Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = MOR/DOR agonists

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1394 KB  
Article
Effects of Selective and Mixed-Action Kappa and Delta Opioid Receptor Agonists on Pain-Related Behavioral Depression in Mice
by S. Stevens Negus, Celsey M. St. Onge, Young K. Lee, Mengchu Li, Kenner C. Rice and Yan Zhang
Molecules 2024, 29(14), 3331; https://doi.org/10.3390/molecules29143331 - 16 Jul 2024
Cited by 5 | Viewed by 2984
Abstract
We recently developed a series of nalfurafine analogs (TK10, TK33, and TK35) that may serve as non-addictive candidate analgesics. These compounds are mixed-action agonists at the kappa and delta opioid receptors (KOR and DOR, respectively) and produce antinociception in a mouse warm-water tail-immersion [...] Read more.
We recently developed a series of nalfurafine analogs (TK10, TK33, and TK35) that may serve as non-addictive candidate analgesics. These compounds are mixed-action agonists at the kappa and delta opioid receptors (KOR and DOR, respectively) and produce antinociception in a mouse warm-water tail-immersion test while failing to produce typical mu opioid receptor (MOR)-mediated side effects. The warm-water tail-immersion test is an assay of pain-stimulated behavior vulnerable to false-positive analgesic-like effects by drugs that produce motor impairment. Accordingly, this study evaluated TK10, TK33, and TK35 in a recently validated assay of pain-related behavioral depression in mice that are less vulnerable to false-positive effects. For comparison, we also evaluated the effects of the MOR agonist/analgesic hydrocodone (positive control), the neurokinin 1 receptor (NK1R) antagonist aprepitant (negative control), nalfurafine as a selective KOR agonist, SNC80 as a selective DOR agonist, and a nalfurafine/SNC80 mixture. Intraperitoneal injection of dilute lactic acid (IP lactic acid) served as a noxious stimulus to depress vertical and horizontal locomotor activity in male and female ICR mice. IP lactic acid-induced locomotor depression was alleviated by hydrocodone but not by aprepitant, nalfurafine, SNC80, the nalfurafine/SNC80 mixture, or the KOR/DOR agonists. These results suggest that caution is warranted in advancing mixed-action KOR/DOR agonists as candidate analgesics. Full article
Show Figures

Figure 1

34 pages, 5254 KB  
Article
Functional Activity of Enantiomeric Oximes and Diastereomeric Amines and Cyano Substituents at C9 in 3-Hydroxy-N-phenethyl-5-phenylmorphans
by Hudson G. Roth, Madhurima Das, Agnieszka Sulima, Dan Luo, Sophia Kaska, Thomas E. Prisinzano, Andrew T. Kerr, Arthur E. Jacobson and Kenner C. Rice
Molecules 2024, 29(9), 1926; https://doi.org/10.3390/molecules29091926 - 23 Apr 2024
Cited by 2 | Viewed by 2068
Abstract
The synthesis of stereochemically pure oximes, amines, saturated and unsaturated cyanomethyl compounds, and methylaminomethyl compounds at the C9 position in 3-hydroxy-N-phenethyl-5-phenylmorphans provided μ-opioid receptor (MOR) agonists with varied efficacy and potency. One of the most interesting compounds, (2-((1S,5R [...] Read more.
The synthesis of stereochemically pure oximes, amines, saturated and unsaturated cyanomethyl compounds, and methylaminomethyl compounds at the C9 position in 3-hydroxy-N-phenethyl-5-phenylmorphans provided μ-opioid receptor (MOR) agonists with varied efficacy and potency. One of the most interesting compounds, (2-((1S,5R,9R)-5-(3-hydroxyphenyl)-2-phenethyl-2-azabicyclo[3.3.1]nonan-9-yl)acetonitrile), was found to be a potent partial MOR agonist (EC50 = 2.5 nM, %Emax = 89.6%), as determined in the forskolin-induced cAMP accumulation assay. Others ranged in potency and efficacy at the MOR, from nanomolar potency with a C9 cyanomethyl compound (EC50 = 0.85 nM) to its totally inactive diastereomer, and three compounds exhibited weak MOR antagonist activity (the primary amine 3, the secondary amine 8, and the cyanomethyl compound 41). Many of the compounds were fully efficacious; their efficacy and potency were affected by both the stereochemistry of the molecule and the specific C9 substituent. Most of the MOR agonists were selective in their receptor interactions, and only a few had δ-opioid receptor (DOR) or κ-opioid receptor (KOR) agonist activity. Only one compound, a C9-methylaminomethyl-substituted phenylmorphan, was moderately potent and fully efficacious as a KOR agonist (KOR EC50 = 18 nM (% Emax = 103%)). Full article
Show Figures

