Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = MTCI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6169 KiB  
Article
Developing an Uncrewed Aerial Vehicle (UAV)-Based Prediction Model for the Rice Harvest Index Using Machine Learning
by Zhaoyang Pan, Zhanhua Lu, Liting Zhang, Wei Liu, Xiaofei Wang, Shiguang Wang, Hao Chen, Haoxiang Wu, Weicheng Xu, Youqiang Fu and Xiuying He
Agriculture 2025, 15(9), 971; https://doi.org/10.3390/agriculture15090971 - 29 Apr 2025
Viewed by 594
Abstract
(1) Background: The harvest index is important for measuring the correlation between grain yield and aboveground biomass. However, the harvest index can only be measured after a mature harvest. If it can be obtained in advance during the growth period, it will promote [...] Read more.
(1) Background: The harvest index is important for measuring the correlation between grain yield and aboveground biomass. However, the harvest index can only be measured after a mature harvest. If it can be obtained in advance during the growth period, it will promote research on high harvest indices and variety breeding; (2) Methods: In this study, we proposed a method to predict the harvest index during the rice growth period based on uncrewed aerial vehicle (UAV) remote sensing technology. UAV obtained visible light and multispectral images of different varieties, and the data such as digital surface elevation, visible light reflectance, and multispectral reflectance were extracted after processing for correlation analysis. Additionally, characteristic variables significantly correlated with the harvest index were screened out; (3) Results: The results showed that TCARI (correlation coefficient −0.82), GRVI (correlation coefficient −0.74), MTCI (correlation coefficient 0.83), and TO (correlation coefficient −0.72) had a strong correlation with the harvest index. Based on the above characteristics, this study used a variety of machine learning algorithms to construct a harvest index prediction model. The results showed that the Stacking model performed best in predicting the harvest index (R2 reached 0.88) and had a high prediction accuracy. (4) Conclusions: Therefore, the harvest index can be accurately predicted during rice growth through UAV remote sensing images and machine learning technology. This study provides a new technical means for screening high harvest index in rice breeding, provides an important reference for crop management and variety improvement in precision agriculture, and has high application potential. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 11630 KiB  
Article
Assessment of the Maize Crop Water Stress Index (CWSI) Using Drone-Acquired Data Across Different Phenological Stages
by Mpho Kapari, Mbulisi Sibanda, James Magidi, Tafadzwanashe Mabhaudhi, Sylvester Mpandeli and Luxon Nhamo
Drones 2025, 9(3), 192; https://doi.org/10.3390/drones9030192 - 6 Mar 2025
Cited by 1 | Viewed by 2030
Abstract
The temperature-based crop water stress index (CWSI) is the most robust metric among precise techniques that assess the severity of crop water stress, particularly in susceptible crops like maize. This study used a unmanned aerial vehicle (UAV) to remotely collect data, to use [...] Read more.
The temperature-based crop water stress index (CWSI) is the most robust metric among precise techniques that assess the severity of crop water stress, particularly in susceptible crops like maize. This study used a unmanned aerial vehicle (UAV) to remotely collect data, to use in combination with the random forest regression algorithm to detect the maize CWSI in smallholder croplands. This study sought to predict a foliar temperature-derived maize CWSI as a proxy for crop water stress using UAV-acquired spectral variables together with random forest regression throughout the vegetative and reproductive growth stages. The CWSI was derived after computing the non-water-stress baseline (NWSB) and non-transpiration baseline (NTB) using the field-measured canopy temperature, air temperature, and humidity data during the vegetative growth stages (V5, V10, and V14) and the reproductive growth stage (R1 stage). The results showed that the CWSI (CWSI < 0.3) could be estimated to an R2 of 0.86, RMSE of 0.12, and MAE of 0.10 for the 5th vegetative stage; an R2 of 0.85, RMSE of 0.03, and MAE of 0.02 for the 10th vegetative stage; an R2 of 0.85, RMSE of 0.05, and MAE of 0.04 for the 14th vegetative stage; and an R2 of 0.82, RMSE of 0.09, and MAE of 0.08 for the 1st reproductive stage. The Red, RedEdge, NIR, and TIR UAV-bands and their associated indices (CCCI, MTCI, GNDVI, NDRE, Red, TIR) were the most influential variables across all the growth stages. The vegetative V10 stage exhibited the most optimal prediction accuracies (RMSE = 0.03, MAE = 0.02), with the Red band being the most influential predictor variable. Unmanned aerial vehicles are essential for collecting data on the small and fragmented croplands predominant in southern Africa. The procedure facilitates determining crop water stress at different phenological stages to develop timeous response interventions, acting as an early warning system for crops. Full article
Show Figures

