such as OA. Mesenchymal stem cells (MSCs) have become increasingly popular
in the field of cartilage regeneration due to their promising results. The objective of this preclinical
study was to evaluate the regenerative effects of mesenchymal stem cells (MSCs) in the repair of knee
cartilage defects using a porcine model. Seven healthy LYD breed white pigs, aged 9–10 weeks and
weighing approximately 20 ± 3 kg, were used in the experimental protocol. Full-thickness defects
measuring 8 mm in diameter and 5 mm in depth were induced in the lateral femoral condyle of the
posterior limbs in both knee joints using a sterile puncture technique while the knee was maximally
flexed. Following a 1-week induction phase, the pig treatment groups received a 0.3 million/kg MSC
transplant into the damaged knee region, while the placebo group received a control solution as a
treatment. Magnetic resonance imaging (MRI), computerized tomography (CT), visual macroscopic
examination, histological analysis, and cytokine concentration analysis were used to assess cartilage
regeneration. The findings revealed that human adipose-derived mesenchymal stem cells (hADSCs)
were more effective in repairing cartilage than pig umbilical cord-derived mesenchymal stem cells
(pUCMSCs). These results suggest that MSC-based treatments hold promise as a treatment option
for cartilage repair, which aid in the treatment of OA. However, further studies with larger sample
sizes and longer follow-up periods are required to fully demonstrate the safety and efficacy of these
therapies in both animals and humans.

Keywords: cartilage repair; stem cell; porcine; osteoarthritis (OA); xenogeneic

1. Introduction

Knee osteoarthritis (OA) is a degenerative joint disease that affects both humans
and animals, resulting in significant pain and disability with economic loss [1–3]. The
progressive degradation of articular cartilage is a significant process for the progression
of OA. The loss of cartilage can result from a range of factors, including age, injury, and
obesity, which can all contribute to the degenerative process. The reduction in cartilage
thickness and quality leads to increased friction and pressure on the underlying bone,
leading to further damage and a vicious cycle of cartilage loss and joint deterioration.
Knee osteoarthritis can be categorized into primary or secondary forms based on its
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etiology [4,5]. The joints that are mostly affected by OA are the knee, hand, feet, and
spinal joints. Osteoarthritis affects 10 to 15% of all adults over the age of 60 years, and
the proportion of women compared to men is higher [6–8]. Recently, it estimated that
osteoarthritis (OA) affects a substantial global population, with an estimated incidence of
300 million individuals specifically in the hip and knee joints [9]. The hip and knee joints
represent the predominant sites of osteoarthritis burden within society [10]. Additionally,
osteoarthritis is the most common form of arthritis in humans and in dogs. Dogs are more
prone to developing arthritis among all domestic and pet animal species due to factors
such as excessive running, injury, and/or a genetic predisposition [11,12]. Furthermore,
osteoarthritis is a rapidly emerging modern disease [13].

The pathogenesis of knee osteoarthritis is significantly influenced by cartilage degra-
dation, which plays a crucial role in disease initiation and progression. Consequently, there
has been considerable research focused on investigating strategies for cartilage repair and
regeneration in the context of knee OA [14,15]. The use of mesenchymal stem cells (MSCs)
for cartilage repair in osteoarthritic pig models has been previously studied. Wu et al. [16]
combined human umbilical cord-derived MSCs (HUCMSCs) with HA hydrogel and dis-
covered substantial improvements in hyaline cartilage regeneration when compared to
controls [16]. A study by Seto et al. [17] investigated the direct transplantation of mes-
enchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous
osteoarthritis. The findings from this study strongly indicate that the intra-articular in-
jection of a hyaluronic acid (HA)–MSC mixture holds significant potential as a beneficial
treatment approach for osteoarthritis [17]. Sheu et al. [18] also investigated the efficiency of
cartilage transplantation with platelet-rich fibrin (PRF) augmentation in a porcine model
and discovered that PRF had a beneficial effect on cartilage regeneration, with autologous
chondrocytes improving the efficacy even further [18]. These studies demonstrated the
potential of MSC on cartilage regeneration. Potential research gaps in these studies include
the need for larger sample sizes and longer follow-up periods to fully evaluate and observe
the safety and efficacy of MSC-based treatments for cartilage regeneration in OA affected
pig models. Additionally, there is a need for studies to directly compare the effectiveness of
different MSC sources and delivery methods in promoting cartilage regeneration. Further-
more, the use of xenogeneic mesenchymal stem cell studies in pig models, particularly in
connection to osteoarthritis models, is currently limited [19].

