Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = MEO SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6806 KiB  
Article
Fine Recognition of MEO SAR Ship Targets Based on a Multi-Level Focusing-Classification Strategy
by Zhaohong Li, Wei Yang, Can Su, Hongcheng Zeng, Yamin Wang, Jiayi Guo and Huaping Xu
Remote Sens. 2025, 17(15), 2599; https://doi.org/10.3390/rs17152599 - 26 Jul 2025
Viewed by 339
Abstract
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional [...] Read more.
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional ship recognition conducted in focused image domains cannot process MEO SAR data efficiently. To address this issue, a multi-level focusing-classification strategy for MEO SAR ship recognition is proposed, which is applied to the range-compressed ship data domain. Firstly, global fast coarse-focusing is conducted to compensate for sailing motion errors. Then, a coarse-classification network is designed to realize major target category classification, based on which local region image slices are extracted. Next, fine-focusing is performed to correct high-order motion errors, followed by applying fine-classification applied to the image slices to realize final ship classification. Equivalent MEO SAR ship images generated by real LEO SAR data are utilized to construct training and testing datasets. Simulated MEO SAR ship data are also used to evaluate the generalization of the whole method. The experimental results demonstrate that the proposed method can achieve high classification precision. Since only local region slices are used during the second-level processing step, the complex computations induced by fine-focusing for the full image can be avoided, thereby significantly improving overall efficiency. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Image Target Detection and Recognition)
Show Figures

Graphical abstract

30 pages, 7887 KiB  
Article
A High-Resolution Spotlight Imaging Algorithm via Modified Second-Order Space-Variant Wavefront Curvature Correction for MEO/HM-BiSAR
by Hang Ren, Zheng Lu, Gaopeng Li, Yun Zhang, Xueying Yang, Yalin Guo, Long Li, Xin Qi, Qinglong Hua, Chang Ding, Huilin Mu and Yong Du
Remote Sens. 2024, 16(24), 4768; https://doi.org/10.3390/rs16244768 - 20 Dec 2024
Viewed by 773
Abstract
A bistatic synthetic aperture radar (BiSAR) system with a Medium-Earth-Orbit (MEO) SAR transmitter and high-maneuvering receiver (MEO/HM-BiSAR) can achieve a wide swath and high resolution. However, due to the complex orbit characteristics and the nonlinear trajectory of the receiver, MEO/HM-BiSAR high-resolution imaging faces [...] Read more.
A bistatic synthetic aperture radar (BiSAR) system with a Medium-Earth-Orbit (MEO) SAR transmitter and high-maneuvering receiver (MEO/HM-BiSAR) can achieve a wide swath and high resolution. However, due to the complex orbit characteristics and the nonlinear trajectory of the receiver, MEO/HM-BiSAR high-resolution imaging faces two major challenges. First, the complex geometric configuration of the BiSAR platforms is difficult to model accurately, and the ‘non-stop-go’ effects should also be considered. Second, non-negligible wavefront curvature caused by the nonlinear trajectories introduces residual phase errors. The existing spaceborne BiSAR imaging algorithms often suffer from image defocusing if applied to MEO/HM-BiSAR. To address these problems, a novel high-resolution imaging algorithm named MSSWCC (Modified Second-Order Space-Variant Wavefront Curvature Correction) is proposed. First, a high-precision range model is established based on an analysis of MEO SAR’s orbital characteristics and the receiver’s curved trajectory. Based on the echo model, the wavefront curvature error is then addressed by two-dimensional Taylor expansion to obtain the analytical expressions for the high-order phase errors. By analyzing the phase errors in the wavenumber domain, the compensation functions can be designed. The MSSWCC algorithm not only corrects the geometric distortion through reverse projection, but it also compensates for the second-order residual spatial-variant phase errors by the analytical expressions for the two-dimensional phase errors. It can achieve high-resolution imaging ability in large imaging scenes with low computational load. Simulations and real experiments validate the high-resolution imaging capabilities of the proposed MSSWCC algorithm in MEO/HM-BiSAR. Full article
(This article belongs to the Special Issue Advanced HRWS Spaceborne SAR: System Design and Signal Processing)
Show Figures