Figure 1

27 pages, 3627 KiB  
Article
Research on Remote Sensing Monitoring of Key Indicators of Corn Growth Based on Double Red Edges
by Ying Yin, Chunling Chen, Zhuo Wang, Jie Chang, Sien Guo, Wanning Li, Hao Han, Yuanji Cai and Ziyi Feng
Agronomy 2025, 15(2), 447; https://doi.org/10.3390/agronomy15020447 - 12 Feb 2025
Cited by 1 | Viewed by 1181
Abstract
The variation in crop growth provides critical insights for yield estimation, crop health diagnosis, precision field management, and variable-rate fertilization. This study constructs key monitoring indicators (KMIs) for corn growth based on satellite remote sensing data, along with inversion models for these growth [...] Read more.
The variation in crop growth provides critical insights for yield estimation, crop health diagnosis, precision field management, and variable-rate fertilization. This study constructs key monitoring indicators (KMIs) for corn growth based on satellite remote sensing data, along with inversion models for these growth indicators. Initially, the leaf area index (LAI) and plant height were integrated into the KMI by calculating their respective weights using the entropy weight method. Eight vegetation indices derived from Sentinel-2A satellite remote sensing data were then selected: the Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index (PVI), Soil-Adjusted Vegetation Index (SAVI), Red-Edge Inflection Point (REIP), Inverted Red-Edge Chlorophyll Index (IRECI), Pigment Specific Simple Ratio (PSSRa), Terrestrial Chlorophyll Index (MTCI), and Modified Chlorophyll Absorption Ratio Index (MCARI). A comparative analysis was conducted to assess the correlation of these indices in estimating corn plant height and LAI. Through recursive feature elimination, the most highly correlated indices, REIP and IRECI, were selected as the optimal dual red-edge vegetation indices. A deep neural network (DNN) model was established for estimating corn plant height, achieving optimal performance with an R2 of 0.978 and a root mean square error (RMSE) of 2.709. For LAI estimation, a DNN model optimized using particle swarm optimization (PSO) was developed, yielding an R2 of 0.931 and an RMSE of 0.130. KMI enables farmers and agronomists to monitor crop growth more accurately and in real-time. Finally, this study calculated the KMI by integrating the inversion results for plant height and LAI, providing an effective framework for crop growth assessment using satellite remote sensing data. This successfully enables remote sensing-based growth monitoring for the 2023 experimental field in Haicheng, making the precise monitoring and management of crop growth possible. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

17 pages, 5155 KiB  
Article
Developing a New Method to Rapidly Map Eucalyptus Distribution in Subtropical Regions Using Sentinel-2 Imagery
by Chunxian Tang, Xiandie Jiang, Guiying Li and Dengsheng Lu
Forests 2024, 15(10), 1799; https://doi.org/10.3390/f15101799 - 13 Oct 2024
Cited by 1 | Viewed by 1596
Abstract
Eucalyptus plantations with fast growth and short rotation play an important role in improving economic conditions for local farmers and governments. It is necessary to map and update eucalyptus distribution in a timely manner, but to date, there is a lack of suitable [...] Read more.
Eucalyptus plantations with fast growth and short rotation play an important role in improving economic conditions for local farmers and governments. It is necessary to map and update eucalyptus distribution in a timely manner, but to date, there is a lack of suitable approaches for quickly mapping its spatial distribution in a large area. This research aims to develop a uniform procedure to map eucalyptus distribution at a regional scale using the Sentinel-2 imagery on the Google Earth Engine (GEE) platform. Different seasonal Senstinel-2 images were first examined, and key vegetation indices from the selected seasonal images were identified using random forest and Pearson correlation analysis. The selected key vegetation indices were then normalized and summed to produce new indices for mapping eucalyptus distribution based on the calculated best cutoff values using the ROC (Receiver Operating Characteristic) curve. The uniform procedure was tested in both experimental and test sites and then applied to the entire Fujian Province. The results indicated that the best season to distinguish eucalyptus forests from other forest types was winter. The composite indices for eucalyptus–coniferous forest separation (CIEC) and for eucalyptus–broadleaf forest separation (CIEB), which were synthesized from the enhanced vegetation index (EVI), plant senescing reflectance index (PSRI), shortwave infrared water stress index (SIWSI), and MERIS terrestrial chlorophyll index (MTCI), can effectively differentiate eucalyptus from other forest types. The proposed procedure with the best cutoff values (0.58 for CIEC and 1.29 for CIEB) achieved accuracies of above 90% in all study sites. The eucalyptus classification accuracies in Fujian Province, with a producer’s accuracy of 91%, user’s accuracy of 97%, and overall accuracy of 94%, demonstrate the strong robustness and transferability of this proposed procedure. This research provided a new insight into quickly mapping eucalyptus distribution in subtropical regions. However, more research is still needed to explore the robustness and transferability of this proposed method in tropical regions or in other subtropical regions with different environmental conditions. Full article
Show Figures