Graphical abstract

18 pages, 3479 KB  
Article
Identification and Pharmacological Characterization of a Low-Liability Antinociceptive Bifunctional MOR/DOR Cyclic Peptide
by Yangmei Li, Shainnel O. Eans, Michelle Ganno-Sherwood, Abbe Eliasof, Richard A. Houghten and Jay P. McLaughlin
Molecules 2023, 28(22), 7548; https://doi.org/10.3390/molecules28227548 - 11 Nov 2023
Cited by 5 | Viewed by 2836
Abstract
Peptide-based opioid ligands are important candidates for the development of novel, safer, and more effective analgesics to treat pain. To develop peptide-based safer analgesics, we synthesized a mixture-based cyclic pentapeptide library containing a total of 24,624 pentapeptides and screened the mixture-based library samples [...] Read more.
Peptide-based opioid ligands are important candidates for the development of novel, safer, and more effective analgesics to treat pain. To develop peptide-based safer analgesics, we synthesized a mixture-based cyclic pentapeptide library containing a total of 24,624 pentapeptides and screened the mixture-based library samples using a 55 °C warm water tail-withdrawal assay. Using this phenotypic screening approach, we deconvoluted the mixture-based samples to identify a novel cyclic peptide Tyr-[D-Lys-Dap(Ant)-Thr-Gly] (CycloAnt), which produced dose- and time-dependent antinociception with an ED50 (and 95% confidence interval) of 0.70 (0.52–0.97) mg/kg i.p. mediated by the mu-opioid receptor (MOR). Additionally, higher doses (≥3 mg/kg, i.p.) of CycloAnt antagonized delta-opioid receptors (DOR) for at least 3 h. Pharmacological characterization of CycloAnt showed the cyclic peptide did not reduce breathing rate in mice at doses up to 15 times the analgesic ED50 value, and produced dramatically less hyperlocomotion than the MOR agonist, morphine. While chronic administration of CycloAnt resulted in antinociceptive tolerance, it was without opioid-induced hyperalgesia and with significantly reduced signs of naloxone-precipitated withdrawal, which suggested reduced physical dependence compared to morphine. Collectively, the results suggest this dual MOR/DOR multifunctional ligand is an excellent lead for the development of peptide-based safer analgesics. Full article
Show Figures

Graphical abstract

20 pages, 8829 KB  
Article
A MOR Antagonist with High Potency and Antagonist Efficacy among Diastereomeric C9-Alkyl-Substituted N-Phenethyl-5-(3-hydroxy)phenylmorphans
by Dana R. Chambers, Agnieszka Sulima, Dan Luo, Thomas E. Prisinzano, Arthur E. Jacobson and Kenner C. Rice
Molecules 2023, 28(14), 5411; https://doi.org/10.3390/molecules28145411 - 14 Jul 2023
Cited by 4 | Viewed by 2059
Abstract
The 5-(3-hydroxy)phenylmorphan structural class of compounds are unlike the classical morphinans, 4,5-epoxymorphinans, and 6,7-benzomorphans, in that they have an equatorially oriented aromatic ring rather than the axial orientation of that ring found in the classical opioids. This modified and simplified opioid-like structure has [...] Read more.
The 5-(3-hydroxy)phenylmorphan structural class of compounds are unlike the classical morphinans, 4,5-epoxymorphinans, and 6,7-benzomorphans, in that they have an equatorially oriented aromatic ring rather than the axial orientation of that ring found in the classical opioids. This modified and simplified opioid-like structure has been shown to retain antinociceptive activity, depending on its stereochemistry and substituents, and some of them have been found to be much more potent than morphine. A simple C9-hydroxy-5-(3-hydroxy)phenylmorphan enantiomer was found to be about 500 times more potent than morphine in vivo. We have previously examined C9-alkenyl and hydroxyalkyl substituents in the N-phenethyl-5-(3-hydroxy)phenylmorphan class of compounds. Comparable C9-alkyl (methyl through butyl) substituents, with their sets of diastereomers, have not been explored. All these compounds have now been synthesized to determine the effect chain-length and stereochemistry at the C9 position in the molecule might have on their interaction with opioid receptors. We now report the synthesis and in vitro activity of 16 compounds, the C9-methyl, ethyl, propyl, and butyl diastereomers, using the inhibition of forskolin-induced cAMP accumulation assay. Several potent (sub-nanomolar and nanomolar) MOR compounds were found to be selective agonists with varying efficacy. Of greatest interest, a selective MOR antagonist was discovered; it did not display any DOR or KOR agonist activity in vitro, was three times more potent than naltrexone, and was found to antagonize the EC90 of fentanyl at MOR to a greater extent than naltrexone. Full article
Show Figures