Figure 1

18 pages, 9065 KiB  
Article
Modeling of Solar Radiation Pressure for BDS-3 MEO Satellites with Inter-Satellite Link Measurements
by Yifei Lv, Zihao Liu, Rui Jiang and Xin Xie
Remote Sens. 2024, 16(20), 3900; https://doi.org/10.3390/rs16203900 - 20 Oct 2024
Cited by 2 | Viewed by 1433
Abstract
As the largest non-gravitational force, solar radiation pressure (SRP) causes significant errors in precise orbit determination (POD) of the BeiDou global navigation satellite system (BDS-3) medium Earth orbit (MEO) satellite. This is mainly due to the imperfect modeling of the satellite’s cuboid body. [...] Read more.
As the largest non-gravitational force, solar radiation pressure (SRP) causes significant errors in precise orbit determination (POD) of the BeiDou global navigation satellite system (BDS-3) medium Earth orbit (MEO) satellite. This is mainly due to the imperfect modeling of the satellite’s cuboid body. Since the BDS-3’s inter-satellite link (ISL) can enhance the orbit estimation of BDS-3 satellites, the aim of this study is to establish an a priori SRP model for the satellite body using 281-day ISL observations to reduce the systematic errors in the final orbits. The adjustable box wind (ABW) model is employed to refine the optical parameters for the satellite buses. The self-shadow effect caused by the search and rescue (SAR) antenna is considered. Satellite laser ranging (SLR), day-boundary discontinuity (DBD), and overlapping Allan deviation (OADEV) are utilized as indicators to assess the performance of the a priori model. With the a priori model developed by both ISL and ground observation, the slopes of SLR residual for the China Academy of Space Technology (CAST) and Shanghai Engineering Center for Microsatellites (SECM) satellites decrease from −0.097 cm/deg and 0.067 cm/deg to −0.004 cm/deg and −0.009 cm/deg, respectively. The standard deviation decreased by 21.8% and 26.6%, respectively. There are slight enhancements in the average values of DBD and OADEV, and a reduced β-dependent variation is observed in the OADEV of the corresponding clock offset. We also found that considering the SAR antenna only slightly improves the orbit accuracy. These results demonstrate that an a priori model established for the BDS-3 MEO satellite body can reduce the systematic errors in orbits, and the parameters estimated using both ISL and ground observation are superior to those estimated using only ground observation. Full article
(This article belongs to the Special Issue GNSS Positioning and Navigation in Remote Sensing Applications)
Show Figures

Figure 1

19 pages, 4491 KiB  
Article
Myrtus communis L. Essential Oil Exhibits Antiviral Activity against Coronaviruses
by Dar-Yin Li, Matthew G. Donadu, Taylor Shue, Georgios Dangas, Antonis Athanasiadis, Shuiyun Lan, Xin Wen, Basem Battah, Stefania Zanetti, Vittorio Mazzarello, Stefan G. Sarafianos, Marco Ferrari and Eleftherios Michailidis
Pharmaceuticals 2024, 17(9), 1189; https://doi.org/10.3390/ph17091189 - 10 Sep 2024
Cited by 1 | Viewed by 1925
Abstract
Human coronaviruses are a continuous threat to the human population and have limited antiviral treatments, and the recent COVID-19 pandemic sparked interest in finding new antiviral strategies, such as natural products, to combat emerging coronaviruses. Rapid efforts in the scientific community to identify [...] Read more.
Human coronaviruses are a continuous threat to the human population and have limited antiviral treatments, and the recent COVID-19 pandemic sparked interest in finding new antiviral strategies, such as natural products, to combat emerging coronaviruses. Rapid efforts in the scientific community to identify effective antiviral agents for coronaviruses remain a focus to minimize mortalities and global setbacks. In this study, an essential oil derived from Myrtus communis L. (MEO) is effective against HCoV-229E and HCoV-OC43 virus infections in comparison to two FDA-approved drugs, Remdesivir and Nirmatrelvir. Gas-chromatography and mass spectrometry were used to identify the chemical composition of MEO. Slight antioxidant activity was observed in MEO, indicating a role in oxidative stress. A dose–response curve measuring the EC50 indicates a high potency against HCoV-229E and HCoV-OC43 virus infections on Huh7.5 cells with low cytotoxicity using a PrestoBlue cell viability assay. Our findings demonstrate that MEO exhibits potent antiviral activity against HCoV-229E and HCoV-OC43 on Huh7.5 cells within a low-cytotoxicity range, but not on SARS-CoV-2. Artificial bacterial chromosome plasmids that expressed SARS-CoV-2 used for replicon—to determine viral replication and viral assembly/egress on HEK293T/17 cells—and virus-like particles on Huh7.5-AT cells—to determine viral entry and assembly/egress—showed no antiviral activity with MEO in comparison to Remdesivir. This study reveals the potential effectiveness of MEO as an alternative natural remedy to treat human coronaviruses and a potential antiviral agent for future coronavirus infections. Full article
Show Figures