Figure 1

17 pages, 4491 KiB  
Article
Comparative Analysis of Water Stress Regimes in Avocado Plants during the Early Development Stage
by Tatiana Rondon, Manuel Guzmán-Hernández, Maria C. Torres-Madronero, Maria Casamitjana, Lucas Cano, July Galeano and Manuel Goez
Plants 2024, 13(18), 2660; https://doi.org/10.3390/plants13182660 - 23 Sep 2024
Cited by 5 | Viewed by 1706
Abstract
The avocado cv. Hass requires a suitable rootstock for optimal development under water stress. This study evaluated the performance of two avocado rootstocks (ANRR88 and ANGI52) grafted onto cv. Hass under four water stress conditions, 50% and 25% deficit, and 50% and 25% [...] Read more.
The avocado cv. Hass requires a suitable rootstock for optimal development under water stress. This study evaluated the performance of two avocado rootstocks (ANRR88 and ANGI52) grafted onto cv. Hass under four water stress conditions, 50% and 25% deficit, and 50% and 25% excess during the nursery stage. Plant height, leaf area (LA), dry matter (DM), and Carbon (OC) content in the roots, stems, and leaves were measured. Root traits were evaluated using digital imaging, and three vegetation indices (NDVI, CIRE, and MTCI) were used to quantify stress. The results showed that genotype significantly influenced the response to water stress. ANRR88 exhibited adaptation to moderate to high water deficits. ANGI52 adapted better to both water deficit and excess, and showed greater root exploration. LA and DM reductions of up to 60% were observed in ANRR88, suggesting a higher sensitivity to extreme changes in water availability. More than 90% of the total OC accumulation was observed in the stem and roots. The NDVI and the MTCI quantified the presence and levels of stress applied, and the 720 nm band provided high precision and speed for detecting stress. These insights are crucial for selecting rootstocks that ensure optimal performance under varying water availability, enhancing productivity and sustainability. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress)
Show Figures

Figure 1

18 pages, 1722 KiB  
Technical Note
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery
by Zachary Mondschein, Ambica Paliwal, Tesfaye Shiferaw Sida, Jordan Chamberlin, Runzi Wang and Meha Jain
Remote Sens. 2024, 16(18), 3451; https://doi.org/10.3390/rs16183451 - 18 Sep 2024
Viewed by 1630
Abstract
Remote sensing offers a low-cost method for estimating yields at large spatio-temporal scales. Here, we examined the ability of Sentinel-2 satellite imagery to map field-level maize yields across smallholder farms in two regions in Oromia district, Ethiopia. We evaluated how effectively different indices, [...] Read more.
Remote sensing offers a low-cost method for estimating yields at large spatio-temporal scales. Here, we examined the ability of Sentinel-2 satellite imagery to map field-level maize yields across smallholder farms in two regions in Oromia district, Ethiopia. We evaluated how effectively different indices, the MTCI, GCVI, and NDVI, and different models, linear regression and random forest regression, can be used to map field-level yields. We also examined if models improved by adding weather and soil data and how generalizable our models were if trained in one region and applied to another region, where no data were used for model calibration. We found that random forest regression models that used monthly MTCI composites led to the highest yield prediction accuracies (R2 up to 0.63), particularly when using only localized data for training the model. These models were not very generalizable, especially when applied to regions that had significant haze remaining in the imagery. We also found that adding soil and weather data did little to improve model fit. Our results highlight the ability of Sentinel-2 imagery to map field-level yields in smallholder systems, though accuracies are limited in regions with high cloud cover and haze. Full article
(This article belongs to the Special Issue Cropland Phenology Monitoring Based on Cloud-Computing Platforms)
Show Figures