Despite significant research efforts, knee osteoarthritis remains a major public health
challenge with no known cure. Current treatment options, such as pain management and
joint replacement, only offer temporary relief and do not address the underlying cartilage
loss and joint degeneration [20]. Furthermore, the use of pharmaceutical therapies, such
as pain relievers and oral anti-inflammatory drugs, are limited in their efficacy and can
also cause significant adverse side effects and long-term complications [21,22]. Traditional
methods of treating OA do not provide native cartilage [23]. However, research has found
that mesenchymal stem cells have demonstrated significant potential for cartilage repair in
animal studies [24]. Mesenchymal stem cells were originally isolated from bone marrow,
but recent studies have identified several alternative sources, including adipose tissue,
umbilical cord blood, and the placenta [25].

The current research on the effect of mesenchymal stem cells on cartilage regeneration
in pigs is limited, necessitating additional studies employing large-animal models to
completely investigate the safety and efficiency of MSCs in a preclinical setting [26]. The
aim of this study was to investigate the efficacy of human adipose-derived MSCs and pig
umbilical-derived MSCs for cartilage regeneration to treat knee defects in pigs.

The research is organized as follows to provide a comprehensive structural overview of
our study: an introduction section that includes a detailed literature review and background
information, a materials and methods section that outlines the reagents and equipment
used in the experimental design, a results section that presents our findings using tables,
graphs, and microscopy images, and a discussion section that explains the theoretical basis
of our results.
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2. Materials and Methods

The experiment titled “Regenerative effect of mesenchymal stem cell on knee cartilage
damage in a porcine model” was conducted from 2022 to 2023 at the National Pingtung Uni-
versity of Science and Technology (NPUST), Taiwan (22◦38′16.19′′ N and 120◦35′26.39′′ E).
A schematic illustration of the experimental design is presented (Figure 1), with the objec-
tive of making it more accessible to readers from diverse fields, thereby ensuring easier
comprehension and understanding. The methodology for this study was as follows.
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2.1. Preparation of MSCs

MSCs were funded by Bionet company, (Taipei City, Taiwan). They were unable
to reveal the specific culture medium chosen for the study due to its unique element,
which was a valuable trade secret for the company. With minor modifications to the
protocol [27], human adipose-derived mesenchymal stem cells were isolated and collected
after receiving informed consent. Briefly, lipoaspirates were rinsed in phosphate-buffered
saline (PBS) and digested with an enzyme, such as collagenase, to break down the tissue.
The stromal vascular fraction (SVF) is subsequently separated from the other cells by
centrifugation. ASCs were then grown in a suitable condition from the SVF. When there
were sufficient number of ASCs, they were collected for use. The method presented
here with minor modification was used to isolate pig umbilical cord mesenchymal stem
cells [28]. At first, the umbilical cords were disinfected with 75% ethanol, followed by a
PBS wash to remove any blood contamination. Following that, the blood vessels were
excised to avoid endothelial cell contamination, and the cord tissue was divided into small
0.5–1 mm3 fragments. These fragments were placed on 10 cm culture dishes and cultured
in alpha-MEM (GIBCO, Grand Island, NY, USA) supplemented with 5% UltraGROTM
(AventaCell, Atlanta, GA, USA) and antibiotics (PSA, GIBCO). The cultures were incubated
at 37 degrees Celsius in a humidified atmosphere with 5% CO2. Every 3–4 days, new media
was introduced. When the cultures reached confluence, they were washed with DPBS,
harvested with 0.05% TrypLE (GIBCO, USA), and transferred to fresh 10 cm culture dishes
at a plating density of 3–6 × 103 cells per cm2 for continued growth. Finally, the MSCs were
cryopreserved in culture media containing 10% DMSO in a vapor phase liquid nitrogen
tank at −190 ◦C using a control rate freezer (Icecube, Sylab, Purkersdorf, Austria). Both
hADSC and pUCMSC cells from passage three were used for the experiment. The MSCs
were cultured in the BIONET Lab (No. 28, Lane 36, Xinhuyi Rd, Neihu District, Taipei City,
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114065) under Good Manufacturing Practice conditions. They reported that the expanded
cells were then evaluated for number, viability, purity, and identity. Before injection, MSCs
were counted using a hemocytometer and loaded into a syringe.

2.2. Experimental Animals

The research was performed in the animal research laboratory of National Pingtung
University of Science and Technology (NPUST). White LYD (the crossbred Landrace, York-
shire, and Duroc) pigs (n = 7) body weight of 20 to 25 kg with age group 9–10 weeks were
used. Pigs were purchased from a commercial farm near NPUST and placed at the NPUST
positive control animal facility room. When performing this study at National Pingtung
University of Science and Technology, International Animal Care and Use Committee
(IACUC) protocols were followed. The International Animal Care and Use Committee
(IACUC) approved the animal research and issued an IACUC permit number (NPUST-110-
079). Because the ethical care of animals is of the highest concern, all pre-operative, surgical,
and post-operative procedures were carried out in compliance with IACUC standards. The
pigs were allowed to become acclimated to their surroundings prior to the commencement
of the experiment. The pigs had unrestricted access to food and water and were reared
in a controlled environment with a 12-h/12-h light/dark cycle at 23 ± 2 ◦C with relative
humidity of 65 ± 5%. All pigs were physically evaluated to ensure their safety and well-
being, and were immediately ear tagged with a specific number for identification purposes
during this study (Table 1).