Figure 1

23 pages, 8138 KiB  
Article
Simulation Analysis of the Geometric Positioning Accuracy for MEO- and HEO-SAR Satellites
by Ruishan Zhao, Ning Yang, Guo Zhang, Liang Pei, Jiguang Dai and Bing Zhang
Remote Sens. 2023, 15(11), 2710; https://doi.org/10.3390/rs15112710 - 23 May 2023
Cited by 1 | Viewed by 2153
Abstract
Due to the long synthetic aperture time, the large squint angle, and the large imaging width of medium Earth orbit (MEO) and high Earth orbit (HEO) SAR satellites, it is difficult to simulate the geometric positioning accuracy of MEO- and HEO-SAR satellites through [...] Read more.
Due to the long synthetic aperture time, the large squint angle, and the large imaging width of medium Earth orbit (MEO) and high Earth orbit (HEO) SAR satellites, it is difficult to simulate the geometric positioning accuracy of MEO- and HEO-SAR satellites through the SAR image simulation methods. In this paper, one non-zero Doppler simulation method of geometric positioning accuracy was proposed without simulating SAR images. In order to simulate the geometric positioning accuracy under different errors and imaging observation conditions, the virtual simulation geometric model was constructed by the simulated satellite ephemeris and the coordinates of ground control points (GCPs). On this basis, one geometric accuracy simulation method based on mean value compensation was proposed to simulate the geometric positioning accuracy with GCPs. The experimental results showed that the impact of Doppler center frequency error and velocity error of MEO- and HEO-SAR satellites on geometric positioning accuracy is significant compared with the LEO-SAR satellites, and the maximum error they affect can reach about 1597 m. In addition, the geometric positioning accuracies of MEO- and HEO-SAR satellites with GCPs can be achieved to 1~10 m and 7~29 m, respectively. Full article
Show Figures

Figure 1

20 pages, 5937 KiB  
Article
An Efficient Imaging Method for Medium-Earth-Orbit Multichannel SAR-GMTI Systems
by Yongkang Li, Tianyu Huo and Cuiqian Cao
Remote Sens. 2022, 14(21), 5453; https://doi.org/10.3390/rs14215453 - 30 Oct 2022
Cited by 5 | Viewed by 2241
Abstract
Medium-Earth-orbit (MEO) synthetic aperture radar (SAR) has the advantages of short revisit time and wide coverage, and thus is a potential tool for implementing ground moving target indication (GMTI) tasks. In the paper, aiming at MEO SAR’s problems of low signal-to-noise ratio and [...] Read more.
Medium-Earth-orbit (MEO) synthetic aperture radar (SAR) has the advantages of short revisit time and wide coverage, and thus is a potential tool for implementing ground moving target indication (GMTI) tasks. In the paper, aiming at MEO SAR’s problems of low signal-to-noise ratio and limited computation resource, an efficient imaging method is proposed for MEO multichannel SAR-GMTI systems with relatively low resolution. The proposed imaging method is designed with the consideration of both static scenes and ground moving targets, and it can simultaneously correct the range cell migrations of static scenes and multiple moving targets of no Doppler ambiguity. It needs only four Fourier transforms and twice phase multiplications, and thus is computationally efficient. Moreover, moving targets’ signal characteristics, including the azimuth and range displacements and along-track interferometric phase, in the SAR image obtained by the proposed imaging method are figured out. Experimental results validate the proposed imaging method and the theoretical analyses. Full article
Show Figures