Figure 1

14 pages, 3965 KiB  
Article
Time Series Field Estimation of Rice Canopy Height Using an Unmanned Aerial Vehicle-Based RGB/Multispectral Platform
by Ziqiu Li, Xiangqian Feng, Juan Li, Danying Wang, Weiyuan Hong, Jinhua Qin, Aidong Wang, Hengyu Ma, Qin Yao and Song Chen
Agronomy 2024, 14(5), 883; https://doi.org/10.3390/agronomy14050883 - 23 Apr 2024
Cited by 5 | Viewed by 2114
Abstract
Crop plant height is a critical parameter for assessing crop physiological properties, such as above-ground biomass and grain yield and crop health. Current dominant plant height estimation methods are based on digital surface model (DSM) and vegetation indexes (VIs). However, DSM-based methods usually [...] Read more.
Crop plant height is a critical parameter for assessing crop physiological properties, such as above-ground biomass and grain yield and crop health. Current dominant plant height estimation methods are based on digital surface model (DSM) and vegetation indexes (VIs). However, DSM-based methods usually estimate plant height by growth stages, which would result in some discontinuity between growth stages due to different fitting curves. Additionally, there has been limited research on the application of VI-based plant height estimation for multiple crop species. Thus, this study investigated the validity and challenges associated with these methods for estimating canopy heights of multi-variety rice throughout the entire growing season. A total of 474 rice varieties were cultivated in a single season, and RGB images including red, green, and blue bands, DSMs, multispectral images including near infrared and red edge bands, and manually measured plant heights were collected in 2022. DSMs and 26 commonly used VIs were employed to estimate rice canopy heights during the growing season. The plant height estimation using DSMs was performed using different quantiles (50th, 75th, and 95th), while two-stage linear regression (TLR) models based on each VI were developed. The DSM-based method at the 95th quantile showed high accuracy, with an R2 value of 0.94 and an RMSE value of 0.06 m. However, the plant height estimation at the early growth stage showed lower effectiveness, with an R2 < 0. For the VIs, height estimation with MTCI yielded the best results, with an R2 of 0.704. The first stage of the TLR model (maximum R2 = 0.664) was significantly better than the second stage (maximum R2 = 0.133), which indicated that the VIs were more suitable for estimating canopy height at the early growth stage. By grouping the 474 varieties into 15 clusters, the R2 values of the VI-based TLR models exhibited inconsistencies across clusters (maximum R2 = 0.984; minimum R2 = 0.042), which meant that the VIs were suitable for estimating canopy height in the cultivation of similar or specific rice varieties. However, the DSM-based method showed little difference in performance among the varieties, which meant that the DSM-based method was suitable for multi-variety rice breeding. But for specific clusters, the VI-based methods were better than the DSM-based methods for plant height estimation. In conclusion, the DSM-based method at the 95th quantile was suitable for plant height estimation in the multi-variety rice breeding process, and we recommend using DSMs for plant height estimation after 26 DAT. Furthermore, the MTCI-based TLR model was suitable for plant height estimation in monoculture planting or as a correction for DSM-based plant height estimation in the pre-growth period of rice. Full article
(This article belongs to the Special Issue AI, Sensors and Robotics for Smart Agriculture—2nd Edition)
Show Figures

Figure 1

19 pages, 3538 KiB  
Article
Impact of Duckweed (Lemna minor L.) Growing in Paddy Fields on Rice Yield and Its Underlying Causes
by Liquan Jing, Xunkang Wang, Yihan Zhao, Fan Li, Yu Su, Yang Cai, Fucheng Zhao, Guichun Dong, Lianxin Yang and Yunxia Wang
Agronomy 2024, 14(4), 726; https://doi.org/10.3390/agronomy14040726 - 1 Apr 2024
Cited by 2 | Viewed by 2420
Abstract
Duckweed growing in paddy fields (DGP) has substantially increased because of the effects of climate warming and/or eutrophication in irrigated water. Previous studies have primarily focused on investigating the effects of DGP as a nonchemical agent for enhancing rice productivity on nitrogen utilization [...] Read more.
Duckweed growing in paddy fields (DGP) has substantially increased because of the effects of climate warming and/or eutrophication in irrigated water. Previous studies have primarily focused on investigating the effects of DGP as a nonchemical agent for enhancing rice productivity on nitrogen utilization in rice paddy fields. However, how DGP impacts rice yield remains poorly understood. Therefore, a field experiment with three representative rice cultivars was conducted to determine the effects of DGP on rice yield, considering ecological factors, photosynthetic capacity, spectral changes, and plant growth. The results showed that DGP significantly reduced the pH value by 0.6 and the daily water temperature by 0.6 °C, accelerated rice heading by 1.6 days and increased the soil and plant analyzer development (SPAD) and photosynthetic rate of leaves by 10.8% and 14.4% on average, respectively. DGP also markedly enhanced the values of various vegetation indices such as RARSc, MTCI, GCI, NDVI705, CI, CIrededge, mND705, SR705, and GM, and the first derivative curve of the rice canopy reflectance spectrum exhibited a ‘red shift’ phenomenon upon DGP treatment. Changes in the aforementioned factors may lead to average increases of 4.7% in plant height, 15.0% in dry matter weight, 10.6% in panicles m−2, 2.3% in 1000-grain weight, and ultimately a 10.2% increase in grain yield. The correlation observed suggested that the DGP-induced enhancement in grain yield can be achieved by reducing the pH and temperature of the paddy water, thus enhancing the SPAD value and photosynthesis of leaves and stimulating rice plant growth. These results could offer valuable theoretical support for the future sustainable development of agriculture and the environment through the biological synergy between rice and duckweed. Full article
Show Figures

