Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,000)

Search Parameters:
Keywords = MEK6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2241 KiB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 (registering DOI) - 1 Aug 2025
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

16 pages, 14493 KiB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 173
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

20 pages, 1400 KiB  
Review
Novel Therapeutics and the Path Toward Effective Immunotherapy in Malignant Peripheral Nerve Sheath Tumors
by Joshua J. Lingo, Elizabeth C. Elias and Dawn E. Quelle
Cancers 2025, 17(14), 2410; https://doi.org/10.3390/cancers17142410 - 21 Jul 2025
Viewed by 393
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are a deadly subtype of soft tissue sarcoma for which effective therapeutic options are lacking. Currently, the best treatment for MPNSTs is complete surgical resection with wide negative margins, but this is often complicated by the tumor [...] Read more.
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are a deadly subtype of soft tissue sarcoma for which effective therapeutic options are lacking. Currently, the best treatment for MPNSTs is complete surgical resection with wide negative margins, but this is often complicated by the tumor size and location and/or the presence of metastases. Radiation or chemotherapy may be combined with surgery, but patient responses are poor. Targeted treatments, including small-molecule inhibitors of oncogenic proteins such as mitogen-activated protein kinase kinase (MEK), cyclin-dependent kinases 4 and 6 (CDK4/6), and Src-homology 2 domain-containing phosphatase 2 (SHP2), are promising therapeutics for MPNSTs, especially when combined together, but they have yet to gain approval. Immunotherapeutic approaches have been revolutionary for the treatment of some other cancers, but their utility as single agents in sarcoma is limited and not approved for MPNSTs. The immunosuppressive niche of MPNSTs is thought to confer inherent treatment resistance, particularly to immunotherapies. Remodeling an inherently “cold” tumor microenvironment into a “hot” immune milieu to bolster the anti-tumor activity of immunotherapies is of great interest throughout the cancer community. This review focuses on novel therapeutics that target dysregulated factors and pathways in MPNSTs, as well as different types of immunotherapies currently under investigation for this disease. We also consider how certain therapeutics may be combined to remodel the MPNST immune microenvironment and thereby generate a durable anti-tumor immune response to immunotherapy. Full article
(This article belongs to the Special Issue Next-Generation Cancer Therapies)
Show Figures

Figure 1

12 pages, 1025 KiB  
Article
Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells
by Yoshihiko Itoh, Kenichi Inagaki, Tomohiro Terasaka, Eisaku Morimoto, Takahiro Ishii, Kimitomo Yamaoka, Satoshi Fujisawa and Jun Wada
Int. J. Mol. Sci. 2025, 26(14), 6927; https://doi.org/10.3390/ijms26146927 - 18 Jul 2025
Viewed by 275
Abstract
Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on [...] Read more.
Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 1049 KiB  
Review
MEK Inhibition in Glioblastoma: Current Perspectives and Future Directions
by Adam Shapira Levy, Jean-Paul Bryant, David Matichak, Shumpei Onishi and Yeshavanth Kumar Banasavadi-Siddegowda
Int. J. Mol. Sci. 2025, 26(14), 6875; https://doi.org/10.3390/ijms26146875 - 17 Jul 2025
Viewed by 262
Abstract
The Mitogen-activated protein kinase kinase (MEK) protein family has dual-specificity protein kinases with a myriad of cellular functions that include but are not limited to cell survival, cell division, immunologic response, angiogenesis, and cellular senescence. MEK is crucial in the MAPK signaling pathway, [...] Read more.
The Mitogen-activated protein kinase kinase (MEK) protein family has dual-specificity protein kinases with a myriad of cellular functions that include but are not limited to cell survival, cell division, immunologic response, angiogenesis, and cellular senescence. MEK is crucial in the MAPK signaling pathway, regulating different organ systems, including the CNS. Increased activation and dysregulation of the MEK pathway is reportedly observed in 30% of all malignancies. The diversity of MEK renders it a prime target for inhibition in treating cancer. MEK inhibition has been studied in the context of melanoma, non-small cell lung cancer, breast cancer, and colorectal cancer, among others. The standard treatment for glioblastoma (resection, temozolomide, and radiation) remains relatively futile, which warrants alternative treatment options. Therefore, MEK inhibition has garnered more attention in recent years as investigators have explored its role in treating the most aggressive and most common primary brain tumor, glioblastoma. MEK inhibitors have shown efficacy in pre-clinical investigations as well as some promise in clinical trials which have demonstrated improved overall and progression-free survival. This underscores the potential of MEK inhibition in glioblastoma therapy and represents an area that likely warrants further research. However, there are few comprehensive and unifying reviews discussing the current state of MEK inhibition in glioblastoma therapy. We begin this review by detailing the normal function of MEK as it pertains to the CNS. We then compiled relevant pre-clinical and clinical studies to investigate recent research discussing the role of MEK inhibition in glioblastoma therapy. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers: 3rd Edition)
Show Figures

