Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = MEMS converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1291 KB  
Article
Integrated Microfluidic Giant Magnetoresistance (GMR) Biosensor Platform for Magnetoresistive Immunoassay of Myoglobin
by Yikai Wang, Huaiyu Wang, Yunyun Zhang, Shuhui Cui, Fei Hu and Bo’an Li
Biosensors 2026, 16(1), 8; https://doi.org/10.3390/bios16010008 - 22 Dec 2025
Viewed by 840
Abstract
Acute myocardial infarction (AMI) is a rapidly progressing cardiovascular condition associated with high mortality. Myoglobin is an early biomarker of AMI; however, its detection using conventional methods is limited by complex workflows and low resistance to interference. In this study, we developed an [...] Read more.
Acute myocardial infarction (AMI) is a rapidly progressing cardiovascular condition associated with high mortality. Myoglobin is an early biomarker of AMI; however, its detection using conventional methods is limited by complex workflows and low resistance to interference. In this study, we developed an integrated myoglobin detection platform that combined magneto-immunoassay with microfluidic technology. A giant magnetoresistance (GMR) sensor was fabricated using micro-electro-mechanical systems (MEMS). The designed microfluidic chip integrated sample pretreatment, immunoreaction, and magnetic signal capture functionalities. Its built-in GMR sensor, labeled with magnetic nanoparticles, directly converted the “antigen–antibody” biochemical signal into detectable magnetoresistance changes, thereby enabling the indirect detection of myoglobin. A magneto-immunoassay analysis system consisted of a fluidic drive, magnetic field control, and data acquisition functions. Various key parameters were optimized, including EDC/NHS concentration, antibody concentration, and magnetic bead size. Under the optimal conditions and using 1 μm magnetic beads as labels and an external detection magnetic field of 60 Oe, the platform successfully detected myoglobin at 75 ng/mL with ∆MR ≥ 0.202%. Specificity tests demonstrated that the platform had high specificity for myoglobin and could effectively distinguish myoglobin from bovine serum albumin (BSA) and troponin I. This study presents a rapid, accurate myoglobin detection platform that can be applied for the early diagnosis of AMI. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis—2nd Edition)
Show Figures

Figure 1

18 pages, 2191 KB  
Article
Low-Temperature Glass 3D Printing via Two-Photon and Single-Photon Polymerization of Oligo-Silsesquioxanes
by Liyuan Chen, Masaru Mukai, Yuki Hatta, Shoma Miura and Shoji Maruo
Polymers 2025, 17(23), 3204; https://doi.org/10.3390/polym17233204 - 1 Dec 2025
Viewed by 2431
Abstract
Recent advances in 3D printing of silica glass have highlighted the limitations of conventional stereolithography (SLA), which requires high-temperature sintering (≈1000 °C) and often uses slurry-based materials. To address these limitations, a sinterless approach using polyhedral oligomeric silsesquioxane (POSS)-based resin has gained attention, [...] Read more.
Recent advances in 3D printing of silica glass have highlighted the limitations of conventional stereolithography (SLA), which requires high-temperature sintering (≈1000 °C) and often uses slurry-based materials. To address these limitations, a sinterless approach using polyhedral oligomeric silsesquioxane (POSS)-based resin has gained attention, as it can form transparent fused silica at only 650 °C. However, previous POSS-based systems suffered from high shrinkage owing to the addition of organic monomers. In this study, a novel low-viscosity polymerizable POSS resin was synthesized without additional monomers, maintaining its sinterless properties while reducing shrinkage. Experimental results showed that our POSS resin has a silica content of 41%, with a shrinkage rate of only 36 ± 1%, which effectively reduced cracking and warping when calcinating large-volume models. It was demonstrated that this resin can be applied not only to high-resolution glass 3D printing with sub-200 nm line widths using two-photon polymerization, but also to low-cost glass 3D printing using single-photon polymerization. The 3D-printed objects can be converted into silica glass structures at significantly lower temperatures than traditional sintering, offering a promising route for efficient and precise glass manufacturing. Potential applications of our POSS resin include the production of multi-scale devices, such as microfluidic devices and optical components, and hybrid processing with semiconductors and MEMS and photonic devices. Full article
(This article belongs to the Special Issue Polymer Microfabrication and 3D/4D Printing)
Show Figures

