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Abstract: This paper studies the range equation modeling of a ground moving target for multichannel
medium-Earth-orbit (MEO) synthetic aperture radar (SAR) ground moving target indication (GMTI),
an issue which is challenging to tackle due to the non-linear motion of the radar platform and the
Earth rotation. In the paper, the coordinates of the multichannel MEO SAR and the target, as well as
the target’s range equation with respect to each channel, are developed. Moreover, an expression of
concise form is derived for the target’s quadratic-approximated range equation, which will benefit the
design of GMTI methods. Furthermore, theoretical analyses are conducted to reveal the dependency
between the accuracy of the quadratic-approximated range equation and the parameters of the
radar and the target. Numerical simulations are carried out to investigate the influence of the
quadratic approximation of the range equation on the GMTI performance and to figure out the
quadratic-approximated range equation’s scope of application.

Keywords: ground moving target; range equation modeling; multichannel synthetic aperture radar;
medium-Earth-orbit

1. Introduction

Synthetic aperture radar (SAR) is a powerful modern sensor and has been widely
used in many fields [1–5]. As an important application of SAR, SAR-ground moving target
indication (GMTI) has been proven to be of great value in space/air-to-ground surveillance
and reconnaissance, including civilian traffic monitoring and military surveillance [6–12].

Spaceborne SAR-GMTI has been a hot topic in the past decades and has been proven
to be useful in land and maritime traffic monitoring [13–18]. However, most of the existing
studies are focused on the low-Earth-orbit (LEO) SAR-GMTI systems, which suffer from
the disadvantages of limited coverage and long revisit time. As a potential next-generation
spaceborne SAR, medium-Earth-orbit (MEO) SAR owns the characteristics of short revisit
time, large coverage, and strong anti-destroy ability [19,20]. Therefore, MEO SAR-GMTI
systems will be attractive for space-to-ground surveillance and reconnaissance.

In recent years, MEO SAR has attracted much attention. The observing capabilities
and the signal characteristics of MEO SAR were intensively studied in [19], which revealed
the superiority of MEO SAR. In [20], a study on the design of suitable orbits and the
corresponding coverage and revisit time was presented, and it was shown that MEO SAR
was of great potential due to its characteristics of short revisit and large coverage. In
addition, several static scene imaging methods have been proposed for MEO SAR [21–26].
Nevertheless, the studies on MEO SAR-GMTI are rare.

A target’s range equation (i.e., the instantaneous distance between the radar and the
target) is one of the most important parameters in SAR signal processing [27]. A target’s
phase characteristics and range cell migration (RCM) are depended on its range equation.
In addition, a ground moving target’s along-track interferometric (ATI) phase and steering
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vector, which are key parameters for multichannel SAR-GMTI, are also determined by its
range equation. However, different from LEO SAR, the Earth rotation and the curvature of
the radar platform’s trajectory in the case of MEO SAR are very significant. This complicates
the relative motion between the MEO SAR and the ground moving target, and thus makes
the range equation modeling challenging.

In this paper, we attempt to present a study on multichannel MEO SAR-GMTI with
the focus on range equation modeling. The coordinates of the satellite and the ground
moving target in the Earth-centered rotating coordinate system, as well as the target’s
range equation with respect to each channel of the multichannel system, are developed
in the paper. Furthermore, in the field of SAR-GMTI, the quadratic-approximated range
equation model is widely used because it can facilitate the design of SAR-GMTI methods [7].
Therefore, in this paper, the analytical expression of the quadratic-approximated range
equation for each channel is derived. Moreover, to figure out the dependency between the
quadratic-approximated range equation’s accuracy and the parameters of the radar and
the target, an approximate expression of concise form is derived for the phase error due to
the quadratic approximation. Finally, the phase error’s influence on the GMTI performance
and the quadratic-approximated range equation’s scope of application are studied via
numerical experiments.

In practice, for SAR signal processing, there are several factors that would also in-
troduce phase error and phase ambiguities, such as the inherent element gain-phase
error, array baseline error, time synchronization error, frequency synchronization error,
etc. [28,29]. However, most of these factors (including the element gain-phase error, time
synchronization error, and frequency synchronization error) merely introduce errors to the
complex envelope of the multichannel signals. Nevertheless, the target’s range equation
mainly affects the exponential phase term of the signal, and the phase error introduced by
the approximation of the range equation is in the exponential part of the signal. Therefore,
only the array baseline error is considered in this paper, because the focus of the paper
is range equation modeling, and the modeling is mainly based on relative geometry and
motion between the radar and the target.

