Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (210)

Search Parameters:
Keywords = MGF360

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7105 KiB  
Article
A Comprehensive Method for Calculating Maritime Radar Identification Probability Using 3D Marine Geographical Feature Models
by Hao Meng, Li-Hua Zhang, Hai Hu, Shi-Jun Rao and Bao-Hui Gao
Appl. Sci. 2025, 15(14), 7921; https://doi.org/10.3390/app15147921 - 16 Jul 2025
Viewed by 167
Abstract
To overcome the limitations of existing maritime radar identification analysis methods, which are only applicable to sea-skimming aircraft and fail to quantitatively calculate the probability of radar correctly identifying the target under electromagnetic influence from marine geographical features (MGFs), an advanced method is [...] Read more.
To overcome the limitations of existing maritime radar identification analysis methods, which are only applicable to sea-skimming aircraft and fail to quantitatively calculate the probability of radar correctly identifying the target under electromagnetic influence from marine geographical features (MGFs), an advanced method is proposed for calculating the radar identification probability in marine areas using 3D MGF models. The method first established the radar identification criteria in 3D space, considering radar line of sight (LOS), radar target adhesion (RTA), and radar resolutions in range, azimuth angle, and elevation angle. It then comprehensively analyzed errors from both the aircraft and MGFs. Finally, the probability of a target at a specific marine location being correctly identified by radar was calculated using the Monte Carlo method. Theoretical derivations and simulation results demonstrated that: (1) Unlike existing methods limited to sea-skimming aircraft, the proposed method is applicable to aircraft at any altitude, better aligning with current aircraft performance and requirements; (2) While existing methods provide only a binary result of “identified” or “unidentified,” the proposed method offers a probability value. For the same marine location point Ta, the proposed method yields radar identification probabilities of 0.0877 for sea-skimming aircraft and 0.5887 for high-altitude aircraft, providing more precise and intuitive decision-making support for mission planners. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

24 pages, 11665 KiB  
Article
Error Performance Analysis and PS Factor Optimization for SWIPT AF Relaying Systems over Rayleigh Fading Channels: Interpretation SWIPT AF Relay as Non-SWIPT AF Relay
by Kyunbyoung Ko and Changick Song
Electronics 2025, 14(13), 2597; https://doi.org/10.3390/electronics14132597 - 27 Jun 2025
Viewed by 283
Abstract
This paper presents an analytical study of the bit error rate (BER) and signal-to-noise ratio (SNR) performance in simultaneous wireless information and power transfer (SWIPT) amplify-and-forward (AF) relaying systems over Rayleigh fading channels. A power-splitting (PS) protocol is employed at the energy-constrained relay [...] Read more.
This paper presents an analytical study of the bit error rate (BER) and signal-to-noise ratio (SNR) performance in simultaneous wireless information and power transfer (SWIPT) amplify-and-forward (AF) relaying systems over Rayleigh fading channels. A power-splitting (PS) protocol is employed at the energy-constrained relay to divide the received signal for concurrent energy harvesting and information processing. Closed-form and asymptotic BER expressions are derived based on exact and bounded moment-generating functions (MGFs), offering insights into how the SNR balance between the source–relay (SR) and relay–destination (RD) links influences system performance. An asymptotic BER expression further reveals that a SWIPT AF relay system can be interpreted as a generalized AF relaying model, sharing the same diversity order as conventional AF systems. Based on this interpretation, an optimization method for the PS factor is proposed, effectively reducing the BER by reinforcing the weaker link. Simulation results confirm the tightness of the derived expressions and the effectiveness of the optimization strategy. Moreover, the analytical framework is extended to multiple SWIPT relaying systems, where multiple relays operate with individually optimized PS ratios. For such configurations, approximations for the system BER, outage probability, and channel capacity are derived and validated. Results demonstrate that increasing the number of relays significantly improves system performance, and the proposed analysis accurately captures these performance gains under varying channel conditions. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 2310 KiB  
Article
Fucoidan and Hyaluronic Acid Modified ZE21B Magnesium Alloy for Better Hemocompatibility and Vascular Cell Response
by Haoran Wang, Yunwei Gu, Qi Wang, Lingchuang Bai and Shaokang Guan
Coatings 2025, 15(6), 732; https://doi.org/10.3390/coatings15060732 - 19 Jun 2025
Viewed by 418
Abstract
Magnesium alloy stents exhibit significant potential in the treatment of cardiovascular and cerebrovascular diseases due to their remarkable mechanical support and biodegradability. However, bare magnesium alloy stents often degrade too quickly and exhibit inadequate biocompatibility, which severely restricts their clinical applicability. Herein, a [...] Read more.
Magnesium alloy stents exhibit significant potential in the treatment of cardiovascular and cerebrovascular diseases due to their remarkable mechanical support and biodegradability. However, bare magnesium alloy stents often degrade too quickly and exhibit inadequate biocompatibility, which severely restricts their clinical applicability. Herein, a composite coating consisting of an MgF2 conversion layer, a polydopamine (PDA) layer, fucoidan, and hyaluronic acid was prepared to enhance the corrosion resistance and biocompatibility of ZE21B alloy for a vascular stent application. The modified ZE21B alloy exhibited relatively high surface roughness, moderate wettability, and better corrosion resistance. Moreover, the modified ZE21B alloy with a low hemolysis rate and fibrinogen adsorption level confirmed improved hemocompatibility for medical requirements. Furthermore, the ZE21B alloy modified with fucoidan and hyaluronic acid enhanced the adhesion, proliferation, and NO release of endothelial cells (ECs). Simultaneously, it inhibits the adhesion and proliferation of smooth muscle cells (SMCs), promoting a competitive advantage for ECs over SMCs due to the synergistic effects of fucoidan and hyaluronic acid. The incorporation of fucoidan and hyaluronic acid markedly improved the corrosion resistance and biocompatibility of the ZE21B magnesium alloy. This development presents a straightforward and effective strategy for the advancement of biodegradable vascular stents. Full article
Show Figures