Figure 1

14 pages, 1609 KiB  
Review
Neurofibromatosis Type 1 and MEK Inhibition: A Comprehensive Review with Focus on Selumetinib Therapy
by George Imataka, Shigeko Kuwashima, Shujiro Hayashi, Kei Ogino, Eisei Hoshiyama, Katsuhiko Naruse and Hideaki Shiraishi
J. Clin. Med. 2025, 14(14), 5071; https://doi.org/10.3390/jcm14145071 - 17 Jul 2025
Viewed by 335
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder characterized by a wide range of clinical manifestations, including café-au-lait macules, cutaneous neurofibromas, and an increased risk of certain malignancies. Historically, there has been no approved medical therapy specifically aimed at achieving tumor shrinkage or [...] Read more.
Neurofibromatosis type 1 (NF1) is a genetic disorder characterized by a wide range of clinical manifestations, including café-au-lait macules, cutaneous neurofibromas, and an increased risk of certain malignancies. Historically, there has been no approved medical therapy specifically aimed at achieving tumor shrinkage or regression. Surgical intervention is often limited by factors such as the inaccessibility of the tumor location, involvement of critical tissues, suboptimal timing, or the inability to achieve complete resection. Recent advancements in targeted therapies, particularly MEK inhibitors, have introduced promising treatment options for patients with severe manifestations of NF1. This review highlights the pathophysiology of NF1 and the therapeutic role of MEK inhibitors and presents a detailed case study of a patient treated with selumetinib, a novel MEK inhibitor. While the therapeutic potential of selumetinib has been demonstrated in preclinical and clinical studies, including those involving Japanese patients, this review aims to evaluate its application in real-world clinical practice. A comprehensive discussion of the case study provides insights into the efficacy, safety, and clinical challenges associated with selumetinib treatment, offering valuable perspectives for its use in managing NF1. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

19 pages, 2076 KiB  
Article
Capacity for Compensatory Cyclin D2 Response Confers Trametinib Resistance in Canine Mucosal Melanoma
by Bih-Rong Wei, Vincenzo Verdi, Shuling Zhang, Beverly A. Mock, Heather R. Shive and R. Mark Simpson
Cancers 2025, 17(14), 2357; https://doi.org/10.3390/cancers17142357 - 15 Jul 2025
Viewed by 436
Abstract
Background/objective: Mucosal melanoma (MM) is a poorly responsive, rare and aggressive subtype with few cases having targetable recurrent driver mutations, although Ras/MAPK and PI3K/AKT/mTOR signaling pathway activations are common. Eventual tumor evasion of targeted therapy continues to limit treatment success. Adequate models are [...] Read more.
Background/objective: Mucosal melanoma (MM) is a poorly responsive, rare and aggressive subtype with few cases having targetable recurrent driver mutations, although Ras/MAPK and PI3K/AKT/mTOR signaling pathway activations are common. Eventual tumor evasion of targeted therapy continues to limit treatment success. Adequate models are necessary to address therapeutic resistance. The relatively greater incidence of naturally occurring MM in dogs, as well as its comparable clinical and pathological characteristics to human MM, represents an opportunity for study as a human MM patient surrogate. Resistance-promoting crosstalk between Ras/MAPK and PI3K/AKT/mTOR signaling under trametinib inhibition of MEK was studied in canine MM. Emphasis was placed on the suppressive effect of trametinib on cell cycle entry and its potential role in drug resistance. Methods: D-type cyclins were investigated following trametinib treatment of five MM cell lines exhibiting differential drug sensitivities. Signaling pathway activation, proliferation, survival, cell death, and cell cycle were analyzed in the context of D-type cyclin expression. Cyclin D2 expression was manipulated using siRNA knockdown or inducible recombinant overexpression. Results: Trametinib diminished cyclin D1 in all cell lines. While relatively trametinib-resistant MM cells exhibited capacity to upregulate cyclin D2, which promoted proliferation, sensitive MM cells lacked similar cyclin D2 compensation. Inhibition of the compensatory cyclin D2 in resistant cells conferred sensitivity. Induced cyclin D2 overexpression in otherwise trametinib-sensitive MM cells promoted survival. Upregulated PI3K/AKT/mTOR signaling under trametinib treatment was suppressed by mTORC1/2 inhibition, which similarly diminished cyclin D2 response. Conclusions: The compensatory switch from preferential reliance on cyclin D1 to D2 plays a role in MM resistance to MEK inhibition. Full article
(This article belongs to the Special Issue Molecular Insights into Drug Resistance in Cancer)
Show Figures