Graphical abstract

22 pages, 5197 KiB  
Article
Comparing Machine Learning Algorithms for Estimating the Maize Crop Water Stress Index (CWSI) Using UAV-Acquired Remotely Sensed Data in Smallholder Croplands
by Mpho Kapari, Mbulisi Sibanda, James Magidi, Tafadzwanashe Mabhaudhi, Luxon Nhamo and Sylvester Mpandeli
Drones 2024, 8(2), 61; https://doi.org/10.3390/drones8020061 - 9 Feb 2024
Cited by 16 | Viewed by 4284
Abstract
Monitoring and mapping crop water stress and variability at a farm scale for cereals such as maize, one of the most common crops in developing countries with 200 million people around the world, is an important objective within precision agriculture. In this regard, [...] Read more.
Monitoring and mapping crop water stress and variability at a farm scale for cereals such as maize, one of the most common crops in developing countries with 200 million people around the world, is an important objective within precision agriculture. In this regard, unmanned aerial vehicle-obtained multispectral and thermal imagery has been adopted to estimate the crop water stress proxy (i.e., Crop Water Stress Index) in conjunction with algorithm machine learning techniques, namely, partial least squares (PLS), support vector machines (SVM), and random forest (RF), on a typical smallholder farm in southern Africa. This study addresses this objective by determining the change between foliar and ambient temperature (Tc-Ta) and vapor pressure deficit to determine the non-water stressed baseline for computing the maize Crop Water Stress Index. The findings revealed a significant relationship between vapor pressure deficit and Tc-Ta (R2 = 0.84) during the vegetative stage between 10:00 and 14:00 (South Africa Standard Time). Also, the findings revealed that the best model for predicting the Crop Water Stress Index was obtained using the random forest algorithm (R2 = 0.85, RMSE = 0.05, MAE = 0.04) using NDRE, MTCI, CCCI, GNDVI, TIR, Cl_Red Edge, MTVI2, Red, Blue, and Cl_Green as optimal variables, in order of importance. The results indicated that NIR, Red, Red Edge derivatives, and thermal band were some of the optimal predictor variables for the Crop Water Stress Index. Finally, using unmanned aerial vehicle data to predict maize crop water stress index on a southern African smallholder farm has shown encouraging results when evaluating its usefulness regarding the use of machine learning techniques. This underscores the urgent need for such technology to improve crop monitoring and water stress assessment, providing valuable insights for sustainable agricultural practices in food-insecure regions. Full article
Show Figures

Figure 1

22 pages, 7180 KiB  
Article
Yield Estimation of Wheat Using Cropland Masks from European Common Agrarian Policy: Comparing the Performance of EVI2, NDVI, and MTCI in Spanish NUTS-2 Regions
by M. A. Garcia-Perez, V. Rodriguez-Galiano, E. Sanchez-Rodriguez and V. Egea-Cobrero
Remote Sens. 2023, 15(22), 5423; https://doi.org/10.3390/rs15225423 - 20 Nov 2023
Cited by 3 | Viewed by 1994
Abstract
Monitoring wheat yield and production is essential for ensuring global food security. Remote sensing can be used to achieve it due to its ability to provide global, comprehensive, synoptic, and repetitive information in near real-time. This study used the 2006–2016 Normalized Difference Vegetation [...] Read more.
Monitoring wheat yield and production is essential for ensuring global food security. Remote sensing can be used to achieve it due to its ability to provide global, comprehensive, synoptic, and repetitive information in near real-time. This study used the 2006–2016 Normalized Difference Vegetation Index (NVDI) and Enhanced Vegetation Index 2 (EVI2) time series at a 250 m spatial resolution and 2006–2011 MERIS Terrestrial Chlorophyll Index (MTCI) time series at a 300 m spatial resolution. The post-maximum period for pixels containing wheat was selected based on the EU’s Common Agrarian Policy (CAP) and Corine Land Cover (CLC) data. It was correlated with yield and production values from governmental statistics (GS) of the largest Nomenclature of Territorial Units for Statistics level 2 (NUTS-2) wheat producers in Spain and for Spain overall. The selection of wheat masks was crucial for the accuracy of the models, with CAP masks offering greater forecasting capability. Models using CLC produced R2 values between 0.45 and 0.7, while those using CAP outperformed the former with R2 values of 0.9 throughout Spain. Production models outperformed yield models, and MTCI was the vegetation index (VI) that provided the greatest R2 value of 0.94. However, model accuracy was heavily conditioned by the precision of input data, where anomalies were detected in some NUTS-2. Full article
Show Figures