Graphical abstract

15 pages, 4568 KB  
Article
Development of Vacuum-Chamber-Type Capacitive Micro-Pressure Sensors
by Lung-Jieh Yang, De-Yu Jiang, Wei-Chen Wang, Chandrashekhar Tasupalli, Horng-Yuan Shih and Yi-Jen Wang
Micromachines 2025, 16(11), 1290; https://doi.org/10.3390/mi16111290 - 18 Nov 2025
Viewed by 2232
Abstract
This study presents the development of a capacitive pressure sensor tailored for measuring the dynamic pressure of flow fields. The sensor is fabricated using the UMC 0.18 μm CMOS-MEMS process, incorporated with additional post-processing steps such as metal wet etching, supercritical CO2 [...] Read more.
This study presents the development of a capacitive pressure sensor tailored for measuring the dynamic pressure of flow fields. The sensor is fabricated using the UMC 0.18 μm CMOS-MEMS process, incorporated with additional post-processing steps such as metal wet etching, supercritical CO2 drying, and parylene encapsulation. The sensing architecture employs AD7746 as a capacitance-to-voltage converter (CVC), enabling the conversion of capacitance signals into voltage outputs for enhanced measurement fidelity. Structurally, the capacitive pressure sensor features a vacuum-sealed diaphragm capsule design with dual movable circular membranes functioning as sensing electrodes. A contact-mode capacitive configuration with a trapezoidal or Gong-like vacuum-chamber diaphragm is adopted to improve linearity and sensitivity. The output sensitivity was determined to be feasible for measuring dynamic pressure at 1–2 Pa resolution. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

28 pages, 695 KB  
Review
Recent Advances in Vibration Analysis for Predictive Maintenance of Modern Automotive Powertrains
by Rajesh Shah, Vikram Mittal and Michael Lotwin
Vibration 2025, 8(4), 68; https://doi.org/10.3390/vibration8040068 - 3 Nov 2025
Viewed by 2828
Abstract
Vibration-based predictive maintenance is an essential element of reliability engineering for modern automotive powertrains including internal combustion engines, hybrids, and battery-electric platforms. This review synthesizes advances in sensing, signal processing, and artificial intelligence that convert raw vibration into diagnostics and prognostics. It characterizes [...] Read more.
Vibration-based predictive maintenance is an essential element of reliability engineering for modern automotive powertrains including internal combustion engines, hybrids, and battery-electric platforms. This review synthesizes advances in sensing, signal processing, and artificial intelligence that convert raw vibration into diagnostics and prognostics. It characterizes vibration signatures unique to engines, transmissions, e-axles, and power electronics, emphasizing order analysis, demodulation, and time–frequency methods that extract weak, non-stationary fault content under real driving conditions. It surveys data acquisition, piezoelectric and MEMS accelerometry, edge-resident preprocessing, and fleet telemetry, and details feature engineering pipelines with classical machine learning and deep architectures for fault detection and remaining useful life prediction. In contrast to earlier reviews focused mainly on stationary industrial systems, this review unifies vibration analysis across combustion, hybrid, and electric vehicles and connects physics-based preprocessing to scalable edge and cloud implementations. Case studies show that this integrated perspective enables practical deployment, where physics-guided preprocessing with lightweight models supports robust on-vehicle inference, while cloud-based learning provides cross-fleet generalization and model governance. Open challenges include disentangling overlapping sources in compact e-axles, coping with domain and concept drift from duty cycles, software updates, and aging, addressing data scarcity through augmentation, transfer, and few-shot learning, integrating digital twins and multimodal fusion of vibration, current, thermal, and acoustic data, and deploying scalable cloud and edge AI with transparent governance. By emphasizing inverter-aware analysis, drift management, and benchmark standardization, this review uniquely positions vibration-based predictive maintenance as a foundation for next-generation vehicle reliability. Full article
Show Figures