In [30,31] we briefly studied the accuracy of the quadratic-approximated and cubic-
approximated range equations for the single-channel MEO SAR via numerical simulations.
The main innovation and differences between this paper and our previous conference
papers are as follows: (1) This paper focused on the multichannel MEO SAR, while the
previous paper dealt with the single-channel one. (2) In this paper, besides numerical simu-
lations, the analytical expressions of the quadratic-approximated and cubic-approximated
range equations are derived and the dependency between the quadratic-approximated
range equation’s accuracy and the parameters of the radar and the target is figured out. (3)
The phase error’s influence on the GMTI performance and the quadratic-approximated
range equation’s scope of application are figured out in this paper.

The rest of the paper is as follows. In Section 2, the geometry of MEO SAR-GMTI is
investigated. In Section 3, the quadratic-approximated range equation for each channel
is derived. In Section 4, the accuracy of the quadratic-approximated range equation is
investigated and the expression of the phase error due to the quadratic approximation
is derived. In Section 5, numerical results are presented. Finally, discussion is made in
Section 6, and conclusions are made in Section 7.

2. MEO SAR-GMTI Geometry

Figure 1 illustrates the MEO SAR-GMTI geometry. In Figure 1, OX’Y’Z’ is the Earth-
centered inertial (ECI) coordinate system, with the origin being the center of mass of Earth,
the OX’ axis pointing to the vernal equinox, the OZ’ axis pointing to the north pole, and the
OY’ axis completing a right-hand Cartesian coordinate system. OXYZ is the Earth-centered
rotating (ECR) coordinate system, with the origin and the OZ axis identical to those of
the ECI coordinate system, the OX axis pointing to the intersection of the prime meridian
and the equatorial plane, and the OY axis completing a right-hand Cartesian coordinate
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system. Assuming that at the azimuth slow time ta = 0, the beam center of the radar crosses
the target, and the longitude and the latitude of the target are δlng and δlat, respectively.
At ta = 0, in the ECR coordinate system, the target is assumed to move with the velocity
components vlng and vlat and constant acceleration components alng and alat along the lines
of the longitude and latitude, respectively.

Figure 1. MEO SAR-GMTI geometry.

According to the kinematics of the satellite, the satellite’s coordinates in the ECI
coordinate system can be expressed as [32]

x′s(ta) = Rs(ta) cos( f (ta))Px + Rs(ta) sin( f (ta))Qx
y′s(ta) = Rs(ta) cos( f (ta))Py + Rs(ta) sin( f (ta))Qy
z′s(ta) = Rs(ta) cos( f (ta))Pz + Rs(ta) sin( f (ta))Qz

(1)

with

Rs(ta) =
a(1− e2)

1 + e · cos( f (ta))
(2)

Px = cos ω cos Ω− sin ω sin Ω cos i
Py = cos ω sin Ω + sin ω cos Ω cos i

Pz = sin ω sin i
(3)

Qx = − sin ω cos Ω− cos ω sin Ω cos i
Qy = − sin ω sin Ω + cos ω cos Ω cos i

Qz = cos ω sin i
(4)

where f (ta) is the true anomaly of the satellite, Rs(ta) is the distance between the satellite
and the center of mass of Earth, a is the orbit’s semi-major axis, e is the orbit’s eccentricity,
ω presents the argument of perigee, Ω presents the right ascension of ascending node, and
i presents the orbit’s inclination.

According to the definitions of the ECI and ECR coordinate systems, the transforma-
tion matrix between them is as follows:

TRI(ta) =

 cos[ΩG(ta)] sin[ΩG(ta)] 0
− sin[ΩG(ta)] cos[ΩG(ta)] 0

0 0 1

 (5)

with
ΩG(ta) = ΩG0 + ωeta (6)



Remote Sens. 2021, 13, 2734 4 of 19

where ΩG(ta) is the Greenwich Hour Angle at ta, ΩG0 is the Greenwich Hour Angle at
ta = 0, and ωe is the Earth’s rotational angular velocity. Therefore, in the ECR coordinate
system, the coordinates of the satellite are as follows: xs(ta)

ys(ta)
zs(ta)

 = TRI(ta)

 x′s(ta)
y′s(ta)
z′s(ta)


=

 x′s(ta) cos(ΩG0 + ωeta) + y′s(ta) sin(ΩG0 + ωeta)
−x′s(ta) sin(ΩG0 + ωeta) + y′s(ta) cos(ΩG0 + ωeta)

z′s(ta)

 (7)

From now on, the ECI coordinate system is disregarded, and the following studies are
based on the ECR coordinate system.

Assuming that the Earth is locally flat, according to Figure 1, the coordinates of the
target are given by

xt(ta) = Re cos δl at cos δlng −
(
vlatta + 0.5alatt2

a
)

sin δlng −
(

vlngta + 0.5alngt2
a

)
sin δl at cos δlng

yt(ta) = Re cos δl at sin δlng +
(
vlatta + 0.5alatt2

a
)

cos δlng −
(

vlngta + 0.5alngt2
a

)
sin δl at sin δlng

zt(ta) = Re sin δl at +
(

vlngta + 0.5alngt2
a

)
cos δl at

(8)

where Re is the radius of Earth.