Table 1. Experimental design treatment groups.

Group Ear Tag Received

Treatment P51, P72 hADSC 1

Treatment P61, P71 pUCMSC 1

Control P62 Nothing
Placebo P52, P63 Medium

1 hADSC = human derived adipose mesenchymal stem cell, pUCMSC = pig umbilical mesenchymal stem cell.

2.3. Experimental Design

In this study, we analyzed the effectiveness of the healing of cartilage using straight-
forward experimental designs. Twelve knees of seven pigs were randomly assigned to
four groups [Table 1] (Figure 2). In the treatment group, both human adipose derived
mesenchymal stem cells and pig umbilical cord derived mesenchymal stem cells were used.
Each pig in the study involved a singular defect on both knees in the posterior limbs (It is
important to note that no defects were created in the front limbs), which were specifically
induced using a sterile puncture technique. The induced defects were carefully created in
the lateral femoral condyle, with dimensions measuring 8 mm in diameter and 5 mm in
depth. The knee joint was maximally flexed during the puncture procedure, as illustrated
in Figure 3. For the administration of the stem cell treatment, an intra-articular injection
method was employed (Figure 4). The stem cells were delivered locally and precisely to the
injured area of the knee joint using this distribution method. By employing this technique,
the researchers sought to increase the therapeutic efficiency of the stem cells in healing the
knee abnormalities of the experimental animals.

This study was carried out in three stages, employing a consistent methodology to
effectively manage workload and ensure data validity. Moreover, to address the limitations
of using MRI and radiography, and to manage a large number of animals, the investigation
was divided into three stages, as illustrated in Table 1. Transportation of animals to the
hospital for MRI and CT examinations added to the time required for conducting the study.
This approach facilitated improved planning and resource allocation, while also ensuring
the welfare of the animals.
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Figure 2. Experimental design. 1: Control group, which did not receive any intervention. 2: Treatment
group receiving human adipose-derived mesenchymal stem cells. 3: Treatment group receiving pig
umbilical cord-derived mesenchymal stem cells. 4: Placebo group, receiving medium only.
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cell transportation.

In the first stage of the experiment, two pigs were selected, with one serving as the
treatment group, receiving 28 × 104/kg of human adipose derived mesenchymal stem cells
on both knees one week after induction surgery. The other pig acted as the placebo group
and received only the medium. However, in the first round, one of the pigs received the
medium solution only in the right leg due to a technical error during anesthesia [Table 1].



Biomedicines 2023, 11, 1810 6 of 20

In the second stage, three pigs were employed, with one serving as the treatment group,
receiving an average of 26 × 104/kg of pig stem cells derived from umbilical cords of
pigs on both knees one week after surgery. Another pig acted as the control group and
received no treatment, while the remaining pig served as the placebo group, receiving 1 mL
of medium only. In the third and final stage of the experiment, two pigs were selected.
One pig received an average of 30 × 104/kg of pig umbilical mesenchymal stem cells on
both knees one week after induction surgery, while the other pig received an average of
36 × 104/kg of adipose-derived mesenchymal stem cells on both knees one week after
induction surgery. Through this experimental design, our objective was to evaluate the
impact of human and pig stem cells on knee joint healing through cartilage regeneration,
while also observing the effect of the negative control group.

2.4. Surgical Procedure

Zoletil® 100 (virbac) along with xylazine 10%(w/v) (Health-Tech Pharmaceutical Co.,
Ltd., Taoyun, Taiwan) was used as anesthesia for minimally invasive surgery. The dosage
was 5–10 mg/kg. Zoletil® 100 was administered intravenously (IV). Isoflurane was used to
maintain anesthesia in operation by the anesthesia machine. Atropine (Tai Yu Chemical&
Pharmaceutical Co., Ltd., Hsinchu, Taiwan) pre anesthesia medicine was used with a
dosage of 0.05 mg/kg administered subcutaneously. The antibiotic cephazolin (Sintong
Taiwan Biotech Co., Taoyuan, Taiwan) was used for infection control. The dosage was
25 mg/kg twice a day, which was administered intramuscularly. Carprofen was provided
to pigs after surgery as a pain relief method for knee pain. The drug’s recommended dose
was 2.2 mg/kg, which was administered intramuscularly once or twice a day, depending
on the severity of the wound and pain condition.