Figure 1

24 pages, 16560 KB  
Article
Vehicle-as-a-Sensor Approach for Urban Track Anomaly Detection
by Vlado Sruk, Siniša Fajt, Miljenko Krhen and Vladimir Olujić
Sensors 2025, 25(21), 6679; https://doi.org/10.3390/s25216679 - 1 Nov 2025
Viewed by 1018
Abstract
This paper presents a Vibration-based Track Anomaly Detection (VTAD) system designed for real-time monitoring of urban tram infrastructure. The novelty of VTAD is that it converts existing public transport vehicles into distributed mobile sensor platforms, eliminating the need for specialized diagnostic trains. The [...] Read more.
This paper presents a Vibration-based Track Anomaly Detection (VTAD) system designed for real-time monitoring of urban tram infrastructure. The novelty of VTAD is that it converts existing public transport vehicles into distributed mobile sensor platforms, eliminating the need for specialized diagnostic trains. The system integrates low-cost micro-electro-mechanical system (MEMS) accelerometers, Global Positioning System (GPS) modules, and Espressif 32-bit microcontrollers (ESP32) with wireless data transmission via Message Queuing Telemetry Transport (MQTT), enabling scalable and continuous condition monitoring. A stringent ±6σ statistical threshold was applied to vertical vibration signals, minimizing false alarms while preserving sensitivity to critical faults. Field tests conducted on multiple tram routes in Zagreb, Croatia, confirmed that the VTAD system can reliably detect and locate anomalies with meter-level accuracy, validated by repeated measurements. These results show that VTAD provides a cost-effective, scalable, and operationally validated predictive maintenance solution that supports integration into intelligent transportation systems and smart city infrastructure. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2025)
Show Figures

Figure 1

15 pages, 5686 KB  
Article
A Scheme for System Error Calibration and Compensation of the Initial State of MEMS Inertial Navigation
by Xiangru Ding, Zhaobing Chen, Zhaolong Wu and Xiushuo Wang
Sensors 2025, 25(21), 6668; https://doi.org/10.3390/s25216668 - 1 Nov 2025
Viewed by 2501
Abstract
Aiming at the challenge of balancing the accuracy and cost of the initial state calibration of traditional MEMS inertial navigation systems, as well as the current situation of the lack of high-precision three-axis turntables in engineering practice, this paper proposes a practical and [...] Read more.
Aiming at the challenge of balancing the accuracy and cost of the initial state calibration of traditional MEMS inertial navigation systems, as well as the current situation of the lack of high-precision three-axis turntables in engineering practice, this paper proposes a practical and innovative systematic error calibration and compensation scheme, which effectively suppresses the deterministic errors of MEMS-INS and enhances its applicability in high-precision and long-duration tasks. By analyzing the coordinate transformation characteristics of the MEMS-INS solution process under small-angle disturbances, a deterministic error model based on the device’s zero bias, scale factor, and cross-coupling errors is constructed. A twelve-position dual-axis calibration method, combined with a high-precision orthogonal fixture, is designed to excite errors on a dual-axis turntable, converting originally unobservable error terms into observable periodic signals. Experimental results show that the installation error calibration accuracy reaches 0.03°, an improvement of about 25% compared to the traditional dual-axis method, breaking through the limitations of dual-axis turntables in cross-coupling error calibration, achieving an initial error ≤ 1 μrad, and reducing the navigation error by 90% within one hour. This method eliminates reliance on expensive three-axis turntables while enabling multi-error calibration, addressing the cost–accuracy trade-off in engineering applications. Full article
Show Figures