3. Range Equation Modeling

The range equation of a target is a very important parameter for SAR imaging and
SAR-GMTI. A target’s azimuth phase modulation, RCM, ATI phase, and steering vector
are all depended on its range equation. Therefore, many range equation models have
been proposed, among which the quadratic-approximated (i.e., the second-order Taylor
approximated) range equation is the preferred one for SAR-GMTI. It benefits the derivation
of a signal model of concise form and the design of GMTI methods (e.g., the motion
parameters estimation methods) [7]. Therefore, in this section, the target’s quadratic-
approximated range equations for the multichannel MEO SAR-GMTI system are derived.
For the sake of clarity, the derivations of the quadratic-approximated range equation for
the reference channel and the nth channel are presented separately.

In the following derivations, it is assumed that the antenna is accurately zero-Doppler
steered, which is very common for modern spaceborne SAR systems [27]. Moreover, the
baseline error is considered in the derivation of the quadratic-approximated range equation
for the nth channel.

3.1. Derivation of the Quadratic-Approximated Range Equation for the Reference Channel

Assuming that the MEO SAR has N channels in azimuth (see Figure 2), and the
position vector of the reference channel (the first channel) is rs(ta) = [xs(ta) ys(ta) zs(ta)].
Then, the range equation of the target with respect to the reference channel, i.e., the
instantaneous distance between the target and the reference channel, is as follows:

R(ta) = |R(ta)|
=
√

R(ta)R(ta)
T

=
√
[rt(ta)− rs(ta)][rt(ta)− rs(ta)]

T

(9)

where R(ta) = rt(ta) − rs(ta) is the range vector from the satellite to the target, rt(ta) =
[xt(ta) yt(ta) zt(ta)] is the target’s position vector, and superscript “T” represents the vector
transpose. Note that in the paper, a bold letter represents a vector, and the corresponding
regular italic font represents the magnitude of the vector.
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Figure 2. Geometry of the multichannel MEO SAR.

The quadratic-approximated range equation can be obtained by taking a second-order
Taylor series expansion to the range equation at the beam center crossing time (i.e., ta = 0).
By using the principles of matrix differential, the quadratic-approximated range equation
of the reference channel is expressed as

Rq(ta) = R(0) +
.
R(0)ta +

..
R(0)

2 t2
a

= R0 + l1ta + l2t2
a

(10)

with
R0 = R(0) (11)

l1 =
.
R(0)

=
.

R(0)R(0)T

R(0)

= [vt(0)− vs(0)]
[rt(0)−rs(0)]

T

R0

(12)

l2 = 1
2 ·

..
R(0)

= 1
2 ·

[ ..
R(0)R(0)T+

.
R(0)

.
R(0)T

]
R(0)−

.
R(ta)R(ta)

T .
R(0)

R2(0)

= [at−as(0)][rt(0)−rs(0)]
T

2R0
+ |vt(0)−vs(0)|2

2R0
−
[
[vt(0)−vs(0)][rt(0)−rs(0)]

T
]2

2R3
0

(13)

where Rq(ta) is the target’s quadratic-approximated range equation of the reference channel,
vs(ta) =

.
rs(ta) and as(ta) =

..
rs(ta) are the velocity and acceleration vectors of the reference

channel, respectively, vt(ta) =
.
rt(ta) and at =

..
rt(ta) are the velocity and acceleration

vectors of the target, respectively.
To obtain an expression of concise form for the quadratic-approximated range equa-

tion, by utilizing the vector projection, l1 and l2 are simplified as follows:

l1 = vt(0)
[rt(0)−rs(0)]

T

R0
− vs(0)

[rt(0)−rs(0)]
T

R0
= vtr − vsr

= vtr

(14)

l2 = at[rt(0)−rs(0)]
T

2R0
− as(0)[rt(0)−rs(0)]

T

2R0
+ |vt(0)|2−2vt(0)vs(0)

T+|vs(0)|2
2R0

− (vtr−vsr)
2

2R0

= atr
2 −

asr
2 +

v2
t0−2vtavs0+v2

s0
2R0

− v2
tr−2vtrvsr+v2

sr
2R0

=
v2

t0−2vtavs0+v2
s0−v2

tr
2R0

+ atr
2 −

asr
2

(15)
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with

vtr = vt(0)
[rt(0)− rs(0)]

T

R0
(16)

vsr = vs(0)
[rt(0)− rs(0)]

T

R0
(17)

atr =
at[rt(0)− rs(0)]

T

R0
(18)

asr =
as(0)[rt(0)− rs(0)]

T

R0
(19)

vta =
vt(0)vs(0)

T

|vs(0)|
(20)

where vtr and atr are the projections of the target’s velocity and acceleration onto the
radial direction, respectively, vsr and asr are the projections of the satellite’s velocity and
acceleration onto the radial direction, respectively, vta is the projection of the target’s
velocity onto the direction of the satellite’s velocity vector. All of these parameters are
defined at the beam center crossing time. vt0 = |vt(0)| and vs0 = |vs(0)| are the velocity of
the target and the satellite at ta = 0, respectively. Note that since the zero-Doppler steering
is assumed, vsr is equal to zero.