Graphical abstract

29 pages, 5398 KB  
Article
Discovery of a Potent Highly Biased MOR Partial Agonist among Diastereomeric C9-Hydroxyalkyl-5-phenylmorphans
by Joshua A. Lutz, Agnieszka Sulima, Eugene S. Gutman, Eric W. Bow, Dan Luo, Sophia Kaska, Thomas E. Prisinzano, Carol A. Paronis, Jack Bergman, Gregory H. Imler, Andrew T. Kerr, Arthur E. Jacobson and Kenner C. Rice
Molecules 2023, 28(12), 4795; https://doi.org/10.3390/molecules28124795 - 15 Jun 2023
Cited by 14 | Viewed by 2821
Abstract
All possible diastereomeric C9-hydroxymethyl-, hydroxyethyl-, and hydroxypropyl-substituted 5-phenylmorphans were synthesized to explore the three-dimensional space around the C9 substituent in our search for potent MOR partial agonists. These compounds were designed to lessen the lipophilicity observed with their C9-alkenyl substituted relatives. Many of [...] Read more.
All possible diastereomeric C9-hydroxymethyl-, hydroxyethyl-, and hydroxypropyl-substituted 5-phenylmorphans were synthesized to explore the three-dimensional space around the C9 substituent in our search for potent MOR partial agonists. These compounds were designed to lessen the lipophilicity observed with their C9-alkenyl substituted relatives. Many of the 12 diastereomers that were obtained were found to have nanomolar or subnanomolar potency in the forskolin-induced cAMP accumulation assay. Almost all these potent compounds were fully efficacious, and three of those chosen for in vivo evaluation, 15, 21, and 36, were all extremely G-protein biased; none of the three compounds recruited beta-arrestin2. Only one of the 12 diastereomers, 21 (3-((1S,5R,9R)-9-(2-hydroxyethyl)-2-phenethyl-2-azabicyclo[3.3.1]nonan-5-yl)phenol), was a MOR partial agonist with good, but not full, efficacy (Emax = 85%) and subnanomolar potency (EC50 = 0.91 nM) in the cAMP assay. It did not have any KOR agonist activity. This compound was unlike morphine in that it had a limited ventilatory effect in vivo. The activity of 21 could be related to one or more of three well-known theories that attempt to predict a dissociation of the desired analgesia from the undesirable opioid-like side-effects associated with clinically used opioids. In accordance with the theories, 21 was a potent MOR partial agonist, it was highly G-protein biased and did not attract beta-arrestin2, and it was found to have both MOR and DOR agonist activity. All the other diastereomers that were synthesized were either much less potent than 21 or had either too little or too much efficacy for our purposes. It was also noted that a C9-methoxymethyl compound with 1R,5S,9R stereochemistry (41) was more potent than the comparable C9-hydroxymethyl compound 11 (EC50 = 0.65 nM for 41 vs. 2.05 nM for 11). Both 41 and 11 were fully efficacious. Full article
Show Figures