Figure 1

17 pages, 1812 KiB  
Review
The Multigene Family Genes-Encoded Proteins of African Swine Fever Virus: Roles in Evolution, Cell Tropism, Immune Evasion, and Pathogenesis
by Ruojia Huang, Rui Luo, Jing Lan, Zhanhao Lu, Hua-Ji Qiu, Tao Wang and Yuan Sun
Viruses 2025, 17(6), 865; https://doi.org/10.3390/v17060865 - 19 Jun 2025
Viewed by 644
Abstract
African swine fever virus (ASFV), the causative agent of African swine fever (ASF), poses a catastrophic threat to global swine industries through its capacity for immune subversion and rapid evolution. Multigene family genes (MGFs)-encoded proteins serve as molecular hubs governing viral evolution, immune [...] Read more.
African swine fever virus (ASFV), the causative agent of African swine fever (ASF), poses a catastrophic threat to global swine industries through its capacity for immune subversion and rapid evolution. Multigene family genes (MGFs)-encoded proteins serve as molecular hubs governing viral evolution, immune evasion, cell tropism, and disease pathogenesis. This review synthesizes structural and functional evidence demonstrating that MGFs-encoded proteins suppress both interferon signaling and inflammasome activation, while their genomic plasticity in variable terminal regions drives strain diversification and adaptation. Translationally, targeted deletion of immunomodulatory MGFs enables the rational design of live attenuated vaccines that improve protective efficacy while minimizing residual virulence. Moreover, hypervariable MGFs provide strain-specific signatures for PCR-based diagnostics and phylogeographic tracking, directly addressing outbreak surveillance challenges. By unifying virology with translational innovation, this review establishes MGFs as priority targets for next-generation ASF countermeasures. Full article
(This article belongs to the Collection African Swine Fever Virus (ASFV))
Show Figures