Before skin incision, betadine (Taipei, Taiwan) was applied near surgical parts. Fol-
lowing the skin incision, an articular cartilage defect was formed in the lateral femoral
condyle of both knees. An 8 × 5 mm sterilized biopsy punch (Kai industries Co., Ltd.,
Seki, Japan) was used to create an incision. The wounds were sutured with 4-0 Vicryl and
surgical staples (Weck Visistat ® 35 W) after the procedure (See Supplementary Video S1
for surgical staples) (Figure 5).
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2.5. MRI and CT Examinations

Pre-anesthesia medication was administered to the animals; 15 min before the anes-
thetic dosage, atropine (0.05 mg/kg) was administered intramuscularly. Animals were
induced by full dosage of mixture of Zoletil 100 (0.04 mg/kg) with xylazine (0.003/kg).
Animals were taken to mercy animal hospital (Kaohsiung, Taiwan) with special care for
MRI and CT examinations on every 4th and 6th weeks of stem cell implantation. Baseline
was taken as 0 week before stem cell therapy (Figure 6). MRI and CT images were recorded
to evaluate the articular cartilage by an experienced professor. The study used T2 mapping
with frequency selective fat suppression to evaluate the condition of the cartilage. The
frequency encoding direction was oriented in the anterior–posterior direction, and each
measurement was repeated three times.
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2.6. Macroscopic Images

After eight weeks of stem cell treatments, the animals were euthanized in accordance
with the protocol established by the Institutional Animal Care and Use Committee (IACUC).
The animals were first administered a full dosage of a mixture of Zoletil 100 (0.04 mg/kg)
and Xylazine (0.003/kg) to induce unconsciousness. Then, the knee joints were collected,
pictures were taken, and evaluated using ICRS scoring [29] (Table 2). Afterwards, the knee
joints were preserved in 4% paraformaldehyde for further histological examination.

Table 2. Macroscopic evaluation using the ICRS score [30].

Gross Appearance Grade

Coverage
N > 75% fill 4
50–75% fill 3
25–50% fill 2
<25% fill 1
No fill 0

Neocartilage color
Normal 4
25% yellow/brown 3
50% yellow/brown 2
75% yellow/brown 1
100% yellow/brown 0

Defect margins
Invisible 4
25% circumference visible 3
50% circumference visible 2
75% circumference visible 1
Entire circumference visible 0
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Table 2. Cont.

Gross Appearance Grade

Surface
Smooth/level with normal 4
Smooth but raised. 3
Irregular 25–50% 2
Irregular 50–75% 1
Irregular > 75% 0

2.7. Microscopic Evaluation

For three days, MCs from joint cartilages were preserved in 4% buffered paraformalde-
hyde. After two weeks of decalcification in 0.5 M ethylene diamine tetra-acetate (EDTA)
solution at four degrees Celsius, the samples were desiccated, embedded in paraffin, sec-
tioned, and stained with hematoxylin and eosin (H&E). An optical microscope (CKX41
Olympus Corporation, Tokyo, Japan) and a digital camera (EOS 80D, Canon Inc., Tokyo,
Japan) were used to evaluate the histologic sections. Five independent evaluators inde-
pendently analyzed the severity of articular cartilage sections and scored them using the
International Cartilage Repair Society (ICRS) histology grading method [30] (Table 3). A
higher score demonstrated superior quality of the repaired tissue.

Table 3. Histological visual grading [30].

Features Score

Surface
Smooth/continuous 3
Discontinuities/irregularities 0

Matrix
Hyaline 3
Mixture: hyaline/fibrocartilage 2
Fibrocartilage 1
Fibrous tissue 0

Cell distribution
Columnar 3
Mixed: columnar/cluster 2
Cluster 1
Individual cells/disorganized 0

Subchondral bone
Normal 3
Increased remodeling 2
Bone necrosis/granulation tissue 1
Detached/fracture/callus at base 0

Cartilage mineralization (calcified cartilage)
Normal 3
Abnormal/inappropriate 0

2.8. Enzyme-Linked Immunosorbent Assay for Cytokine Concentrations

For the cytokine concentrations, blood from each group were collected; blood samples
were centrifuged at 1500 g for 10 min and serum was preserved at −80 ◦C until use. The
levels of various cytokines (interleukin-10, transforming growth factor-beta, interleukin-4,
tumor necrosis factor alpha, and interleukin-1 beta) were measured using the ELISA
(enzyme-linked immunosorbent assay) technique with Quantikine® ELISA kits (R&D
Systems, Minneapolis, MN, USA) as per the manufacturer’s instructions. The ELISA kits
for all five cytokines were purchased from R&D Systems and used as per the manufacturer’s
instructions. After the samples were diluted as appropriate, cytokine levels were evaluated
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using a four-parameter logistic (4-PL) curve fit. The results were presented as mean
standard error (SEM).