Graphical abstract

29 pages, 9817 KB  
Article
A Journey through Diastereomeric Space: The Design, Synthesis, In Vitro and In Vivo Pharmacological Activity, and Molecular Modeling of Novel Potent Diastereomeric MOR Agonists and Antagonists
by Dana R. Chambers, Agnieszka Sulima, Dan Luo, Thomas E. Prisinzano, Alexander Goldberg, Bing Xie, Lei Shi, Carol A. Paronis, Jack Bergman, Nima Nassehi, Dana E. Selley, Gregory H. Imler, Arthur E. Jacobson and Kenner C. Rice
Molecules 2022, 27(19), 6455; https://doi.org/10.3390/molecules27196455 - 30 Sep 2022
Cited by 9 | Viewed by 3303
Abstract
Four sets of diastereomeric C9-alkenyl 5-phenylmorphans, varying in the length of the C9-alkenyl chain, were designed to examine the effect of these spatially distinct ligands on opioid receptors. Functional activity was obtained by forskolin-induced cAMP accumulation assays and several compounds were examined in [...] Read more.
Four sets of diastereomeric C9-alkenyl 5-phenylmorphans, varying in the length of the C9-alkenyl chain, were designed to examine the effect of these spatially distinct ligands on opioid receptors. Functional activity was obtained by forskolin-induced cAMP accumulation assays and several compounds were examined in the [35S]GTPgS assay and in an assay for respiratory depression. In each of the four sets, similarities and differences were observed dependent on the length of their C9-alkenyl chain and, most importantly, their stereochemistry. Three MOR antagonists were found to be as or more potent than naltrexone and, unlike naltrexone, none had MOR, KOR, or DOR agonist activity. Several potent MOR full agonists were obtained, and, of particular interest partial agonists were found that exhibited less respiratory depression than that caused by morphine. The effect of stereochemistry and the length of the C9-alkenyl chain was also explored using molecular modeling. The MOR antagonists were found to interact with the inactive (4DKL) MOR crystal structures and agonists were found to interact with the active (6DDF) MOR crystal structures. The comparison of their binding modes at the mouse MOR was used to gain insight into the structural basis for their stereochemically induced pharmacological differences. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

15 pages, 1595 KB  
Article
Novel N-normetazocine Derivatives with Opioid Agonist/Sigma-1 Receptor Antagonist Profile as Potential Analgesics in Inflammatory Pain
by Rita Turnaturi, Santina Chiechio, Lorella Pasquinucci, Salvatore Spoto, Giuliana Costanzo, Maria Dichiara, Silvia Piana, Margherita Grasso, Emanuele Amata, Agostino Marrazzo and Carmela Parenti
Molecules 2022, 27(16), 5135; https://doi.org/10.3390/molecules27165135 - 12 Aug 2022
Cited by 12 | Viewed by 3001
Abstract
Although opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common drugs used in persistent pain treatment; they have shown many side effects. The development of new analgesics endowed with mu opioid receptor/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR-selective [...] Read more.
Although opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common drugs used in persistent pain treatment; they have shown many side effects. The development of new analgesics endowed with mu opioid receptor/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR-selective compounds. Moreover, new mechanisms, such as sigma-1 receptor (σ1R) antagonism, could be an opioid adjuvant strategy. The in vitro σ1R and σ2R profiles of previous synthesized MOR/DOR agonists (−)-2R/S-LP2 (1), (−)-2R-LP2 (2), and (−)-2S-LP2 (3) were assayed. To investigate the pivotal role of N-normetazocine stereochemistry, we also synthesized the (+)-2R/S-LP2 (7), (+)-2R-LP2 (8), and (+)-2S-LP2 (9) compounds. (−)-2R/S-LP2 (1), (−)-2R-LP2 (2), and (−)-2S-LP2 (3) compounds have Ki values for σ1R ranging between 112.72 and 182.81 nM, showing a multitarget opioid/σ1R profile. Instead, (+)-2R/S-LP2 (7), (+)-2R-LP2 (8), and (+)-2S-LP2 (9) isomers displayed a nanomolar affinity for σ1R, with significative selectivity vs. σ2R and opioid receptors. All isomers were evaluated using an in vivo formalin test. (−)-2S-LP2, at 0.7 mg/kg i.p., showed a significative and naloxone-reversed analgesic effect. The σ1R selective compound (+)-2R/S-LP2 (7), at 5.0 mg/kg i.p., decreased the second phase of the formalin test, showing an antagonist σ1R profile. The multitarget or single target profile of assayed N-normetazocine derivatives could represent a promising pharmacological strategy to enhance opioid potency and/or increase the safety margin. Full article
(This article belongs to the Special Issue Synthesis and Application of Opioids)
Show Figures