Based on (14) and (15), one can obtain an expression of concise form for the quadratic-
approximated range equation as follows:

Rq(ta) = R0 + vtrta +

[
v2

t0 − 2vtavs0 + v2
s0 − v2

tr
2R0

+
atr

2
− asr

2

]
t2
a (21)

Remark . In the fields of SAR-GMTI, the estimation of a target’s motion parameters is usually
accomplished via the estimation of the first-order and second-order coefficients of its range equation.
Therefore, the derivation of an expression of concise form for the quadratic-approximated range
equation will benefit the design of motion parameters estimation methods, because it can clearly
reveal the relationships between the motion parameters and the coefficients of the range equation.

3.2. Derivation of the Quadratic-Approximated Range Equation for the nth Channel

Due to the zero-Doppler steering, the azimuth axis of the antenna is parallel to the
satellite’s velocity vector vs(ta), as shown in Figure 2. Therefore, the position vector of the
effective phase center of the nth (n = 1, 2, . . . , N) channel is given by

rs,n(ta) = rs(ta)− (n− 1)d
vs(ta)

vs(ta)
− ∆dn

vs(ta)

vs(ta)
(22)

where d is the nominal baseline (i.e., the distance between adjacent effective phase centres)
and ∆dn is the baseline error (∆d1 = 0). Thus, the target’s range equation of the nth channel
can be expressed as

Rn(ta) = |rt(ta)− rs,n(ta)|
=
∣∣∣rt(ta)− rs(ta) + (n− 1)d vs(ta)

vs(ta)
+ ∆dn

vs(ta)
vs(ta)

∣∣∣ (23)

To obtain the expression for the quadratic-approximated range equation of the nth
channel, the expressions for Rn(0),

.
Rn(0), and

..
Rn(0) are derived in the following.

The expression of Rn(0) can be easily obtained by definition

Rn(0) =
∣∣∣rt(0)− rs(0) + (n− 1)d vs(0)

vs(0)
+ ∆dn

vs(ta)
vs(ta)

∣∣∣
≈ |rt(0)− rs(0)|

= R0

(24)
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where (n− 1)d vs(0)
vs(0)

+ ∆dn
vs(ta)
vs(ta)

has been ignored because it is far smaller than rt(0)-rs(0).

Note that the norm of (n− 1)d vs(0)
vs(0)

+ ∆dn
vs(ta)
vs(ta)

is in the order of 1 m, while the norm of

rt(0)-rs(0) is in the order of 107 m.
The expression for

.
Rn(0) is derived as follows:

.
Rn(0) = [vt(0)− vs,n(0)]

[rt(0)−rs,n(0)]
T

Rn(0)

=
[
vt(0)− vs(0) + ((n− 1)d + ∆dn)

as(0)
vs(0)

] [rt(0)−rs(0)+((n−1)d+∆dn)
vs(0)
vs(0)

]T

Rn(0)

≈ [vt(0)− vs(0)]
[rt(0)−rs(0)]

T

R0
+ ((n− 1)d + ∆dn)· [vt(0)−vs(0)]vs(0)T

vs0R0

+((n− 1)d + ∆dn)·as(0)
[rt(0)−rs(0)]

T

vs0R0

= l1 +
(n−1)d+∆dn

R0
·(vta − vs0) +

(n−1)d+∆dn
vs0

·asr

(25)

where the term ((n− 1)d + ∆dn)
as(0)
vs(0)

·
[
((n−1)d+∆dn)

vs(0)
vs(0)

]T

Rn(0)
is ignored because it is very

small (it is in the order of 10−13 m/s).
The expression for

..
Rn(0) is derived as follows:

Rn(0) = [at−as,n(0)][rt(0)−rs,n(0)]
T

Rn(0)
+ |vt(0)−vs,n(0)|2

Rn(0)
−
[
[vt(0)−vs,n(0)][rt(0)−rs,n(0)]

T
]2

R3
n(0)

=

[
at−as(0)+((n−1)d+∆dn)

js(0)
vs(0)

][
rt(0)−rs(0)+((n−1)d+∆dn)

vs(0)
vs(0)

]T

Rn(0)

+

∣∣∣vt(0)−vs(0)+((n−1)d+∆dn)
as(0)
vs(0)

∣∣∣2
Rn(0)

−

[(
vt(0)−vs(0)+((n−1)d+∆dn)

as(0)
vs(0)