2.9. Statistical Analysis

Descriptive statistics such as mean and standard errors (S.E.) were used to summarize
the data. The ANOVA was used to determine if there were significant differences among
treatment groups in terms of cytokine concentration, gross grading score, and visual
histological findings score. The one-way ANOVA in IBM SPSS version 26 software was
used for analysis. Multiple comparisons were performed to compare treatment means
using the Duncan and Tukey post hoc tests at a statistical significance level of 5%. The
graphs were created with Microsoft Excel 2022 and the most recent version of R software
which is R package version 1.3-5 (Agricolae 10).

3. Results
3.1. MRI and CT Observations

This study used magnetic resonance imaging (MRI) and computerized tomography
(CT) as imaging modalities to accurately assess and monitor alterations in the knee joint.
Specifically, MRI and CT scans were used at the fourth and sixth weeks of the study to
validate the expected localization of damage resulting from treatments. The identification of
any extra cases of joint infections or injuries in addition to arthritis was also made possible
by these imaging techniques. At weeks 0, 4 and 6, MRI and CT scanning were carried out
(Figure 6). Week 0 was used as the baseline time for MRI and CT imaging observations
in order to evaluate the defect’s initial condition prior to any intervention (Figure 7). The
results obtained from magnetic resonance imaging and computerized tomography scans
revealed that the group treated with human adipose derived mesenchymal stem cells
demonstrated superior outcomes with respect to cartilage growth and wound healing. At
week 6, it was observed that the volume of articular cartilage was lower in the defect control
group, while the filling consisted of homogeneous tissue with an abnormal signal intensity
of the repair tissue. Figure 8 demonstrates that the human adipose-derived mesenchymal
stem cells (hADSC) group exhibits superior outcomes in terms of filling defect margins and
promoting cartilage regeneration compared to the other groups, such as the pig umbilical
cord-derived mesenchymal stem cells (pUCMSCs), control, and placebo group.
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Figure 7. Representative MRI and CT images before cell implantation (week 0). Red circles and
red box indicate the defect area. It was taken as the baseline time. MRI images taken after the
induction of the knee defect but before the administration of stem cell therapy (a). The purpose of
these images is to assess the extent of the knee defect and provide a visual representation of the
initial condition before treatment. CT images taken after both knee defect before stem cell therapy (b).
CT images provide additional information about the structural aspects of the defected knee before
cell implantation.
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MRI results have been categorized according to various conditions. Sagittal views were
chosen to compare each group. The T2 condition is an excellent method for demonstrating
the difference between the damaged and repaired parts. The results of the MRI and CT
scans showed notable improvements in the treatment group treated human adipose derived
mesenchymal stem cells, especially in terms of improved cartilage formation and wound
healing (Figures 8 and 9). Figure 9 demonstrated that treatment group especially hADSC
exhibited reduced defect margins compared to other groups. The repair stages of hADSC
groups seemed better than those of pUCMSC groups. Based on the results of this study, it
appears that MSCs can be used as a new way of regenerating cartilage. A viable approach
to repairing articular cartilage and addressing the associated risks of OA could be achieved
through this approach.
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Figure 8. MRI examinations. (a) Photo images of MRI of the right knee at the 4th week of treatment
using sagittal view T2 imaging. Orange circle indicates defect area. (b) Photo images of MRI
of the right knee at the 6th week of treatment using T2 conditions. Red circle indicates defect
area. On the 4th and 6th weeks of the stem cell therapy, similar results were observed from MRI
exam-inations. Specifically, the group treated with human adipose-derived mesenchymal stem cells
(hADSC) demonstrated superior outcomes in terms of filling defect margins and promoting cartilage
regeneration compared to the other groups.
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Figure 9. CT examinations. (a) Photo images of CT of the right knee at the 4th week of treatment.
(b) Photo images of CT of the right knee at the 6th week of treatment. Red circles signify the position
of the osteochondral defect filling area. During the 4th and 6th weeks of the stem cell therapy, similar
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results were observed through CT examinations. Specifically, the group treated with human adipose-
derived mesenchymal stem cells (hADSC) exhibited reduced defect margins compared to the other
groups, as evident from the CT scans.