Graphical abstract

20 pages, 8325 KiB  
Article
Evaluation of the Monitoring Capability of 20 Vegetation Indices and 5 Mainstream Satellite Band Settings for Drought in Spring Wheat Using a Simulation Method
by Chang Xiao, Yinan Wu and Xiufang Zhu
Remote Sens. 2023, 15(19), 4838; https://doi.org/10.3390/rs15194838 - 6 Oct 2023
Cited by 7 | Viewed by 1920
Abstract
This study simulated the canopy reflectance of spring wheat at five distinct growth stages (jointing, booting, heading, flowering, and pustulation) and under four drought scenarios (no drought, mild drought, moderate drought, and severe drought) using the PROSAIL radiative transfer model, and it identified [...] Read more.
This study simulated the canopy reflectance of spring wheat at five distinct growth stages (jointing, booting, heading, flowering, and pustulation) and under four drought scenarios (no drought, mild drought, moderate drought, and severe drought) using the PROSAIL radiative transfer model, and it identified the wavelength range most sensitive to drought. Additionally, the efficacy of 5 mainstream satellites (Sentinel-2, Landsat 8, Worldview-2, MODIS, and GF-2) and 20 commonly utilized remote sensing vegetation indicators (NDVI, SAVI, EVI, ARVI, GVMI, LSWI, VSDI, NDGI, SWIRR, NDWI, PRI, NDII, MSI, WI, SRWI, DSWI, NDREI1, NDREI2, ZMI, and MTCI) in drought monitoring was evaluated. The results indicated that the spectral response characteristics of spring wheat canopy reflectance vary significantly across the growth stages. Notably, the wavelength ranges of 1405–1505 nm and 2140–2190 nm were identified as optimal for drought monitoring throughout the growth period. Considering only the spectral bands, MODIS band 7 was determined to be the most suitable satellite band for monitoring drought in spring wheat at different growth stages. Among the 20 indices examined, WI, MSI, and SRWI, followed by LSWI and GVMI calculated using MODIS bands 2 and 6 as well as bands 8 and 11 of Sentinel-2, demonstrated superior capabilities in differentiating drought scenarios. These conclusions have important implications because they provide valuable guidance for selecting remote sensing drought monitoring data and vegetation indices, and they present insights for future research on the design of new remote sensing indices for assisting drought monitoring and the configuration of remote sensing satellite sensors. Full article
(This article belongs to the Special Issue Remote Sensing for Agrometeorology II)
Show Figures

Figure 1

24 pages, 17408 KiB  
Article
Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data
by Jianyong Zhang, Yanling Zhao, Zhenqi Hu and Wu Xiao
Agriculture 2023, 13(8), 1621; https://doi.org/10.3390/agriculture13081621 - 17 Aug 2023
Cited by 7 | Viewed by 2347
Abstract
Rapid estimation of above-ground biomass (AGB) with high accuracy is essential for monitoring crop growth status and predicting crop yield. Recently, remote sensing techniques using unmanned aerial systems (UASs) have exhibited great potential in obtaining structural information about crops and identifying spatial heterogeneity. [...] Read more.
Rapid estimation of above-ground biomass (AGB) with high accuracy is essential for monitoring crop growth status and predicting crop yield. Recently, remote sensing techniques using unmanned aerial systems (UASs) have exhibited great potential in obtaining structural information about crops and identifying spatial heterogeneity. However, methods of data fusion of different factors still need to be explored in order to enhance the accuracy of their estimates. Therefore, the objective of this study was to investigate the combined metrics of different variables (spectral, structural and meteorological factors) for AGB estimation of wheat using UAS multispectral data. UAS images were captured on two selected growing dates at a typical reclaimed cropland in the North China Plain. The spectral response was determined using the highly correlated vegetation index (VI). A structural metric, the canopy height model (CHM), was produced using UAS-based multispectral images. The measure of growing degree days (GDD) was selected as a meteorological proxy. Subsequently, a structurally–meteorologically weighted canopy spectral response metric (SM-CSRM) was derived by the pixel-level fusion of CHM, GDD and VI. Both correlation coefficient analysis and simple function fitting were implemented to explore the highest correlation between the measured AGB and each proposed metric. The optimal regression model was built for AGB prediction using leave-one-out cross-validation. The results showed that the proposed SM-CSRM generally improved the correlation between wheat AGB and various VIs and can be used for estimating the wheat AGB. Specifically, the combination of MERIS terrestrial chlorophyll index (MTCI), vegetation-masked CHM (mCHM) and normalized GDD (nGDD) achieved an optimal accuracy (R2 = 0.8069, RMSE = 0.1667 kg/m2, nRMSE = 19.62%) through the polynomial regression method. This improved the nRMSE by 3.44% compared to the predictor using MTCI × mCHM. Moreover, the pixel-level fusion method slightly enhanced the nRMSE by ~0.3% for predicted accuracy compared to the feature-level fusion method. In conclusion, this paper demonstrated that an SM-CSRM using pixel-level fusion with canopy spectral, structural and meteorological factors can obtain a good level of accuracy for wheat biomass prediction. This finding could benefit the assessment of reclaimed cropland or the monitoring of crop growth and field management in precision agriculture. Full article
(This article belongs to the Special Issue Remote Sensing Technologies in Agricultural Crop and Soil Monitoring)
Show Figures