Figure 1

17 pages, 5158 KB  
Article
Hydrogen Sulfide Increases the Analgesic Effects of µ- and δ-Opioid Receptors during Neuropathic Pain: Pathways Implicated
by Xue Bai, Gerard Batallé, Gianfranco Balboni and Olga Pol
Antioxidants 2022, 11(7), 1321; https://doi.org/10.3390/antiox11071321 - 4 Jul 2022
Cited by 9 | Viewed by 3037
Abstract
Recent studies have revealed that hydrogen sulfide (H2S) increases the analgesic actions of the δ-opioid receptor (DOR) in inflammatory pain. However, the possible improvement of the analgesia of μ-opioid receptor (MOR) and DOR agonists during neuropathic pain, through pretreatment with two [...] Read more.
Recent studies have revealed that hydrogen sulfide (H2S) increases the analgesic actions of the δ-opioid receptor (DOR) in inflammatory pain. However, the possible improvement of the analgesia of μ-opioid receptor (MOR) and DOR agonists during neuropathic pain, through pretreatment with two slow-releasing H2S donors—DADS (diallyl disulfide) and GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex)—is still unknown. In male C57BL/6J mice with neuropathic pain incited by chronic constriction of the sciatic nerve (CCI), we evaluated: (1) the influence of DADS (3.5 mg/kg) and GYY4137 (0.7 mg/kg) on the inhibition of the allodynia and hyperalgesia produced by the systemic or local administration of morphine (3 mg/kg or 65 µg) and UFP-512 (1 mg/kg or 12.5 µg); (2) the reversion of the antinociceptive actions of high doses of DADS (30 mg/kg) and GYY4137 (24 mg/kg) with MOR and DOR antagonists; and (3) the effects of H2S donors on oxidative stress, apoptotic responses, and MOR and DOR expression in the medial septum (MS) and dorsal root ganglia (DRG). The results revealed that both DADS and GYY4137 improved the antiallodynic effects of morphine and UFP-512, possibly by up-regulating MOR and DOR expression in DRG. The administration of MOR and DOR antagonists blocked the analgesic properties of DADS and GYY4137, revealing the feasible participation of the endogenous opioid system in H2S analgesic effects. Moreover, both H2S donors inhibited oxidative stress and apoptosis generated by CCI in the MS and/or DRG. This study suggests the co-treatment of H2S donors with MOR or DOR agonists as a potential therapy for neuropathic pain. Full article
Show Figures

Figure 1

21 pages, 4104 KB  
Article
In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist
by Kristina Puls, Aina-Leonor Olivé-Marti, Szymon Pach, Birgit Pinter, Filippo Erli, Gerhard Wolber and Mariana Spetea
Pharmaceuticals 2022, 15(6), 680; https://doi.org/10.3390/ph15060680 - 28 May 2022
Cited by 6 | Viewed by 5425
Abstract
Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR [...] Read more.
Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR and delta-opioid receptor (DOR) remain elusive. In this study, we present an in vitro, in vivo and in silico characterization of Compound A by revealing this ligand as a KOR antagonist in vitro and in vivo. In the radioligand competitive binding assay, Compound A bound at the human KOR, albeit with moderate affinity, but with increased affinity than to the human MOR and without specific binding at the human DOR, thus displaying a preferential KOR selectivity profile. Following subcutaneous administration in mice, Compound A effectively reverse the antinociceptive effects of the prototypical KOR agonist, U50,488. In silico investigations were carried out to assess the structural determinants responsible for opioid receptor subtype selectivity of Compound A. Molecular docking, molecular dynamics simulations and dynamic pharmacophore (dynophore) generation revealed differences in the stabilization of the chlorophenyl moiety of Compound A within the opioid receptor binding pockets, rationalizing the experimentally determined binding affinity values. This new chemotype bears the potential for favorable ADMET properties and holds promise for chemical optimization toward the development of potential therapeutics. Full article
(This article belongs to the Special Issue Medicinal Chemistry and Pharmacological Activities of Opioid Drugs)
Show Figures