3.2. Gross Observations

Eight weeks after surgery, the animals were euthanized with overdose of zoletil and
xyzaline and the gross appearances of the defects were taken and studied (Figure 10). The
control group’s left and right knee defects had large fissures and penetration cracks. In the
placebo group, smaller fissures and penetration cracks compared to control group were
observed. In the treatment group (pUCMSC), the defect was covered by a thin layer of
repair tissue, but the defected region was not completely covered with tissue. Surprisingly,
healing was almost complete in the other treatment group (hADSC), and the reparative
tissue was effectively integrated into the repair site, with flush and smooth surfaces on
the restored cartilage (Figure 10). Using the International Cartilage Repair Society (ICRS)
score, five independent evaluations evaluated the regeneration cartilages for coverage,
neocartilage color, defect margin, and surface roughness [29]. Figure 11 demonstrates the
distribution of the mean gross scores among different groups.
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Figure 10. Gross evaluation of both knees from representative study groups. (a) Right knee joint
and (b) left knee joint after the 8th week of treatment, respectively. Red circles signify the position of
osteochondral defects. hADSC exhibited a smoother articular surface and a reduced defect margin
compared to the control group.
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Figure 11. Macroscopic examination of regenerative cartilages based on overall scoring values. Error
bars represent mean ± SE (n = 5). Here, n represents technical replications. The same lowercase
letters are not significantly different among the experimental treatments (p < 0.05).



Biomedicines 2023, 11, 1810 12 of 20

3.3. Histological Observations

Hematoxylin and eosin staining (H&E) was used to demonstrate the partial histo-
logical changes of regenerated cartilage in sample slides from all experimental groups
(Figure 12). The microscopic examination of reparative tissue in the treatment group,
particularly hADSC, revealed comparatively smooth restored hyaline-like cartilage with
the columnar formations of chondrocytes. The findings of histological evaluations and
pathological images from each experimental group indicated that cell distribution, cell
population, and cartilage mineralization are better in those who were treated with human
stem cells. The mean histopathology value in hADSC seems to be higher than in pUCMSC,
placebo, and control groups. Several indicators, such as subchondral bone, matrix, and
surface, are significantly higher in the treated group when compared to the control group
(Figure 13).
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Figure 12. The histological appearances of regenerate cartilage in representative slides from all
study groups obtained eight weeks postoperatively using hematoxylin and eosin staining, and
Toluidine staining. Image magnification at 40×. The treatment group exhibited a higher number
of chondrocytes cells, particularly in the human adipose-derived mesenchymal stem cell (hADSC)
group, when compared to the other groups.

The ICRS histological scoring demonstrated that hADSC had significantly higher
scores (p < 0.05) than the control group for most parameters measured eight weeks after
surgery. The placebo group had a higher mean overall score at eight weeks than the control
group for surface and cartilage mineralization; however the difference was not statistically
significant. Treatment groups, both hADSC and pUCMSC, had higher mean scores in some
parameters, such as cell population, cell distribution, and subchondral bone. The mean
score for cell population of hADSC was 1.875 ± 0.256, which was followed by pUCMSC
with 1.687 ± 0.198. The mean score for the subchondral bone parameter of hADSC was
2.187 ± 0.208, which was also followed by pUCMSC with a mean score of 2.062 ± 0.192.
There was a high level of agreement among the valuators. The mean histology score is
shown in Figure 13.
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Figure 13. International Cartilage Repair Society (ICRS) histology scores were used to evaluate repair
cartilages. The statistical error bars display the mean ± SE (n = 5). All the same lowercase letters are
not significantly different between experimental treatments (p < 0.05).