Figure 1

15 pages, 3454 KiB  
Technical Note
An In-Orbit Measurement Method for Elevation Antenna Pattern of MEO Synthetic Aperture Radar Based on Nano Calibration Satellite
by Tian Qiu, Yu Wang, Jun Hong, Kaichu Xing, Shaoyan Du and Jingwen Mu
Remote Sens. 2022, 14(3), 741; https://doi.org/10.3390/rs14030741 - 5 Feb 2022
Cited by 2 | Viewed by 3377
Abstract
The medium-Earth-orbit synthetic aperture radar (MEO-SAR) is deployed at orbit altitude above low-Earth-orbit synthetic aperture radar (LEO-SAR, around 2000 km) and below the geosynchronous orbit SAR (GEO-SAR, near 35786 km) to cover a wide swath, which is four to five times larger than [...] Read more.
The medium-Earth-orbit synthetic aperture radar (MEO-SAR) is deployed at orbit altitude above low-Earth-orbit synthetic aperture radar (LEO-SAR, around 2000 km) and below the geosynchronous orbit SAR (GEO-SAR, near 35786 km) to cover a wide swath, which is four to five times larger than LEO-SAR. Therefore, the measurement method for the LEO-SAR elevation antenna pattern using the SAR data acquired over the Amazon tropical rainforest (ground-based method), where the typical width of rainforest area is approximately 150 km, can hardly meet the requirement of a wide swath to determine the MEO-SAR antenna elevation pattern. Moreover, several new MEO-SAR systems are now proposed that will use low frequency, and the low frequency penetration characteristics may affect the elevation antenna pattern determination using homogenous distributed targets such as the Amazon rainforest. This paper proposes a novel space-based method for the in-orbit measurement of the elevation antenna pattern of MEO-SAR based on one nano calibration satellite mounted with a receiver. Through appropriate orbit design, the nano calibration satellite can fly across the entire MEO-SAR swath along the range direction, and the elevation antenna pattern envelope can be extracted from the data recorded by the receiver. Simulation work is performed to verify the feasibility of the proposed space-based method, and the measurement accuracy of this method is analyzed. Full article
Show Figures

Figure 1

19 pages, 4396 KiB  
Article
A Study on the Range Equation Modeling for Multichannel Medium-Earth-Orbit SAR-GMTI Systems
by Yongkang Li, Tong Wang, Tianyu Huo and Laisen Nie
Remote Sens. 2021, 13(14), 2734; https://doi.org/10.3390/rs13142734 - 12 Jul 2021
Cited by 7 | Viewed by 2331
Abstract
This paper studies the range equation modeling of a ground moving target for multichannel medium-Earth-orbit (MEO) synthetic aperture radar (SAR) ground moving target indication (GMTI), an issue which is challenging to tackle due to the non-linear motion of the radar platform and the [...] Read more.
This paper studies the range equation modeling of a ground moving target for multichannel medium-Earth-orbit (MEO) synthetic aperture radar (SAR) ground moving target indication (GMTI), an issue which is challenging to tackle due to the non-linear motion of the radar platform and the Earth rotation. In the paper, the coordinates of the multichannel MEO SAR and the target, as well as the target’s range equation with respect to each channel, are developed. Moreover, an expression of concise form is derived for the target’s quadratic-approximated range equation, which will benefit the design of GMTI methods. Furthermore, theoretical analyses are conducted to reveal the dependency between the accuracy of the quadratic-approximated range equation and the parameters of the radar and the target. Numerical simulations are carried out to investigate the influence of the quadratic approximation of the range equation on the GMTI performance and to figure out the quadratic-approximated range equation’s scope of application. Full article
Show Figures

Graphical abstract

Back to TopTop