Graphical abstract

19 pages, 3770 KB  
Article
Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the µ-, δ-, κ-Opioid and Nociceptin Receptors
by Kristina Puls, Helmut Schmidhammer, Gerhard Wolber and Mariana Spetea
Molecules 2022, 27(3), 919; https://doi.org/10.3390/molecules27030919 - 28 Jan 2022
Cited by 11 | Viewed by 3892
Abstract
Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual μ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, [...] Read more.
Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual μ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, its binding mode at the opioid receptors remains elusive. Here, we present a comprehensive in silico evaluation of HS-731 binding at all opioid receptors. We provide insights into dynamic interaction patterns explaining the different binding and activity of HS-731 on the opioid receptors. For this purpose, we conducted docking, performed molecular dynamics (MD) simulations and generated dynamic pharmacophores (dynophores). Our results highlight two residues important for HS-731 recognition at the classical opioid receptors (MOR, DOR and KOR), particular the conserved residue 5.39 (K) and the non-conserved residue 6.58 (MOR: K, DOR: W and KOR: E). Furthermore, we assume a salt bridge between the transmembrane helices (TM) 5 and 6 via K2275.39 and E2976.58 to be responsible for the partial agonism of HS-731 at the KOR. Additionally, we experimentally demonstrated the absence of affinity of HS-731 to the nociceptin/orphanin FQ peptide (NOP) receptor. We consider the morphinan phenol Y1303.33 responsible for this affinity lack. Y1303.33 points deep into the NOP receptor binding pocket preventing HS-731 binding to the orthosteric binding pocket. These findings provide significant structural insights into HS-731 interaction pattern with the opioid receptors that are important for understanding the pharmacology of this peripheral opioid analgesic. Full article
Show Figures

Graphical abstract

14 pages, 3110 KB  
Article
Characterization of the Synergistic Effect between Ligands of Opioid and Free Fatty Acid Receptors in the Mouse Model of Colitis
by Agata Binienda, Adam Makaro, Marcin Talar, Julia B. Krajewska, Aleksandra Tarasiuk, Adrian Bartoszek, Adam Fabisiak, Paula Mosińska, Karolina Niewinna, Katarzyna Dziedziczak, Mikołaj Świerczyński, Radzisław Kordek, Maciej Salaga and Jakub Fichna
Molecules 2021, 26(22), 6827; https://doi.org/10.3390/molecules26226827 - 11 Nov 2021
Cited by 3 | Viewed by 2993
Abstract
Background: Recent studies suggest that lipids, including free fatty acids (FFAs), are necessary for proper μ opioid receptor (MOR) binding and that activation of opioid receptors (ORs) improves intestinal inflammation. The objective of the study was to investigate a possible interaction between the [...] Read more.
Background: Recent studies suggest that lipids, including free fatty acids (FFAs), are necessary for proper μ opioid receptor (MOR) binding and that activation of opioid receptors (ORs) improves intestinal inflammation. The objective of the study was to investigate a possible interaction between the ORs and FFA receptors (FFARs) ligands in the colitis. Methods: The potential synergistic effect of ORs and FFARs ligands was evaluated using mouse model of acute colitis induced by dextran sulfate sodium (DSS, 4%). Compounds were injected intraperitoneally (i.p.) once or twice daily at the doses of 0.01 or 0.02 mg/kg body weight (BW) (DAMGO—an MOR agonist), 0.3 mg/kg BW (DPDPE—a δ OR (DOR) agonist) and 1 mg/kg BW (naloxone—a non-selective OR antagonist, GLPG 0974—a FFAR2 antagonist, GSK 137647—a FFAR4 agonist and AH 7614—a FFAR4 antagonist) for 4 days. Results: Myeloperoxidase (MPO) activity was significantly decreased after DAMGO (0.02 mg/kg BW) and GSK 137647 (1 mg/kg BW) administration and co-administration as compared to DSS group. Conclusions: Treatment with ligands of ORs and FFARs may affect the immune cells in the inflammation; however, no significant influence on the severity of colitis and no synergistic effect were observed. Full article
Show Figures

Figure 1

17 pages, 2586 KB  
Article
Oxytocin Is a Positive Allosteric Modulator of κ-Opioid Receptors but Not δ-Opioid Receptors in the G Protein Signaling Pathway
by Kanako Miyano, Yuki Yoshida, Shigeto Hirayama, Hideki Takahashi, Haruka Ono, Yoshiyuki Meguro, Sei Manabe, Akane Komatsu, Miki Nonaka, Takaaki Mizuguchi, Hideaki Fujii, Yoshikazu Higami, Minoru Narita and Yasuhito Uezono
Cells 2021, 10(10), 2651; https://doi.org/10.3390/cells10102651 - 4 Oct 2021
Cited by 15 | Viewed by 6124
Abstract
Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances μ-opioid receptor [...] Read more.
Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances μ-opioid receptor (MOR) activity. In this study, which focused on other opioid receptor (OR) subtypes, we investigated whether OT influences opioid signaling pathways as a PAM for δ-OR (DOR) or κ-OR (KOR) using human embryonic kidney-293 cells expressing human DOR or KOR, respectively. The CellKeyTM results showed that OT enhanced impedance induced by endogenous/exogenous KOR agonists on KOR-expressing cells. OT did not affect DOR activity induced by endogenous/exogenous DOR agonists. OT potentiated the KOR agonist-induced Gi/o protein-mediated decrease in intracellular cAMP, but did not affect the increase in KOR internalization caused by the KOR agonists dynorphin A and (-)-U-50488 hydrochloride (U50488). OT did not bind to KOR orthosteric binding sites and did not affect the binding affinities of dynorphin A and U50488 for KOR. These results suggest that OT is a PAM of KOR and MOR and enhances G protein signaling without affecting β-arrestin signaling. Thus, OT has potential as a specific signaling-biased PAM of KOR. Full article
(This article belongs to the Special Issue Cell Biology: State-of-the-Art and Perspectives in Japan)
Show Figures