3.4. Cytokine Observations

The study observed different cytokines and it revealed a significant difference in
the levels of anti-inflammatory and pro-inflammatory cytokines. The results indicated
that the administration of stem cells resulted in an increase in the concentration of anti-
inflammatory cytokines, such as IL-4, IL-10, and TGF-beta, compared to the control group
and placebo group (Figures 14–18). This suggests that stem cell therapy may have a
positive impact on reducing inflammation and promoting a healthy immune response.
Cytokine concentrations were measured every two weeks following stem cell treatment
and throughout the study (Figure 14a).
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Figure 14. Anti-inflammatory cytokine concentration. (a) Determination of IL-4 cytokine concentra-
tion over time. The different time points are denoted by the x-axis, with “Wo” and “W1” signifying
the week before surgery and cell implantation, respectively. The following time points, “W2”, “W4”,
“W6”, and “W8”, represent two, four, six, and eight weeks after treatment in each group, respectively.
The y-axis illustrates the total cytokine concentrations measured throughout the study for each group.
(b) Total cytokines concentrations during the study in each group, where the x- axis represents
different treatment groups and the y-axis represents the total cytokine concentration in picograms
per milliliters (pg/mL). Cytokine concentration was measured by commercial ELISA. Error bars
represent mean ± SE (n = 3). The same lowercase letters are not significantly different among the
experimental treatments (p < 0.05).
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Figure 15. Anti-inflammatory cytokine concentration. (a) Determination of IL-10 cytokine concentra-
tion over time. The different time points are denoted by the x-axis, with “Wo” and “W1” signifying
the week before surgery and cell implantation, respectively. The following time points, “W2”, “W4”,
“W6”, and “W8”, represent two, four, six, and eight weeks after treatment in each group, respectively.
The y-axis illustrates the total cytokine concentrations measured throughout the study for each group.
(b) Total cytokine concentrations during the study in each group, where the x-axis represents different
treatment groups and the y-axis represents total cytokine concentration in picograms per milliliters
(pg/mL). Cytokine concentration was measured by commercial ELISA. Error bars represent mean
± SE (n = 3). The same lowercase letters are not significantly different among the experimental
treatments (p < 0.05).
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Figure 16. Anti-inflammatory cytokine concentration. (a) Determination of TGF-beta cytokine
concentration over time. The different time points are denoted by the x-axis, with “Wo” and “W1”
signifying the week before surgery and cell implantation, respectively. The following time points,
“W2”, “W4”, “W6”, and “W8”, represent two, four, six, and eight weeks after treatment in each group,
respectively. The y-axis illustrates the total cytokine concentrations measured throughout the study
for each group. (b) Total cytokine concentrations during the study in each group, where the x- axis
represents different treatment groups and the y-axis represents the total cytokine concentration in
picograms per milliliters (pg/mL). Cytokines concentration was measured by commercial ELISA.
Error bars represent mean ± SE (n = 3). The same lowercase letters are not significantly different
among the experimental treatments (p < 0.05).
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group. (b) Total cytokine concentrations during the study in each group, where the x- axis represents
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Figure 18. Cytokine concentration. (a) Determination of IL-1 beta cytokine concentration over time.
The different time points are denoted by the x-axis, with “Wo” and “W1” signifying the week be-
fore surgery and cell implantation, respectively. The following time points, “W2”, “W4”, “W6”,
and “W8”, represent two, four, six, and eight weeks after treatment in each group, respectively.
The y-axis illustrates the total cytokine concentrations measured throughout the study for each
group. (b) Total cytokine concentrations during the study in each group, where the x-axis represents
different treatment groups and the y-axis represents the total cytokine concentration in picograms
per milliliters (pg/mL). Cytokine concentration was measured by commercial ELISA. Error bars
represent mean ± SE (n = 3). The same lowercase letters are not significantly different among the
experimental treatments (p < 0.05).

4. Discussion

Mesenchymal stem cells (MSCs) have garnered considerable attention as a potential
source for cartilage regeneration in large animal models, including pigs [31–33]. In this
study, we sought to evaluate the regenerative effects of two different MSC sources, namely
human adipose-derived mesenchymal stem cells (hADSCs) and porcine umbilical cord
derived mesenchymal stem cells (pUCMSCs), for their potential application in cartilage
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regeneration in pigs. The reason for selecting miniature porcine breeds as our large animal
model in this study was because of their resemblance to humans in regard to joint size,
loading mechanics, weight, and their inherent inability to regenerate cartilage, as well as
their comparable collagen fiber arrangement, bone apposition rate, and trabecular thickness,
as previously reported in previous studies [34,35]. The experimental data provided suggests
that treatment with human stem cells may be a promising therapy for promoting cartilage
growth and wound healing. The results obtained from MRI and CT scans demonstrated
that the group treated with stem cells showed superior outcomes with respect to cartilage
growth and repair. This is consistent with previous studies that have reported the potential
of stem cells for regenerating cartilage tissue [36–38].

The concern about immune rejection was a crucial consideration in the experiment
as the xenograft model was carried out. Upon conducting physical observations on the
animal subjects during the study, no instances of immune rejection or tumor formation
were observed in the pig’s body during the study. Gross observations at eight weeks
after surgery revealed that the stem cell treatment group, particularly hADSC, had almost
completely healed defects, with smooth surfaces on the restored cartilage. This contrasts
with the control group, which had large fissures and penetration cracks. These findings
are also consistent with previous studies that have reported the potential of stem cells
for promoting tissue repair [16,23,28]. Based on the results of this study, it demonstrated
that human adipose-derived mesenchymal stem cells (hADSCs) showed better results in
cartilage repair compared to other groups. The histological evaluations demonstrated
that cell distribution, cell population, and cartilage mineralization were better in the
stem cell treatment groups compared to the control group. Specifically, the microscopic
examination of reparative tissue in the hADSC group revealed smooth restored hyaline-like
cartilage and more chondrocytes compared to controls (Figure 12). Better improvement in
cartilage repair in the hADSC is believed to be the result of a better cell quality and cell
doubling time for hADSCs compared to pUCMSCs. However, according to other findings,
the basic biological characteristics of mesenchymal stem cells derived from adipose and
umbilical cord tissues are comparable to one another, with both possessing significant self-
renewal capacity, anti-apoptotic capacity, and multi-differentiation potential. Furthermore,
investigations have discovered that the different types of cytokines generated by ASCs
and UC-MSCs are comparable, although there are variations in the levels of expression of
cytokines. Furthermore, several research have indicated that ASCs reacted better to various
neural induction techniques than UC-MSCs, indicating that hADSCs have the potential for
cartilage regeneration [39].