Figure 1

18 pages, 3124 KB  
Article
Frequency-Mode Study of Piezoelectric Devices for Non-Invasive Optical Activation
by Armando Josué Piña-Díaz, Leonardo Castillo-Tobar, Donatila Milachay-Montero, Emigdio Chavez-Angel, Roberto Villarroel and José Antonio García-Merino
Nanomaterials 2025, 15(21), 1650; https://doi.org/10.3390/nano15211650 - 29 Oct 2025
Cited by 1 | Viewed by 898
Abstract
Piezoelectric materials are fundamental elements in modern science and technology due to their unique ability to convert mechanical and electrical energy bidirectionally. They are widely employed in sensors, actuators, and energy-harvesting systems. In this work, we investigate the behavior of commercial lead zirconate [...] Read more.
Piezoelectric materials are fundamental elements in modern science and technology due to their unique ability to convert mechanical and electrical energy bidirectionally. They are widely employed in sensors, actuators, and energy-harvesting systems. In this work, we investigate the behavior of commercial lead zirconate titanate (PZT) sensors under frequency-mode excitation using a combined approach of impedance spectroscopy and optical interferometry. The impedance spectra reveal distinct resonance–antiresonance features that strongly depend on geometry, while interferometric measurements capture dynamic strain fields through fringe displacement analysis. The strongest deformation occurs near the first kilohertz resonance, directly correlated with the impedance phase, enabling the extraction of an effective piezoelectric constant (~40 pC/N). Moving beyond the linear regime, laser-induced excitation demonstrates optically driven activation of piezoelectric modes, with a frequency-dependent response and nonlinear scaling with optical power, characteristic of coupled pyroelectric–piezoelectric effects. These findings introduce a frequency-mode approach that combines impedance spectroscopy and optical interferometry to simultaneously probe electrical and mechanical responses in a single setup, enabling non-contact, frequency-selective sensing without surface modification or complex optical alignment. Although focused on macroscale ceramic PZTs, the non-contact measurement and activation strategies presented here offer scalable tools for informing the design and analysis of piezoelectric behavior in micro- and nanoscale systems. Such frequency-resolved, optical-access approaches are particularly valuable in the development of next-generation nanosensors, MEMS/NEMS devices, and optoelectronic interfaces where direct electrical probing is challenging or invasive. Full article
Show Figures

Graphical abstract

16 pages, 2030 KB  
Article
Study on Comb-Drive MEMS Acceleration Sensor Used for Medical Purposes: Monitoring of Balance Disorders
by Michał Szermer and Jacek Nazdrowicz
Electronics 2025, 14(15), 3033; https://doi.org/10.3390/electronics14153033 - 30 Jul 2025
Viewed by 1515
Abstract
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a [...] Read more.
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a smartphone equipped with dedicated software and will be used to assess the risk of falling, which is crucial for patients with balance disorders. The authors designed the accelerometer with special attention paid to the specification required in a system, where the acceleration is ±2 g and the frequency is 100 Hz. They investigated the sensor’s behavior in the DC, AC, and time domains, capturing both the mechanical response of the proof mass and the resulting changes in output capacitance due to external acceleration. A key component of the simulation is the implementation of a second-order sigma-delta modulator designed to digitize the small capacitance variations generated by the sensor. The Simulink model includes the complete signal path from analog input to quantization, filtering, decimation, and digital-to-analog reconstruction. By combining MEMS+ modeling with MATLAB-based system-level simulations, the workflow offers a fast and flexible alternative to traditional finite element methods and facilitates early-stage design optimization for MEMS sensor systems intended for real-world deployment. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