Figure 1

16 pages, 1361 KB  
Article
Harnessing the Anti-Nociceptive Potential of NK2 and NK3 Ligands in the Design of New Multifunctional μ/δ-Opioid Agonist–Neurokinin Antagonist Peptidomimetics
by Charlène Gadais, Justyna Piekielna-Ciesielska, Jolien De Neve, Charlotte Martin, Anna Janecka and Steven Ballet
Molecules 2021, 26(17), 5406; https://doi.org/10.3390/molecules26175406 - 6 Sep 2021
Cited by 8 | Viewed by 3675
Abstract
Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a [...] Read more.
Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic μ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual μ/δ opioid agonist H-Dmt-d-Arg-Aba-βAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range μ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids. Full article
(This article belongs to the Special Issue A Themed Issue Dedicated to Professor Victor Hruby)
Show Figures

Graphical abstract

20 pages, 4189 KB  
Article
Palmitoylation of Prolactin-Releasing Peptide Increased Affinity for and Activation of the GPR10, NPFF-R2 and NPFF-R1 Receptors: In Vitro Study
by Alena Karnošová, Veronika Strnadová, Lucie Holá, Blanka Železná, Jaroslav Kuneš and Lenka Maletínská
Int. J. Mol. Sci. 2021, 22(16), 8904; https://doi.org/10.3390/ijms22168904 - 18 Aug 2021
Cited by 13 | Viewed by 3626
Abstract
The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) [...] Read more.
The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects. Full article
(This article belongs to the Special Issue Neuropeptides in Food Intake Regulation)
Show Figures

Figure 1

13 pages, 3065 KB  
Article
Multifunctional Enkephalin Analogs with a New Biological Profile: MOR/DOR Agonism and KOR Antagonism
by Yeon Sun Lee, Michael Remesic, Cyf Ramos-Colon, Zhijun Wu, Justin LaVigne, Gabriella Molnar, Dagmara Tymecka, Aleksandra Misicka, John M. Streicher, Victor J. Hruby and Frank Porreca
Biomedicines 2021, 9(6), 625; https://doi.org/10.3390/biomedicines9060625 - 31 May 2021
Cited by 7 | Viewed by 3642
Abstract
In our previous studies, we developed a series of mixed MOR/DOR agonists that are enkephalin-like tetrapeptide analogs with an N-phenyl-N-piperidin-4-ylpropionamide (Ppp) moiety at the C-terminus. Further SAR study on the analogs, initiated by the findings from off-target screening, resulted in the discovery of [...] Read more.
In our previous studies, we developed a series of mixed MOR/DOR agonists that are enkephalin-like tetrapeptide analogs with an N-phenyl-N-piperidin-4-ylpropionamide (Ppp) moiety at the C-terminus. Further SAR study on the analogs, initiated by the findings from off-target screening, resulted in the discovery of LYS744 (6, Dmt-DNle-Gly-Phe(p-Cl)-Ppp), a multifunctional ligand with MOR/DOR agonist and KOR antagonist activity (GTPγS assay: IC50 = 52 nM, Imax = 122% cf. IC50 = 59 nM, Imax = 100% for naloxone) with nanomolar range of binding affinity (Ki = 1.3 nM cf. Ki = 2.4 nM for salvinorin A). Based on its unique biological profile, 6 is considered to possess high therapeutic potential for the treatment of chronic pain by modulating pathological KOR activation while retaining analgesic efficacy attributed to its MOR/DOR agonist activity. Full article
Show Figures

Graphical abstract

Back to TopTop