Figure 1

13 pages, 5019 KiB  
Article
Inversion of Wheat Leaf Area Index by Multivariate Red-Edge Spectral Vegetation Index
by Xiaoxuan Wang, Guosheng Cai, Xiaoping Lu, Zenan Yang, Xiangjun Zhang and Qinggang Zhang
Sustainability 2022, 14(23), 15875; https://doi.org/10.3390/su142315875 - 29 Nov 2022
Cited by 13 | Viewed by 1870
Abstract
Leaf area index (LAI) is an important parameter that determines the growth status of winter wheat and impacts the ecological and physical processes of plants in ecosystems. The problem of spectral saturation of winter wheat LAI at the booting stage was easily caused [...] Read more.
Leaf area index (LAI) is an important parameter that determines the growth status of winter wheat and impacts the ecological and physical processes of plants in ecosystems. The problem of spectral saturation of winter wheat LAI at the booting stage was easily caused by the inversion of the univariate red-edge spectral vegetation index constructed by the red-edge band. In this paper, a new method that the univariate red-edge spectral vegetation index constructed in the red-edge band is used to invert the spectral saturation of the winter wheat LAI. The multivariable red-edge spectral vegetation index is used to invert the winter wheat LAI. This method can effectively delay the phenomenon of spectral saturation and improve the inversion precision. In this study, the Sentinel-2 data were used to invert the winter wheat LAI. An univariate and multivariate red-edge spectral vegetation index regression model was constructed based on the Red-edge Normalized Difference Spectral Indices 1 (NDSI1), Red-edge Normalized Difference Spectral Indices 2 (NDSI2), Red-edge Normalized Difference Spectral Indices 3 (NDSI3), Modified Chlorophyll Absorption Ratio Index (MCARI), MERIS Terrestrial Chlorophyll Index (MTCI), Transformed Chlorophyll Absorption in Reflectance Index (TCARI), and Transformed Chlorophyll Absorption in Reflectance Index/the optimized soil adjusted vegetation index (TCARI/OSAVI). Based on the correlation coefficient, the coefficient of determination (R2), the root mean square error (RMSE) and noise equivalent value (NE), the best model was selected and verified to generate an inverted map. The results showed that the multivariable red-edge spectral vegetation index of NDSI1 + NDSI2 + NDSI3 + TCARI/OSAVI + MCARI + MTCI + TCARI was the best model for inverting the winter wheat LAI. The R2, the RMSE and the NE values were all satisfied the requirements of the inversion precision (R2 = 0.8372/0.8818, RMSE = 0.2518/0.1985, NE = 5/5). In summary, this method can be used to judge the growth of winter wheat and provide an accurate basis for monitoring crop growth. Full article
Show Figures