Figure 1

14 pages, 3417 KiB  
Article
The Influence of Water Content in Ethylene Glycol Electrolyte on Magnesium Plasma Electrolytic Fluorinated Coating
by Yifeng Yang, Hao Wang, Xuchen Lu and Cancan Liu
Coatings 2025, 15(6), 701; https://doi.org/10.3390/coatings15060701 - 11 Jun 2025
Viewed by 370
Abstract
Plasma electrolytic fluorination (PEF) of AZ31 magnesium alloy was carried out by adding different ratios of water to the ethylene glycol-ammonium fluoride electrolyte. The structural composition of the coatings was characterized using SEM, XRD, and EDS, and the effects of water content on [...] Read more.
Plasma electrolytic fluorination (PEF) of AZ31 magnesium alloy was carried out by adding different ratios of water to the ethylene glycol-ammonium fluoride electrolyte. The structural composition of the coatings was characterized using SEM, XRD, and EDS, and the effects of water content on the microstructure and corrosion resistance of the PEF coatings were analyzed. The results showed that the addition of water promoted the ionization of ammonium fluoride and increased the conductivity of the glycol electrolyte, which led to a decrease in the termination voltage. However, the coating thickness was not changed by the addition of water. The O element in water was not enough to compete with the F element in the electrolyte and had a small effect on the PEF coating composition, which was still dominated by MgF2. The addition of water had an effect on the structure of the coating: with an increase in water content, the number of coating penetration holes decreases, and the continuity is enhanced. The pores on the surface of the coating tended to be levelled off and transitioned to the typical coating structure of PEO (plasma electrolytic oxidation). The addition of water to the glycol electrolyte was conducive to improving the corrosion resistance of the coatings. The corrosion resistance of PEF coatings in neutral NaCl corrosive medium firstly increased and then decreased, and the strongest corrosion resistance was obtained when the ratio of glycol and water is 6:4. Full article
Show Figures

Figure 1

12 pages, 5075 KiB  
Article
Preparation of MgF2 Coatings on AZ31 Mg Alloy in Micro-Arc Oxidation Process Based on the Solubility Product Rule
by Hao Wang, Yifeng Yang, Cancan Liu and Xuchen Lu
Materials 2025, 18(12), 2717; https://doi.org/10.3390/ma18122717 - 9 Jun 2025
Viewed by 358
Abstract
This work mainly explores whether the solubility product principle has a guiding role in regulating the composition of micro-arc oxidation (MAO) coatings. The MAO process was conducted on AZ31 Mg alloy in silicate electrolyte. Varying amounts of Potassium fluoride (KF) and Ammonium fluoride [...] Read more.
This work mainly explores whether the solubility product principle has a guiding role in regulating the composition of micro-arc oxidation (MAO) coatings. The MAO process was conducted on AZ31 Mg alloy in silicate electrolyte. Varying amounts of Potassium fluoride (KF) and Ammonium fluoride (NH4F) were separately added to the basic electrolyte to regulate the OH and F contents in the electrolyte. The microstructure, phase composition and corrosion resistance of the MAO coatings prepared in different electrolytes were analyzed. Results showed that regardless of KF content, MgO was the main component for the MAO coatings obtained in electrolytes with KF. This was because the addition of KF not only elevated the F concentration in the electrolyte but also enhanced the OH concentration as a result of F hydrolysis. Based on the solubility product constants (Ksp) of MgO and MgF2, a relatively lower concentration of Mg2+ was sufficient for the formation of MgO. Hence, Mg2+ consistently exhibited preferential reactivity with OH, leading to the formation of MgO. The findings of the study demonstrated that the presence of KF electrolyte resulted in an enhancement of conductivity and an increase in the concentration of OH. Conversely, the growth rate of the coating was observed to be low, and the coating-forming phases of the coating were identified as MgO and Mg2SiO4, and the coating had better corrosion resistance. NH4F electrolyte with the increase in NH4F concentration, conductivity decreases and then increases, OH concentration decreases, the growth rate of the coating is faster, the concentration of F/OH is higher, the coating-forming phase is transformed into MgF2, and the corrosion resistance of the coating is reduced. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Figure 1