16 pages, 3836 KB  
Article
Energy Harvesting Microelectromechanical System for Condition Monitoring Based on Piezoelectric Transducer Ring
by Kaixuan Wang, Hao Long, Di Song and Hasan Shariar
Micromachines 2025, 16(6), 602; https://doi.org/10.3390/mi16060602 - 22 May 2025
Cited by 2 | Viewed by 2958
Abstract
For complex mechanical transmission equipment, shaft bearings are usually enclosed together with the shaft in the internal space of the housing to maintain good sealing and reliability. However, it is difficult to monitor the status of the shaft bearing through external sensors on [...] Read more.
For complex mechanical transmission equipment, shaft bearings are usually enclosed together with the shaft in the internal space of the housing to maintain good sealing and reliability. However, it is difficult to monitor the status of the shaft bearing through external sensors on the housing, while internal sensors face challenges in energy supply and data transmission. Therefore, a piezoelectric transducer ring-based energy harvesting microelectromechanical system (PTR-EH-MEMS) is proposed for the condition monitoring of shaft bearings. Specifically, the piezoelectric transducer ring is designed to convert mechanical vibrations into electrical energy, which simultaneously acts as a self-powered monitoring sensor through energy harvesting. In addition, the MEMS is embedded for piezoelectric data processing and condition monitoring of the shaft bearings. To verify the proposed PTR-EH-MEMS, an experimental investigation is implemented under different conditions. The experimental results demonstrate that the system can achieve the maximum DC output of 0.8 V and the root mean square power of 43.979 μW within 128 s, which can effectively identify early-stage bearing faults frequency through a self-powered mode. By combining energy harvesting with condition monitoring capability, the PTR-EH-MEMS offers a compact and sustainable approach for predictive maintenance in rotating machinery, reducing the reliance on external power sources and enhancing the reliability of industrial systems. Full article
(This article belongs to the Special Issue Exploration and Application of Piezoelectric Smart Structures)
Show Figures

Figure 1

10 pages, 4180 KB  
Proceeding Paper
The Influence of MIM Metamaterial Absorbers on the Thermal and Electro-Optical Characteristics of Uncooled CMOS-SOI-MEMS Infrared Sensors
by Moshe Avraham, Mikhail Klinov and Yael Nemirovsky
Eng. Proc. 2024, 82(1), 11; https://doi.org/10.3390/ecsa-11-20442 - 25 Nov 2024
Cited by 2 | Viewed by 1226
Abstract
Uncooled infrared (IR) sensors, including bolometers, thermopiles, and pyroelectrics, have traditionally dominated the market. Nevertheless, a new innovative technology, dubbed the TMOS sensor, has emerged. It is based on CMOS-SOI-MEMS (complementary-metal-oxide-semiconductor silicon-on-insulator micro-electromechanical systems) fabrication. This pioneering technology utilizes a suspended, micro-machined, thermally [...] Read more.
Uncooled infrared (IR) sensors, including bolometers, thermopiles, and pyroelectrics, have traditionally dominated the market. Nevertheless, a new innovative technology, dubbed the TMOS sensor, has emerged. It is based on CMOS-SOI-MEMS (complementary-metal-oxide-semiconductor silicon-on-insulator micro-electromechanical systems) fabrication. This pioneering technology utilizes a suspended, micro-machined, thermally insulated transistor to directly convert absorbed infrared radiation into an electrical signal. The miniaturization of IR sensors, including the TMOS, is crucial for seamless integration into wearable and mobile technologies. However, this presents a significant challenge: balancing size reduction with sensor sensitivity. Smaller sensor footprints can often lead to decreased signal capture and, consequently, diminished performance. Metamaterial advancements offer a promising solution to this challenge. These engineered materials exhibit unique electromagnetic properties that can potentially boost sensor sensitivity while enabling miniaturization. The strategic integration of metamaterials into sensor design offers a pathway towards compact, high-sensitivity IR systems with diverse applications. This study explores the impact of electro-optical metal-insulator-metal (MIM) metamaterial absorbers on the thermal and electro-optical characteristics of CMOS-SOI-MEMS sensors in the mid-IR region. We target the key thermal properties critical to IR sensor performance: thermal conductance (Gth), thermal capacitance (Cth), and thermal time constant (τth). This study shows how material selection, layer thickness, and metamaterial geometry fill-factor affect the sensor’s thermal performance. An analytical thermal model is employed alongside 3D finite element software for precise numerical simulations. Full article
Show Figures