Figure 1

21 pages, 3814 KiB  
Article
Winter Wheat Yield Estimation Based on Optimal Weighted Vegetation Index and BHT-ARIMA Model
by Qiuzhuo Deng, Mengxuan Wu, Haiyang Zhang, Yuntian Cui, Minzan Li and Yao Zhang
Remote Sens. 2022, 14(9), 1994; https://doi.org/10.3390/rs14091994 - 21 Apr 2022
Cited by 10 | Viewed by 2726
Abstract
This study aims to use remote sensing (RS) time-series data to explore the intrinsic relationship between crop growth and yield formation at different fertility stages and construct a high-precision winter wheat yield estimation model applicable to short time-series RS data. Sentinel-2 images were [...] Read more.
This study aims to use remote sensing (RS) time-series data to explore the intrinsic relationship between crop growth and yield formation at different fertility stages and construct a high-precision winter wheat yield estimation model applicable to short time-series RS data. Sentinel-2 images were acquired in this study at six key phenological stages (rejuvenation stage, rising stage, jointing stage, heading stage, filling stage, filling-maturity stage) of winter wheat growth, and various vegetation indexes (VIs) at different fertility stages were calculated. Based on the characteristics of yield data continuity, the RReliefF algorithm was introduced to filter the optimal vegetation index combinations suitable for the yield estimation of winter wheat for all fertility stages. The Absolutely Objective Improved Analytic Hierarchy Process (AOIAHP) was innovatively proposed to determine the proportional contribution of crop growth to yield formation in six different phenological stages. The selected VIs consisting of MTCI(RE2), EVI, REP, MTCI(RE1), RECI(RE1), NDVI(RE1), NDVI(RE3), NDVI(RE2), NDVI, and MSAVI were then fused with the weights of different fertility periods to obtain time-series weighted data. For the characteristics of short time length and a small number of sequences of RS time-series data in yield estimation, this study applied the multiplexed delayed embedding transformation (MDT) technique to realize the data augmentation of the original short time series. Tucker decomposition was performed on the block Hankel tensor (BHT) obtained after MDT enhancement, and the core tensor was extracted while preserving the intrinsic connection of the time-series data. Finally, the resulting multidimensional core tensor was trained with the Autoregressive Integrated Moving Average (ARIMA) model to obtain the BHT-ARIMA model for wheat yield estimation. Compared to the performance of the BHT-ARIMA model with unweighted time-series data as input, the weighted time-series input significantly improves yield estimation accuracy. The coefficients of determination (R2) were improved from 0.325 to 0.583. The root mean square error (RMSE) decreased from 492.990 to 323.637 kg/ha, the mean absolute error (MAE) dropped from 350.625 to 255.954, and the mean absolute percentage error (MAPE) decreased from 4.332% to 3.186%. Besides, BHT-ARMA and BHT-CNN models were also used to compare with BHT-ARIMA. The results indicated that the BHT-ARIMA model still had the best yield prediction accuracy. The proposed method of this study will provide fast and accurate guidance for crop yield estimation and will be of great value for the processing and application of time-series RS data. Full article
(This article belongs to the Special Issue Remote Sensing of Crop Lands and Crop Production)
Show Figures

Graphical abstract

18 pages, 3828 KiB  
Article
Spectral-Based Monitoring of Climate Effects on the Inter-Annual Variability of Different Plant Functional Types in Mediterranean Cork Oak Woodlands
by Cristina Soares, João M. N. Silva, Joana Boavida-Portugal and Sofia Cerasoli
Remote Sens. 2022, 14(3), 711; https://doi.org/10.3390/rs14030711 - 2 Feb 2022
Cited by 4 | Viewed by 2573
Abstract
Using remotely sensed data to estimate the biophysical properties of vegetation in woodlands is a challenging task due to their heterogeneous nature. The objective of this study was to assess the biophysical parameters of different vegetation types (cork oak trees, shrubs and herbaceous [...] Read more.
Using remotely sensed data to estimate the biophysical properties of vegetation in woodlands is a challenging task due to their heterogeneous nature. The objective of this study was to assess the biophysical parameters of different vegetation types (cork oak trees, shrubs and herbaceous vegetation) in cork oak woodland through the analysis of temporal trends in spectral vegetation indices (VIs). A seven-year database (from 2011 until 2017) of in situ observations collected with a field spectroradiometer with a monthly basis was used and four VIs were derived, considered as proxies for several biophysical properties of vegetation such as biomass (Normalized Difference Vegetation Index—NDVI); chlorophyll content (MERIS Terrestrial Chlorophyll Index-MTCI), tissue water content (Normalized Difference Water Index—NDWI) and the carotenoid/chlorophyll ratio (Photochemical Reflectance Index—PRI). During the analyzed period, some key meteorological data (precipitation, temperature, relative air humidity and global radiation) were collected for the study site, aggregated at three different time-lags (short period (30 d), medium period (90 d) and hydrological period (HIDR)), and their relationship with VIs was analyzed. The results showed different trends for each vegetation index and vegetation type. In NDVI and NDWI, herbaceous vegetation showed a highly marked seasonal trend, whereas for MTCI, it was the cork oak and Cistus salvifolius, and for PRI, it was Ulex airensis that showed the marked seasonal trend. Shrubs have large differences depending on the species: the shallow-rooted Cistus salvifolius showed a higher seasonal variability than the deep-rooted Ulex airensis. Our results revealed the importance of temperature and precipitation as the main climatic variables influencing VI variability in the four studied vegetation types. This study sets up the relationships between climate and vegetation indices for each vegetation type. Spectral vegetation indices are useful tools for assessing the impact of climate on vegetation, because using these makes it easier to monitor the amount of “greenness”, biomass and water stress of vegetation than assessing the photosynthetic efficiency. Proximal remote sensing measurements are fundamental for the correct use of remote sensing in monitoring complex agroforest ecosystems, largely used to inform policies to improve resilience to drought, particularly in the Mediterranean region. Full article
Show Figures

Figure 1

Back to TopTop