)(
rt(0)−rs(0)+((n−1)d+∆dn)

vs(0)
vs(0)

)T
]2

R3
n(0)

≈ [at−as,n(0)][rt(0)−rs,n(0)]
T

R0
+ |vt(0)−vs(0)|2

R0
− [[vt(0)−vs,n(0)][rt(0)−rs,n(0)]

t]
2

R0
= 2·l2

(26)

where js(ta) =
..
vs(ta) are the jerk vector of the satellite, and the double-dot notation

indicates the second derivative with respect to ta.
Based on (23)–(26), the quadratic-approximated range equation of the nth channel is

as follows:

Rq,n(ta) = Rn(0) +
.
Rn(0)ta +

..
Rn(0)

2 t2
a

≈ R0 + l1ta + ((n− 1)d + ∆dn)
(

vta−vs0
R0

+ asr
vs0

)
ta + l2t2

a

= Rq(ta) + ((n− 1)d + ∆dn)
(

vta−vs0
R0

+ asr
vs0

)
ta

(27)

Remark. For multichannel SAR-GMTI, the steering vector and ATI phase of a target are very
important for the design of methods for clutter suppression, motion and position parameters
estimation, and detection [7]. Their analytical expressions can be obtained by comparing the
range equations of the reference channel and the nth channel [7,33]. Therefore, the derivation of
the quadratic-approximated range equation for the nth channel will also facilitate the design of
SAR-GMTI methods.

4. Investigation on the Accuracy of the Quadratic-Approximated Range Equation

The quadratic-approximated range equation’s accuracy is generally sufficient for RCM
correction. However, for azimuth compression, the quadratic approximation of the target’s
range equation will lead to a phase error that could result in azimuth defocusing and a loss
of the target’s peak power in SAR image when it is larger than π/4 [34]. This section will
derive such an analytical expression for this phase error that can reveal its dependence on
the parameters of the radar and the target.
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The phase error caused by the quadratic approximation can be calculated as

Φ = max
ta∈[−Ta/2, Ta/2]

{
4π

∣∣R(ta)− Rq(ta)
∣∣

λ

}
(28)

where λ is the wavelength, and Ta is the target’s illumination time. Ta depends on the
target’s distance and the azimuth resolution, and it can be approximately expressed as
Ta ≈ λR0/(2ρavs0), where ρa is the azimuth resolution [19]. It should be noted that since
the phase error of the reference channel and that of the nth channel are almost identical
(we will validate this statement in Section 5), the range equation of the reference is utilized
to investigate the phase error.

This phase error is mainly determined by the cubic term of the target’s range equation
because the higher terms are much smaller than the cubic term (we will validate this
statement in Section 6). Therefore, the phase error can be calculated as

Φ ≈ max
ta∈[−Ta/2, Ta/2]

{
4π
λ

∣∣l3t3
a
∣∣}

= 4π
λ |l3|

(
Ta
2

)3 (29)

where l3 is the coefficient of the cubic term. To obtain such an analytical expression for Φ
that can reveal its dependence on the parameters of the radar and the target, the expression
of l3 is derived and simplified as follows:

l3 = 1
6 ·

...
R(0)

=
...
R(0)R(0)T+3R(0)

.
R(0)T

6R(0) −
.

R(0)R(0)T
[
R(0)R(0)T+

.
R(0)

.
R(0)T

]
2R3(0) +

[ .
R(0)R(0)T

]3

2R5(0)

=
−js(0)[rt(0)−rs(0)]

T+3[at−as(0)]·[vt(0)−vs(0)]
T

6R0

−
[vt(0)−vs(0)][rt(0)−rs(0)]

T
[
[at−as(0)][rt(0)−rs(0)]+|vt(0)−vs(0)|2

]
2R3

0

+

[
[vt(0)−vs(0)][rt(0)−rs(0)]

T
]3

2R5
0

(30)

Since the terms containing 1/R5
0 and 1/R3

0 are very small, and [at − as(0)]vt(0)
T is

far smaller than [at − as(0)]vs(0)
T , they can be ignored. (Assuming that the parameters

of the target are: vlng = 10 m/s, vlat = 8 m/s, alng = 0.4 m/s2, alat = 0.3 m/s2, δlat = 10◦,
δlng = 30◦, R0= 1.12 × 104 km, and other parameters are the same as those given in Table 1.
Then, the terms containing 1/R5

0 and 1/R3
0 are in the orders of 10−7 m/s3 and 10−12 m/s3,

respectively, [at − as(0)]vt(0)
T is in the order of 1 m2/s3 while [at − as(0)]vs(0)

T is in the
order of 103 m2/s3.) Therefore, (30) can be simplified to

l3 ≈ −js(0)[rt(0)−rs(0)]
T+3[at−as(0)]·[vt(0)−vs(0)]

T

6R0

≈ −js(0)[rt(0)−rs(0)]
T+3[at−as(0)]·[−vs(0)]

T

6R0

= 3asavs0−jsr R0
6R0

− 3atavs0
6R0

(31)

where asa and ata are the projection of the accelerations of the satellite and the target onto
the direction of the satellite’s velocity vector at the beam center crossing time, respectively,
and jsr = js(0)[rt(0)− rs(0)]

T/R0 is the projection of the satellite’s jerk onto the radial
direction at the beam center crossing time.
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Table 1. Orbit parameters for the numerical simulations.