18 pages, 2815 KiB  
Article
The Involvement of MGF505 Genes in the Long-Term Persistence of the African Swine Fever Virus in Gastropods
by Sona Hakobyan, Nane Bayramyan, Zaven Karalyan, Roza Izmailyan, Aida Avetisyan, Arpine Poghosyan, Elina Arakelova, Tigranuhi Vardanyan and Hranush Avagyan
Viruses 2025, 17(6), 824; https://doi.org/10.3390/v17060824 - 7 Jun 2025
Viewed by 594
Abstract
African swine fever virus (ASFV), a highly contagious and lethal virus affecting domestic and wild pigs, has raised global concerns due to its continued spread across Europe and Asia. While traditional transmission pathways involve suids and soft ticks, this study investigates the potential [...] Read more.
African swine fever virus (ASFV), a highly contagious and lethal virus affecting domestic and wild pigs, has raised global concerns due to its continued spread across Europe and Asia. While traditional transmission pathways involve suids and soft ticks, this study investigates the potential role of freshwater gastropods as environmental reservoirs capable of sustaining ASFV. We analysed ASFV survival in ten gastropod species after long-term co-incubation with the virus. Viral transcriptional activity, particularly of the late gene B646L and members of the multigene family MGF505, was evaluated in snail faeces up to nine weeks post-infection. Results revealed that several gastropods, including Melanoides tuberculata, Tarebia granifera, Physa fontinalis, and Pomacea bridgesii, support long-term persistence of ASFV, accompanied by increased MGF505 gene expression. Notably, the simultaneous activation of MGF5052R and MGF50511R significantly correlated with higher B646L expression and extended viral survival, suggesting a functional role in ASFV maintenance. Conversely, antiviral (AV) activity assays showed that some gastropod faeces reduced replication of the unrelated Influenza virus, hinting at induced host defences. A negative correlation was observed between AV activity and the expression of MGF505 2R/11R, implying that ASFV may suppress antiviral responses to facilitate persistence. These findings suggest that certain gastropods may serve as overlooked environmental hosts, contributing to ASFV epidemiology via long term viral shedding. Further research is needed to clarify the mechanisms underlying ASFV–host interactions and to assess the ecological and epidemiological implications of gastropods in ASFV transmission cycles. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 10401 KiB  
Article
Biomarker Discovery and Molecular Docking Reveal Marsdenia tenacissima Fermentation Product’s Anti-Lung Cancer Components
by Runtian Li, Lintao Li, Runzhi Li, Haiyang Wu and Guifang Dou
Curr. Issues Mol. Biol. 2025, 47(6), 427; https://doi.org/10.3390/cimb47060427 - 6 Jun 2025
Viewed by 508
Abstract
In traditional Chinese medicine, Marsdenia tenacissima is employed to prevent and treat lung cancer. The anti-tumor properties are further amplified by the fermentation product of Ganoderma lucidum and Marsdenia tenacissima (MGF). Nevertheless, the efficacy of the chemical components in combating lung cancer and [...] Read more.
In traditional Chinese medicine, Marsdenia tenacissima is employed to prevent and treat lung cancer. The anti-tumor properties are further amplified by the fermentation product of Ganoderma lucidum and Marsdenia tenacissima (MGF). Nevertheless, the efficacy of the chemical components in combating lung cancer and the potential therapeutic targets for treating the disease remain ambiguous. UPLC-Q-TOF/MS was used to identify 19 components, all of which are unique C21 steroidal saponins found in MGF. The analysis of network pharmacology indicated that the active targets of these components were significantly concentrated in lung cancer and had a strong connection with cell proliferation. The bioinformatics analysis was conducted on data from TCGA and DisGeNET to identify a total of 28 biomarkers. Furthermore, our findings showed that the 19 targets connected to the active ingredients of Marsdenia tenacissima demonstrated significant enrichment in both the EGFR and apoptosis signaling pathways. Molecular docking technology was utilized to confirm the binding interactions of the primary constituents with the designated target. Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
Show Figures