Figure 1

35 pages, 21289 KB  
Article
Three-Dimensional Coupled Temporal Geomechanical Model for Fault-Reactivation and Surface-Deformation Evaluation during Reservoir Depletion and CO2 Sequestration, Securing Long-Term Reservoir Sustainability
by Sirous Hosseinzadeh, Reza Abdollahi, Saeed Salimzadeh and Manouchehr Haghighi
Sustainability 2024, 16(19), 8482; https://doi.org/10.3390/su16198482 - 29 Sep 2024
Cited by 7 | Viewed by 3457
Abstract
Assessing reservoir subsidence due to depletion involves understanding the geological and geophysical processes that lead to ground subsidence as a result of reservoir fluid extraction. Subsidence is a gradual sinking or settling of the Earth’s surface, and it can occur when hydrocarbons are [...] Read more.
Assessing reservoir subsidence due to depletion involves understanding the geological and geophysical processes that lead to ground subsidence as a result of reservoir fluid extraction. Subsidence is a gradual sinking or settling of the Earth’s surface, and it can occur when hydrocarbons are extracted from underground reservoirs. In this study, a time-integrated 3D coupled geomechanical modeling incorporating the fourth dimension—time—into traditional 3D geomechanical models has been constructed utilizing seismic inversion volumes and a one-dimensional mechanical Earth model (1D MEM). The 3D geomechanical model was calibrated to the 1D MEM results. Geomechanical rock properties were derived from the density and sonic log data that was distributed with conditioning to the seismic inversion volumes obtained from running pre-stack inversion. The standard elastic parameter equations were used to generate estimates of the elastic moduli. These properties are dynamic but have been converted to static values using additional equations used in the 1D MEM study. This included estimating the Unconfined Compressive Strength. In situ stresses were matched using different minimum horizontal principal stress gradients and horizontal principal stress ratios. The match is good except where the weak carbonate faults are close to the wells, where the Shmin magnitudes tend to decrease. The SHmax orientations were assessed from image log data and indicated to be 110° in the reservoir section. A time-integrated 3D coupled simulation was created using the finite-element method (FEM). The effective stresses increase while there is depletion in all directions, especially in the Z direction. The predicted compaction in the reservoir and overburden was 350 mm. Most of the compaction occurs at the reservoir level and dissipates towards the surface (seabed). Furthermore, the case displayed no shear failure that might cause or fault reactivation in the reservoir interval (Kangan–Dalan Formations) located in the simulated area. In this study, we applied an integrated and comprehensive geomechanical approach to evaluate subsidence, fault reactivation and stress alteration, while reservoir depletion was assessed using seismic inversion, well logs, and experiment data. The deformation monitoring of geological reservoirs, whether for gas storage or hazardous gas disposal, is essential due to the economic value of the stored assets and the hazardous nature of the disposed materials. This monitoring is vital for ensuring the sustainability of the reservoir by maintaining operational success and detecting integrity issues. Full article
Show Figures