Parameter Value

Height of the orbit 10,000 km

Radius of the Earth 6371 km

Right ascension of ascending node 0

Argument of perigee 0

Orbit inclination 90◦

Eccentricity 0

Greenwich hour angle at ta = 0 0

According to (29) and (31), one can obtain an analytical expression for the phase error
as follows:

Φ ≈ 4π
λ

∣∣∣ 3asavs0−jsr R0
6R0

− 3atavs0
6R0

∣∣∣( Ta
2

)3

≈ 4π
λ

∣∣∣ 3asavs0−jsr R0
6R0

− 3atavs0
6R0

∣∣∣( λR0
4ρavs0

)3

= π
∣∣∣ 3asavs0−jsr R0

6 − 3atavs0
6

∣∣∣ · λ2R2
0

16ρ3
av3

s0

(32)

The phase error’s dependence on the parameters of the radar and the target is revealed
in (32), and the following points can be noted.

(1) The phase error is strongly sensitive to the azimuth resolution and the wavelength. It
is approximately proportional to the square of the wavelength and inversely propor-
tional to the cube of the azimuth resolution.

(2) The phase error is proportional to the distance between the target and the MEO SAR
and is inversely proportional to the speed of the MEO SAR. In addition, the phase
error depends on the target’s along-track acceleration, while the dependency between
the phase error and the target’s radial acceleration and along-track velocity can be
ignored.

(3) Different from LEO SAR, the dependency between the phase error and the target’s
radial velocity can be neglected. Moreover, in the case of MEO SAR, the phase error
depends also on the projection of the satellite’s acceleration onto the direction of its
velocity vector and the projection of the satellite’s jerk onto the radial direction.

5. Numerical Results

In this section, first, numerical simulations are carried out to quantitatively investigate
the phase error due to the quadratic approximation. Then, the SNR loss and parameter
estimation accuracy loss caused by the phase error are investigated. Finally, the quadratic-
approximated range equation’s scope of application is studied. The main orbit parameters
of the satellite used in the numerical simulations are presented in Table 1.

5.1. Phase Error

First, simulations were carried out to study the dependence of the phase error on the
target’s motion parameters. The results are presented in Figures 3 and 4, which show the
dependence of the phase error on the target’s velocities and accelerations, respectively. In
Figures 3 and 4, the color indicates the value of the phase error, and the unit is radian.
From Figure 3a,b one can see that the dependency between the phase error and the target’s
velocities is relatively small. From Figure 4a,b it can be seen that the dependency between
the phase error and the target’s along-track acceleration is significant, while there is no
obvious dependency between the phase error and the target’s radial acceleration. Moreover,
it is seen that the numerical results agree with the theoretical analysis presented in Section 4.
Furthermore, from Figures 3c and 4c, it can be seen that the differences between phase error
in the reference channel and the second channel are so small that can be ignored. Therefore,
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in the following simulations and analyses, only the range equation of the reference channel
is utilized to study the accuracy of the quadratic-approximated range equation. The
parameters of the radar and the target used in the simulations are given in Table 2. Note
that in Table 2, the target’s latitude is chosen randomly. The phase error is mainly depended
on the distance between the target and the radar (this distance is mainly depended on the
target’s longitude). The dependence between the phase error and the target’s latitude is
relatively small, and the phase error increases slightly with the increase of the latitude.

Figure 3. Dependency between the phase error and vta and vtr. (a) The reference channel, (b) the 2th channel, and (c)
the difference between phase error in the reference channel and the 2th channel. The target’s accelerations are set to be:
ata = 0.5 m/s2, atr = −0.4 m/s2. In the figures, the color indicates the value of the phase error, and the unit is radian.

Table 2. Parameters of the MEO SAR and the target for the simulations.

Parameter Value

λ 0.056 m

d 4 m

ρa 10 m

δlat 10◦

δlng 30◦

Ta 6.26 s

PRF 500 Hz

R0 1.12 × 104 km
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Figure 4. Dependency between the phase error and ata and atr. (a) The reference channel, (b) the 2th channel, and (c)
the difference between phase error in the reference channel and the 2th channel. The target’s velocities are set to be:
vta = −10 m/s, vtr = 12 m/s. In the figures, the color indicates the value of the phase error, and the unit is radian.