Figure 1

23 pages, 1013 KiB  
Article
α-Fluctuating Nakagami-m Fading Model for Wireless Communications
by Aleksey S. Gvozdarev
Sensors 2025, 25(11), 3430; https://doi.org/10.3390/s25113430 - 29 May 2025
Cited by 1 | Viewed by 569
Abstract
This research introduces and studies the performance of the α-Fluctuating Nakagami-m model, which addresses the limitations of conventional models for wireless communications. For the assumed channel model, the research presents a complete first-order statistical description (including the probability density function (PDF), [...] Read more.
This research introduces and studies the performance of the α-Fluctuating Nakagami-m model, which addresses the limitations of conventional models for wireless communications. For the assumed channel model, the research presents a complete first-order statistical description (including the probability density function (PDF), cumulative distribution function (CDF), moment generating function (MGF), and raw moments) and provides closed-form results for system performance (assessed in terms of outage probability, average bit error rate (ABER), and channel capacity). All of the expressions have the same numerical complexity as the base-line Fluctuating Nakagami-m model, and are accompanied by their high signal-to-noise ratio (SNR) asymptotics. The derived results helped to identify the amount of fading (AoF) and diversity/coding gain of the proposed channel model. In-depth analysis of the system performance was carried out for all possible fading channel parameter values. Numerical analysis of the proposed solutions demonstrated their high computational efficiency. The comparison with experimental results demonstrated that the model offers enhanced flexibility and better characterization of fading regimes. Numerical analysis and simulation results show a high degree of correspondence with the analytical work and help study the dependence of channel nonlinearity effects on overall system performance. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

16 pages, 4900 KiB  
Article
Genetic Profiles of Ten African Swine Fever Virus Strains from Outbreaks in Select Provinces of Luzon, Visayas, and Mindanao, Philippines, Between 2021 and 2023
by Andrew D. Montecillo, Zyne K. Baybay, Jimwel Bryan Christopher Ferrer, Wreahlen Cariaso, Airish Pantua, John Paulo Jose, Rachel Madera, Jishu Shi, Karla Cristine Doysabas, Alan Dargantes, Kassey Alsylle T. Dargantes, Anna Rochelle A. Boongaling, Alfredo P. Manglicmot, Lucille C. Villegas and Homer D. Pantua
Viruses 2025, 17(4), 588; https://doi.org/10.3390/v17040588 - 21 Apr 2025
Viewed by 1111
Abstract
An African Swine Fever (ASF) outbreak was first recorded in the Philippines in July 2019. Since then, the disease has spread across provinces in Luzon, Visayas, and Mindanao, causing severe economic consequences for the country’s swine industry. Here, we report the genome sequencing [...] Read more.
An African Swine Fever (ASF) outbreak was first recorded in the Philippines in July 2019. Since then, the disease has spread across provinces in Luzon, Visayas, and Mindanao, causing severe economic consequences for the country’s swine industry. Here, we report the genome sequencing of ASF virus strains from outbreaks in several provinces of the Philippines between 2021 and 2023, using a long-read tiled amplicon sequencing approach. The coding-complete genomes generated ranged from 187,609 to 189,540 bp in length, with GC contents of 38.4% to 38.5%. Notably, a strain from the Bataan province had a 1.9 kb deletion at the 5′-end, affecting several coding regions. The strains were characterized using 13 genes and regions; namely the B646L gene, the CD2v serogroup, the central variable region (CVR) of the B602L gene, the intergenic region (IGR) between the I73R and I329L genes, the IGR between A179L and A137R, O174L, K145R, Bt/Sj, J268L, and ECO2, the multigene family (MGF) 505-5R, and the MGF 505-9R and 10R regions. The ASFV strains were mostly related to Asian and European p72 genotype II strains. Genetic profiling provides valuable information on the diversity of local strains of ASFV in the Philippines, which are useful for epidemiology, diagnostics, and vaccine development. Full article
(This article belongs to the Collection African Swine Fever Virus (ASFV))
Show Figures