The process by which stem cells contribute to tissue regeneration and wound healing
is underpinned by two hypotheses, namely the differentiation theory and the paracrine
theory [40,41]. While both hypotheses have merit, the latter is more widely accepted and
involves the concept of cell homing. This mechanism is characterized by the migration of
stem cells to areas of tissue damage and subsequent secretion of cytokines that influence
the behavior of adjacent cells. By promoting tissue repair and reconstruction through this
paracrine mechanism, this study is also aligned with this hypothesis [42]. Specifically,
this study has found that the regenerative effect of human adipose-derived mesenchymal
stem cells on chondrocyte growth in pigs is associated with immune modulation, without
immune rejection or tumor formation. Although this study demonstrates promising results
in terms of cartilage regeneration solely using MSCs, it has been suggested by other liter-
ature by Gugliandolo et al. [43] that the bone regenerative capacity of scaffolds enriched
with MSCs can be influenced and enhanced through the addition of biomolecules, such as
bone morphogenetic proteins (BMPs), or the modification of biomaterial characteristics,
such as pore dimensions [43]. Administration of MSCs significantly decreased the pro-
inflammatory factors (TNF-alpha, or IL-1 beta), whereas the anti-inflammatory factors (IL-4
or Il-10) were significantly increased in this study, which is also supported by previous
studies [15,16,34–36]. The dysregulation of proinflammatory and anti-inflammatory cy-
tokines, with a predominance of proinflammatory cytokines, plays a pivotal role in driving
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the secretion of enzymes and other inflammatory mediators involved in the pathogenesis of
osteoarthritis. This imbalance subsequently leads to detrimental morphological transforma-
tions within the joint, including cartilage degeneration, osteophyte formation, and various
inflammatory alternations such as synovitis. Moreover, it seems necessary to investigate
the epigenetic regulation of cytokine generation, as this could potentially lead to alternative
treatment strategies for osteoarthritis [44]. This stud also investigated the impact of stem
cell therapy on cytokine levels by examining three distinct anti-inflammatory cytokines
(IL-4, IL-10, and TGF-beta) and two pro-inflammatory cytokines (TNF-alpha and IL-1Beta).
The objective was to observe and analyze any alterations in the concentrations of these cy-
tokines before and after the administration of stem cell therapy, thus providing insights into
the therapeutic effects on cytokine profiles. The treatment group in this study was observed
to have high levels of IL-10 and showed lower levels of pro-inflammatory cytokines after
stem cell transplantation. This is due to IL-10 suppressing the secretion of cytokines, such
as TNFα, IL-1, IL-6, IL-8, and IL-12, by dendritic cells and reducing the expression of MHC
II molecules and the B7 co-stimulatory complex on their surfaces [45]. On the other hand,
MSCs release many different types of cytokines, which regulate and reduce inflammatory
responses, including transforming growth factor (TGF), hepatocyte growth factor (HGF),
prostaglandin E2 (PGE2), soluble HLA-G5 protein, indolamine-2,3-dioxygenase (IDO),
nitric oxide (NO), and interleukin-10 (IL-10) [46].

This study used a low-dose, single intra articular injection of MSCs that had no adverse
effects on the experimental animals. The findings suggested a degree of safety and efficacy
for a limited time as this xenograft model study is supported by the literature in terms
of safety [16,47,48]. However, this study was unable to examine the results after eight
weeks because the study was carried out for eight weeks after stem cell therapy. Therefore,
a further study with a bigger sample number and longer duration is required to assess
efficacy over a longer length of time. If the nation invests in regenerative research to develop
alternative remedies for knee osteoarthritis, there is a good probability that patients’ quality
of life and the country’s economy will improve.

5. Conclusions

The regenerative effect of human adipose MSCs on chondrocyte growth in a porcine
model is associated with an immune modulation without immune rejection or tumor forma-
tion in this study. The study used a pig model to evaluate the effectiveness of mesenchymal
stem cells for regenerating cartilage in the knee. According to the study’s findings, hADSCs
can aid in cartilage regeneration by promoting anti-inflammatory cytokines while reducing
pro-inflammatory cytokines. This study opens the door to cartilage regeneration, poten-
tially improving treatment techniques for OA in both humans and pets. However, further
studies are needed to confirm these findings and establish it as a therapeutic option.
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