Figure 1

18 pages, 3363 KB  
Article
Vibration Analysis at Castello Ursino Picture Gallery (Sicily, Italy) for the Implementation of Self-Generating AlN-MEMS Sensors
by Claudia Pirrotta, Anna M. Gueli, Sebastiano Imposa, Giuliano A. Salerno and Carlo Trigona
Sensors 2024, 24(17), 5617; https://doi.org/10.3390/s24175617 - 29 Aug 2024
Cited by 5 | Viewed by 1786
Abstract
This work explores the potential of self-powered MEMS devices for application in the preventive conservation of cultural heritage. The main objective is to evaluate the effectiveness of piezoelectric aluminum nitride MEMS (AlN-MEMS) for monitoring vibrations and to investigate its potential for harvesting energy [...] Read more.
This work explores the potential of self-powered MEMS devices for application in the preventive conservation of cultural heritage. The main objective is to evaluate the effectiveness of piezoelectric aluminum nitride MEMS (AlN-MEMS) for monitoring vibrations and to investigate its potential for harvesting energy from vibrations, including those induced by visitors. A preliminary laboratory comparison was conducted between AlN-MEMS and the commercial device Tromino®. The study was then extended to the Picture Gallery of Ursino Castle, where joint measurements with the two devices were carried out. The analysis focused on identifying natural frequencies and vibrational energy levels by key metrics, including spectral peaks and the Power Spectral Density (PSD). The results indicated that the response of the AlN-MEMS aligned well with the data collected by the commercial device, especially observing high vibrational energy around 100 Hz. Such results validate the potential of AlN-MEMS for effective vibration measurement and for converting kinetic energy into electrical power, thereby eliminating the need for external power sources. Additionally, the vibrational analysis highlighted specific locations, such as the measurement point Cu4, as exhibiting the highest vibrational energy levels. These points could be used for placing MEMS sensors to ensure efficient vibration monitoring and energy harvesting. Full article
Show Figures

Figure 1

17 pages, 7194 KB  
Article
Development of a MEMS Piezoresistive High-g Accelerometer with a Cross-Center Block Structure and Reliable Electrode
by Cun Li, Ran Zhang, Le Hao and Yulong Zhao
Sensors 2024, 24(17), 5540; https://doi.org/10.3390/s24175540 - 27 Aug 2024
Cited by 4 | Viewed by 6072
Abstract
A MEMS piezoresistive sensor for measuring accelerations greater than 100,000 g (about 106 m/s2) is described in this work. To enhance the performance of the sensor, specifically widening its measurement range and natural frequency, a cross-beam construction with a center [...] Read more.
A MEMS piezoresistive sensor for measuring accelerations greater than 100,000 g (about 106 m/s2) is described in this work. To enhance the performance of the sensor, specifically widening its measurement range and natural frequency, a cross-beam construction with a center block was devised, and a Wheatstone bridge was formed by placing four piezoresistors at the ends of the fixed beams to convert acceleration into electricity. The location of the varistor was determined using the finite element approach, which yielded the optimal sensitivity. Additionally, a reliable Pt-Ti-Pt-Au electrode was designed to solve the issue of the electrode failing under high impact and enhancing the stability of the ohmic contact. The accelerometer was fabricated using MEMS technology, and the experiment with a Hopkinson pressure bar and hammering was conducted, and the bias stability was measured. It had a sensitivity of 1.06 μV/g with good linearity. The simulated natural frequency was 633 kHz The test result revealed that the accelerometer can successfully measure an acceleration of 100,000 g. Full article
(This article belongs to the Special Issue Advanced Sensors in MEMS: 2nd Edition)
Show Figures