Figure 1

13 pages, 2235 KiB  
Article
Optimization of DD-110 Neutron Generator Output for Boron Neutron Capture Therapy Using Monte Carlo Simulation
by Hossam Donya and Muhammed Umer
Quantum Beam Sci. 2025, 9(2), 12; https://doi.org/10.3390/qubs9020012 - 15 Apr 2025
Cited by 2 | Viewed by 1417
Abstract
Boron neutron capture therapy (BNCT) is a specialized cancer treatment that leverages the high absorption cross-section of boron for thermal neutrons. When boron captures neutrons, it undergoes a nuclear reaction that produces alpha particles and lithium ions, which have high linear energy transfer [...] Read more.
Boron neutron capture therapy (BNCT) is a specialized cancer treatment that leverages the high absorption cross-section of boron for thermal neutrons. When boron captures neutrons, it undergoes a nuclear reaction that produces alpha particles and lithium ions, which have high linear energy transfer (LET) and can effectively damage nearby cancer cells while minimizing harm to surrounding healthy tissues. This targeted approach makes BNCT particularly advantageous for treating tumors situated in sensitive areas where traditional radiation therapies may pose risks to critical structures. In this study, the deuterium–deuterium (DD) neutron generator, specifically the DD-110 model (neutron yield Y = 1 × 1010 n/s), served as the neutron source for BNCT. The fast neutrons produced by this generator were thermalized to the epithermal energy range using a beam-shaping assembly (BSA). The BSA was designed with a moderator composed of 32 cm of MgF2, a reflector made of 76 cm of Pb, and filters including 3 cm of Pb and 1.52 cm of Bi. A collimator, featuring a 10 cm high Pb cone frustum with a 12 cm aperture diameter, was also employed to optimize beam characteristics. The entire system’s performance was modeled and simulated using the MCNPX code, focusing on parameters both in-air and in-phantom to evaluate its efficacy. The findings indicated that the BSA configuration yielded an optimal thermal-to-epithermal flux ratio (φther/φepth) of 0.19, a current-to-flux ratio of 0.87, and a gamma dose-to-epithermal flux ratio of 1.71 × 10−13 Gy/cm2, all aligning with IAEA recommendations. The simulated system showed acceptable ratios for φther/φepth, gamma dose to epithermal flux, and beam collimation. Notably, the advantage depth was recorded at 5.5 cm, with an advantage ratio of 2.29 and an advantage depth dose rate of 4.1 × 10−4 Gy.Eq/min. The epithermal neutron flux of D110 exceeded D109, but D110’s fast neutron contamination increased ~6.6 times. On the other hand, D110’s gamma contamination decreased by 30%. Based on these findings, optimizing neutron source characteristics is crucial for BNCT efficacy. Future research should focus on developing advanced neutron generators that balance these factors, aiming to produce optimal neutron yields for enhanced treatment outcomes and broader applicability. Full article
Show Figures

Figure 1

15 pages, 863 KiB  
Article
Specific Detection of African Swine Fever Virus Variants: Novel Quadplex Real-Time PCR Assay with Internal Control
by Lihua Wang, Yuzhen Li, Xirui Zhang, Rachel Madera, Homer Pantua, Aidan Craig, Nina Muro, Danqin Li, Jamie Retallick, Franco Matias Ferreyra, Quang Lam Truong, Lan Thi Nguyen and Jishu Shi
Microorganisms 2025, 13(3), 615; https://doi.org/10.3390/microorganisms13030615 - 7 Mar 2025
Cited by 1 | Viewed by 1164
Abstract
African swine fever (ASF), a highly contagious and lethal viral disease, continues to devastate the global swine industry. The emergence of ASF virus (ASFV) variants with varying genomic deletions poses significant challenges for ASF control. This study presents a novel, sensitive, and reliable [...] Read more.
African swine fever (ASF), a highly contagious and lethal viral disease, continues to devastate the global swine industry. The emergence of ASF virus (ASFV) variants with varying genomic deletions poses significant challenges for ASF control. This study presents a novel, sensitive, and reliable quadplex real-time PCR assay for detecting ASFV variants lacking key genes (I177L, EP402R, and MGF360-14L), either individually or in combination. The assay targets conserved regions within these genes, ensuring broad coverage of diverse ASFV genotypes. A porcine beta-actin (ACTB) internal control was incorporated to minimize false-negative results. Optimization and evaluation using spike-in tests demonstrated high sensitivity, with a limit of detection (LOD) ranging from 1 to 10 plasmid copies or 0.1 TCID50 of ASFV isolates per reaction. No cross-reactivity was observed when testing serum samples from pigs infected with other common swine viruses. Further validation across a diverse panel of samples, including those from naturally ASFV-infected field pigs (n = 54), experimentally ASFV-infected pigs (n = 50), PBS-inoculated pigs (n = 50), ASFV-free field pigs (n = 100), and feral pigs (n = 6), confirmed 100% specificity. This robust assay provides a valuable tool for rapid and accurate ASF surveillance and control efforts, facilitating the timely detection and mitigation of outbreaks caused by emerging ASFV variants. Full article
(This article belongs to the Special Issue Advances in Veterinary Microbiology)
Show Figures