Secondly, simulations were conducted to investigate the phase error’s dependence
on the parameters of the radar, and the results are shown in Figures 5–7. Note that to
illustrate the influence of the wavelength on the phase error, the X band (10 GHz), the
C band (5.4 GHz), and the S band (3.3 GHz) systems were considered in the simulations.
In addition, in the simulations, the latitude of the target was set fixedly to be 10◦, while
the longitude of the target was set to range from 21◦ to 77◦ with a step size of 2◦. The
change of the distance between the target and the radar was accomplished by the change
of the target’s longitude. Furthermore, the azimuth resolution was set to be 10 m in the
simulations.

Figures 5–7 show the dependence of the phase error on the azimuth resolution and
the distance. In addition, in Figures 5–7, the color indicates the value of the phase error,
and the unit is radian. Note that the phase errors illustrated in Figures 5–7 are calculated
as follows:

Φcnst = max
vlat ∈ [−30m/s, 30m/s]
vlng ∈ [−30m/s, 30m/s]

{
max

ta∈[−Ta/2,Ta/2]

[
4π ·

∣∣R(ta)− Rq(ta)
∣∣

λ

]}
(33)
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Φacc = max
vlat ∈ [−30m/s, 30m/s]
vlng ∈ [−30m/s, 30m/s]
alat ∈ [−1m/s2, 1m/s2]

alng ∈ [−1m/s2, 1m/s2]

{
max

ta∈[−Ta/2,Ta/2]

[
4π ·

∣∣R(ta)− Rq(ta)
∣∣

λ

]}
(34)

where Φcnst and Φaccare the phase errors for the target with constant velocity and the
accelerating target, respectively. From (33) and (34) one can see that the phase errors shown
in Figures 5–7 are chosen to be the maximum value among the possible motion parameters.

Figure 5. Dependency between the phase error and ρa and R0 for the X band system. (a) Targets with
constant speeds and (b) accelerating targets. In the figures, the color indicates the value of the phase
error, and the unit is radian.

Figure 6. Dependency between the phase error and ρa and R0 for the C band system. (a) Targets with
constant speeds and (b) accelerating targets. In the figures, the color indicates the value of the phase
error, and the unit is radian.

From Figures 5–7 one can see that the phase error increases significantly with the
decreasing of the azimuth resolution and the increasing of the distance and wavelength, as
indicated by (32). It can also be seen that the phase errors of accelerating targets are much
larger than those of targets with constant speeds. Specifically, by comparing Figure 5a,b,
one can see that the maximum phase error of accelerating targets are over ten times larger
than that of targets with constant speeds. Similar results can be found via comparing
Figure 6a,b and Figure 7a,b respectively. In addition, by comparing Figure 5 with Figure 6,
it can be seen that the phase error of the C band system is over three times larger than that
of the X band system.
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Figure 7. Dependency between the phase error and ρa and R0 for the S band system. (a) Targets with
constant speeds and (b) accelerating targets. In the figures, the color indicates the value of the phase
error, and the unit is radian.

5.2. Influence of the Phase Error on the GMTI Performance

The phase error may lead to a significant loss of the target’s peak power in SAR
image and thus the loss of signal-to-noise ratio (SNR). The loss of SNR will result in
the degradation of the GMTI performance, such as the degradation of the accuracy of
the parameter estimation. In this subsection, numerical simulations are carried out to
investigate the dependence of the SNR loss on the phase error, and the dependence of
the loss of the achievable radial velocity estimation accuracy and azimuth repositioning
accuracy on the phase error.

Figure 8 shows the dependence of the SNR loss on the phase error. As can be seen
from Figure 8, the SNR loss is proportional to the phase error, and the SNR loss exceeds
3 dB when the phase error is larger than 2.5 radian. In the simulations, the parameters
of the MEO SAR and the target for the simulations are: λ = 0.03 m, δlat = 10◦, δlng = 30◦,
R0 = 1.12 × 104 km. The change of the phase error is accomplished by the change of the
azimuth resolution. Note that for targets with different parameters, the relationships
between the phase error and the SNR loss are almost the same.

Figure 8. Dependence of the SNR loss on the phase error.
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For multichannel SAR-GMTI, the achievable radial velocity estimation and azimuth
repositioning accuracy depend on the target’s SNR, and their relationships can be expressed
as [35,36].

σra =

√
3

2π2
R√

SNR
λ

La
(35)

σvtr =
vs

R
σra (36)

where σra and σvtr are the achievable minimum azimuth repositioning error and minimum
radial velocity estimation error, respectively, La is the antenna length in azimuth.

According to (35) and (36), Figure 9 shows the dependence of the losses of the achiev-
able radial velocity estimation accuracy and azimuth repositioning accuracy on the phase
error. It can be seen that there will be a loss of about 29% in achievable estimation accuracy
when the phase error is 2.5 radian (the corresponding SNR loss is 3 dB).