Figure 1

23 pages, 11691 KB  
Article
Cost-Effective Data Acquisition Systems for Advanced Structural Health Monitoring
by Kamer Özdemir and Ahu Kömeç Mutlu
Sensors 2024, 24(13), 4269; https://doi.org/10.3390/s24134269 - 30 Jun 2024
Cited by 7 | Viewed by 6463
Abstract
With the growing demand for infrastructure and transportation facilities, the need for advanced structural health monitoring (SHM) systems is critical. This study introduces two innovative, cost-effective, standalone, and open-source data acquisition devices designed to enhance SHM through the latest sensing technologies. The first [...] Read more.
With the growing demand for infrastructure and transportation facilities, the need for advanced structural health monitoring (SHM) systems is critical. This study introduces two innovative, cost-effective, standalone, and open-source data acquisition devices designed to enhance SHM through the latest sensing technologies. The first device, termed CEDAS_acc, integrates the ADXL355 MEMS accelerometer with a RaspberryPi mini-computer, ideal for measuring strong ground motions and assessing structural modal properties during forced vibration tests and structural monitoring of mid-rise buildings. The second device, CEDAS_geo, incorporates the SM24 geophone sensor with a Raspberry Pi, designed for weak ground motion measurements, making it suitable for seismograph networks, seismological research, and early warning systems. Both devices function as acceleration/velocity Data Acquisition Systems (DAS) and standalone data loggers, featuring hardware components such as a single-board mini-computer, sensors, Analog-to-Digital Converters (ADCs), and micro-SD cards housed in protective casings. The CEDAS_acc includes a triaxial MEMS accelerometer with three ADCs, while the CEDAS_geo uses horizontal and vertical geophone elements with an ADC board. To validate these devices, rigorous tests were conducted. Offset Test, conducted by placing the sensor on a leveled flat surface in six orientations, demonstrating the accelerometer’s ability to provide accurate measurements using gravity as a reference; Frequency Response Test, performed at the Gebze Technical University Earthquake and Structure Laboratory (GTU-ESL), comparing the devices’ responses to the GURALP-5TDE reference sensor, with CEDAS_acc evaluated on a shaking table and CEDAS_geo’s performance assessed using ambient vibration records; and Noise Test, executed in a low-noise rural area to determine the intrinsic noise of CEDAS_geo, showing its capability to capture vibrations lower than ambient noise levels. Further field tests were conducted on a 10-story reinforced concrete building in Gaziantep, Turkey, instrumented with 8 CEDAS_acc and 1 CEDAS_geo devices. The building’s response to a magnitude 3.2 earthquake and ambient vibrations was analyzed, comparing results to the GURALP-5TDE reference sensors and demonstrating the devices’ accuracy in capturing peak accelerations and modal frequencies with minimal deviations. The study also introduced the Record Analyzer (RECANA) web application for managing data analysis on CEDAS devices, supporting various data formats, and providing tools for filtering, calibrating, and exporting data. This comprehensive study presents valuable, practical solutions for SHM, enhancing accessibility, reliability, and efficiency in structural and seismic monitoring applications and offering robust alternatives to traditional, costlier systems. Full article
(This article belongs to the Special Issue Structural Health Monitoring Based on Sensing Technology)
Show Figures

Figure 1

46 pages, 14490 KB  
Review
Analysis of the Methods for Realization of Low-Power Piezoelectric Energy Harvesting Circuits for Wearable Battery-Free Power Supply Devices
by Ivaylo Pandiev, Nikolay Tomchev, Nikolay Kurtev and Mariya Aleksandrova
Appl. Sci. 2024, 14(11), 4792; https://doi.org/10.3390/app14114792 - 31 May 2024
Cited by 11 | Viewed by 7310
Abstract
This paper presents a comprehensive review of the design and implementation methods of low-power piezoelectric energy harvesting circuits, which in the last few years have gained an extremely large range of applications like the power sources of wearable electronic devices, such as biometrical [...] Read more.
This paper presents a comprehensive review of the design and implementation methods of low-power piezoelectric energy harvesting circuits, which in the last few years have gained an extremely large range of applications like the power sources of wearable electronic devices, such as biometrical sensors. Before examining the electronic circuitries of the self-supplied power devices, an overview of the structure, equivalent electrical circuits, and basic parameters of the piezoelectric generators and MEMSs as energy harvesting elements is presented. The structure of energy storage elements (parallel-plate capacitors and thin-film supercapacitors), suitable for this type of application, is also presented. The description of these components from an electrical point of view allows them to be easily workable when connected to the various power conversion electronic circuits. Based on an overview of the structure and the principles of operation, as well as some analytical expressions for energy efficiency evaluation, a comprehensive comparative analysis is presented. Depending on the advantages and disadvantages of the known circuit configurations, the basic electrical and design parameters are systematized in tabular form. Practical realizations of piezoelectric power conversion circuits are also presented in graphic form, ensuring the optimal value of energy efficiency and compactness in the construction of the devices. Full article
Show Figures

Figure 1

Back to TopTop