Figure 1

29 pages, 6798 KiB  
Article
A Coupled Least Absolute Shrinkage and Selection Operator–Backpropagation Model for Estimating Evapotranspiration in Xizang Plateau Irrigation Districts with Reduced Meteorological Variables
by Qiang Meng, Jingxia Liu, Fengrui Li, Peng Chen, Junzeng Xu, Yawei Li, Tangzhe Nie and Yu Han
Agriculture 2025, 15(5), 544; https://doi.org/10.3390/agriculture15050544 - 3 Mar 2025
Cited by 1 | Viewed by 819
Abstract
This study addresses the challenge of estimating reference crop evapotranspiration (ETO) in Xizang Plateau irrigation districts with limited meteorological data by proposing a coupled LASSO-BP model that integrates LASSO regression with a BP neural network. The model was applied to three [...] Read more.
This study addresses the challenge of estimating reference crop evapotranspiration (ETO) in Xizang Plateau irrigation districts with limited meteorological data by proposing a coupled LASSO-BP model that integrates LASSO regression with a BP neural network. The model was applied to three irrigation districts: Moda (MD), Jiangbei (JB), and Manla (ML). Using ETO values calculated by the FAO-56 Penman–Monteith (FAO-56PM) model as a benchmark, the performance and applicability of the LASSO-BP model were assessed. Short-term ETO predictions for the three districts were also conducted using the mean-generating function optimal subset regression algorithm. The results revealed significant multicollinearity among six meteorological factors (maximum temperature, minimum temperature, average temperature, average relative humidity, sunshine duration, and average wind speed), as identified through tolerance, variance inflation factor (VIF), and eigenvalue analysis. The LASSO-BP model effectively captured the interannual variation of ETO, accurately identifying peaks and troughs, with trends closely aligned with the FAO-56PM model. The model demonstrated strong performance across all three districts, with evaluation metrics showing MAE, RMSE, NSE, and R2 values ranging from 4.26 to 9.48 mm·a−1, 5.91 to 11.78 mm·a−1, 0.92 to 0.96, and 0.82 to 0.94, respectively. Prediction results indicated a statistically insignificant declining trend in annual ETO across the three districts over the study period. Overall, the LASSO-BP model is a reliable and accurate tool for estimating ETO in Xizang Plateau irrigation districts with limited meteorological data. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