Figure 9. Dependence of the achievable estimation accuracy loss on the phase error.

5.3. Quadratic-Approximated Range Equation’s Scope of Application

This subsection studies the quadratic-approximated range equation’s scope of ap-
plication based on the investigations conducted in Sections 5.1 and 5.2. The maximum
acceptable SNR loss is set to be 3 dB, and thus the upper bound for the phase error is
2.5 radian.

In the simulations, four typical carrier frequencies were considered: 10 GHz (X Band),
5.4 GHz (C band), 3.3 GHz (S band), and 1.3 GHz (L band). The results are shown in
Figure 10. The curves in Figure 10 represent the lower bound of the azimuth resolution to
let the phase error be less than 2.5 radian. For example, from Figure 10a one can see that
when Rc is 1.2 × 104 km, to let the phase error of targets moving with constant speed be
less than 2.5 radian, the lower bounds of azimuth resolution for the X, C, S, and L band
systems are about 2.5 m, 3.5 m, 5.0 m, and 9.5 m, respectively. The areas above each curve
in Figure 10 are actually the cases where the quadratic-approximated range equation is
applicable.

From Figure 10a one can also see that when the target moves with constant speed,
the accuracy of the quadratic-approximated range equation may be sufficient as long as
the azimuth resolution of the MEO SAR-GMTI system is not very high. From Figure 10b
it is seen that for the target moves with accelerations, the quadratic-approximated range
equation is applicable to the MEO SAR-GMTI systems with medium or low azimuth
resolutions.
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Figure 10. Lower Bounds of azimuth resolution. (a) Targets with constant speeds and (b) accelerating
targets.

6. Discussion

In Section 5, numerical experiments have been carried out to quantitatively investigate
the accuracy of the quadratic-approximated range equation via analyzing the phase error. In
addition, the influence of the phase error on the GMTI performance has been investigated
via analyzing the SNR loss and the parameter estimation accuracy loss caused by the
phase error. Moreover, simulations have also been carried out to find out the quadratic-
approximated range equation’s scope of application.

The results presented in Section 5.1 illustrate the relationship between the phase error
and the parameters of the target and radar. The results validate the theoretical analysis
presented in Section 4, i.e., the dependency between the phase error and the target’s
radial velocity, along-track velocity, and radial acceleration is negligible; the phase error
is proportional to the radar’s wavelength and distance, and inversely proportional to the
azimuth resolution.
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The results shown in Section 5.2 illustrate the SNR loss caused by the phase error.
It is shown that there will be a loss of 3 dB in SNR when the phase error is 2.5 radian.
In Section 5.3, with the upper bound for the phase error being set to be 2.5 radian, the
quadratic-approximated range equation’s scope of application has been figured out. It
should be noted that for precise ground moving target imaging the phase error should be
less than π/4 radian.

As indicated in Section 5.3, the accuracy of the quadratic-approximated range equation
will be insufficient when the azimuth resolution is very high. We have worked out that
the accuracy of cubic-approximated range equation is sufficient even when the azimuth
resolution is very high (the derivation of the cubic term is presented in Section 4). Figure 11
illustrates the dependence of the phase error on the azimuth resolution and the distance,
with the color indicating the value of the phase error (the unit is radian). Figure 12 illustrates
the cubic-approximated range equation’s scope of application. From Figures 11 and 12, one
can see that the cubic-approximated is accurate enough even when the azimuth resolution
is very high. Moreover, by comparing Figure 11 with Figure 6, it can be seen that the
phase errors of the cubic-approximated range equation are much smaller than those of the
quadratic-approximated range equation. Therefore, it could be concluded that the phase
error of the quadratic-approximated range equation is mainly depended on the cubic term.

Figure 11. Dependency between the phase error of the cubic-approximated range equation and ρa and R0 for the C band
system. (a) Targets with constant speeds and (b) accelerating targets. In the figures, the color indicates the value of the
phase error, and the unit is radian.

Figure 12. Lower Bounds of azimuth resolution for the cubic-approximated range equation. (a) Targets with constant
speeds and (b) accelerating targets.
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7. Conclusions

A study on the range equation modeling for multichannel MEO SAR-GMTI systems
has been presented in this paper. The coordinates of the multichannel MEO SAR and the
target in the ECR coordinate system, as well as the target’ range equation with respect to
each channel, have been developed in the paper. The analytical expression has also been
derived for the target’s quadratic-approximated range equation of each channel. Moreover,
the dependence of the accuracy of the quadratic-approximated range equation on the
parameters of the radar and the target has been figured out. Finally, the influence of the
phase error on the GMTI performance and the quadratic-approximated range equation’s
scope of application have been studied via numerical simulations.
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