15 pages, 3483 KiB  
Article
Non-Steroidal FXR Agonistic Dimeric 2-Methyl-4-(1-glycerol)furan with Lipid-Lowering Activities from Marine-Derived Nocardiopsis sp. ZSN1
by Yongjun Jiang, Zhen Lei, Jiebin Fang, Yanping Wu and Chengpeng Sun
Mar. Drugs 2025, 23(3), 92; https://doi.org/10.3390/md23030092 - 20 Feb 2025
Viewed by 717
Abstract
Five novel 2-methyl-4-(1-glycerol)furan (MGF) dimers, namely nocardifuran A (1), 13-acetyl-nocardifuran A (2), 15-epi-nocardifuran A (3), nocardifuran B (4), and nocardifuran C (5), were isolated from the Gause liquid fermentation [...] Read more.
Five novel 2-methyl-4-(1-glycerol)furan (MGF) dimers, namely nocardifuran A (1), 13-acetyl-nocardifuran A (2), 15-epi-nocardifuran A (3), nocardifuran B (4), and nocardifuran C (5), were isolated from the Gause liquid fermentation of the marine-derived Nocardiopsis sp. ZSN1. Their structures were elucidated through HRESIMS, 1D and 2D NMR spectroscopic data analysis, and ECD calculations. Compounds 14 were identified as derivatives of MGF with its rearrangement of furan or pyran derivatives, while compound 5 was identified as the derivative of MGF with an indole derivative. These MGF dimers, representing a new structural class, were isolated from a marine microorganism for the first time, thereby enhancing chemical diversity. Screening for farnesoid X receptor (FXR) agonistic activity revealed that MGF dimers could activate FXR. Furthermore, bioactivity evaluations demonstrated that these types of compounds exhibited lipid-lowering activity with lower cytotoxicity in vitro. Consequently, our findings not only contribute to the chemical diversity of marine-derived MGF-type natural products but also offer potential insights into the development of MGF dimers as lead compounds for FXR agonists in the dysregulation of hepatic lipid metabolism. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Graphical abstract

16 pages, 3434 KiB  
Article
Development of Real-Time and Lateral Flow Dipstick Recombinase Polymerase Amplification Assays for the Rapid Field Diagnosis of MGF-505R Gene-Deleted Mutants of African Swine Fever Virus
by Jizhou Lv, Junhua Deng, Yu Lin, Dongjie Chen, Xiangfen Yuan, Fang Wei, Caixia Wang, Xiaolin Xu and Shaoqiang Wu
Vet. Sci. 2025, 12(3), 193; https://doi.org/10.3390/vetsci12030193 - 20 Feb 2025
Viewed by 834
Abstract
Pigs are susceptible to the deadly infectious disease known as African swine fever (ASF), which is brought on by the African swine fever virus (ASFV). As such, prompt and precise disease detection is essential. Deletion of the virulence-related genes MGF-505/360 and EP402R generated [...] Read more.
Pigs are susceptible to the deadly infectious disease known as African swine fever (ASF), which is brought on by the African swine fever virus (ASFV). As such, prompt and precise disease detection is essential. Deletion of the virulence-related genes MGF-505/360 and EP402R generated from the virulent genotype II virus significantly reduces its virulence, and animal tests using one of the recombinant viruses show great lethality and transmissibility in pigs. The isothermal technique known as recombinase polymerase amplification (RPA) is perfect for rapid in-field detection. To accurately identify ASFV MGF-505R gene-deleted mutants and assess the complex infection situation of ASF, RPA assays in conjunction with real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA-LFD assay) were created. These innovative methods allow for the direct detection of ASFV from pigs, offering in-field pathogen detection, timely disease management, and satisfying animal quarantine requirements. The specific primers and probes were designed against conserved regions of ASFV B646L and MGF-505R genes. Using recombinant plasmid DNA containing ASFV MGF-505R gene-deleted mutants as a template, the sensitivity of both ASF real-time RPA and ASF RPA-LFD assays were demonstrated to be 10 copies per reaction within 20 min at 37 °C. Neither assay had cross-reactions with CSFV, PRRSV, PPV, PRV, ot PCV2, common viruses seen in pigs, indicating that these methods were highly specific for ASFV. The evaluation of the performance of ASFV real-time RPA and ASFV RPA-LFD assays with clinical samples (n = 453) demonstrated their ability to specifically detect ASFV or MGF-505R gene-deleted mutants in samples of pig feces, ham, fresh pork, and blood. Both assays exhibited the same diagnostic rate as the WOAH-recommended real-time fluorescence PCR, highlighting their reliability and validity. These assays offer a simple, cost-effective, rapid, and sensitive method for on-site identification of ASFV MGF-505R gene-deleted mutants. As a promising alternative to real-time PCR, they have the potential to significantly enhance the prevention and control of ASF in field settings. Full article
Show Figures

Figure 1

Back to TopTop