Figure 1

12 pages, 7571 KiB  
Case Report
Selumetinib in Adult Neurofibromatosis 1 with Plexiform Neurofibroma
by Carlen A. Yuen, Eleanor Chu, Ryan O’Connell, Bryan K. Sun, Raj Vyas, Michelle Zheng, Emma Elliott and Changrui Xiao
Pharmaceuticals 2025, 18(7), 1039; https://doi.org/10.3390/ph18071039 - 13 Jul 2025
Viewed by 596
Abstract
Background/Objectives: Neurofibromatosis Type 1 (NF1) plexiform neurofibroma (PN) can cause morbidity, including disfigurement that can negatively impact social functioning. Historically, the mainstay treatment is surgical resection. However, complete resection is often prohibitive due to multiple nerve involvement. Moreover, post-operative recurrence is common. MEK [...] Read more.
Background/Objectives: Neurofibromatosis Type 1 (NF1) plexiform neurofibroma (PN) can cause morbidity, including disfigurement that can negatively impact social functioning. Historically, the mainstay treatment is surgical resection. However, complete resection is often prohibitive due to multiple nerve involvement. Moreover, post-operative recurrence is common. MEK inhibitors, including selumetinib and mirdametinib, have recently changed the treatment paradigm for these tumors. In 2020, selumetinib was FDA-approved for pediatric NF1 patients with inoperable symptomatic PNs, but selumetinib remains under investigation for their adult counterparts. In 2025, mirdametinib was FDA-approved for use in adults with symptomatic incompletely resectable NF1 PNs. Lower partial response rates have been reported with mirdametinib compared to selumetinib, but direct comparative analyses have not been conducted to establish the superiority of one agent over the other. Results: We present a case of a 38-year-old male with a right facial PN successfully treated with selumetinib, resulting in a 16.77% tumor volumetric reduction over 7 months. Selumetinib was well tolerated in our patient, with an asymptomatic Grade 3 CPK elevation that subsequently improved with a dose reduction. Conclusion: Our case adds to the growing body of evidence suggesting that selumetinib is effective and well tolerated in adult patients with NF1-associated PNs. Full article
(This article belongs to the Special Issue Adjuvant Therapies for Cancer Treatment: 2nd Edition)
Show Figures

Figure 1

20 pages, 8659 KiB  
Article
Oncogenic Activity and Sorafenib Sensitivity of ARAF p.S214C Mutation in Lung Cancer
by Carol Lee, Weixue Mu, Xi July Chen, Mandy Sze Man Chan, Zhishan Chen, Sai Fung Yeung, Helen Hoi Yin Chan, Sin Ting Chow, Ben Chi Bun Ko, David Wai Chan, William C. Cho, Vivian Wai Yan Lui and Stephen Kwok Wing Tsui
Cancers 2025, 17(13), 2246; https://doi.org/10.3390/cancers17132246 - 4 Jul 2025
Viewed by 431
Abstract
Background/Objectives: RAF pathway aberrations are one of the hallmarks of lung cancer. Sorafenib is a multi-kinase inhibitor targeting the RAF pathway and is FDA-approved for several cancers, yet its efficacy in lung cancer is controversial. Previous clinical research showed that a [...] Read more.
Background/Objectives: RAF pathway aberrations are one of the hallmarks of lung cancer. Sorafenib is a multi-kinase inhibitor targeting the RAF pathway and is FDA-approved for several cancers, yet its efficacy in lung cancer is controversial. Previous clinical research showed that a ARAF p.S214C mutation exhibited exceptional responsiveness to sorafenib in lung adenocarcinoma. Methods: Considering this promising clinical potential, the oncogenic potential and sorafenib response of the ARAF p.S214C mutation were investigated using lung cancer models. ARAF p.S214C mutant, ARAF wild-type (WT), and EGFP control genes were ectopically expressed in lung adenocarcinoma cell lines retroviral transduction. In vitro and in vivo sorafenib sensitivity studies were performed, followed by transcriptomics and proteomics analyses. Results: Compared to the ARAF-WT and EGFP-engineered cells, the ARAF p.S214C-engineered cells activated Raf-MEK-ERK signaling and exhibited enhanced oncogenic potential in terms of in vitro cell proliferation, colony and spheroid formation, migration, and invasion abilities, as well as in vivo tumorigenicity. The ARAF p.S214C-engineered cells also displayed heightened sensitivity to sorafenib in vitro and in vivo. RNA sequencing and reverse-phase protein array analyses demonstrated elevated expression of genes and proteins associated with tumor aggressiveness in the ARAF p.S214C mutants, and its sorafenib sensitivity was likely moderated through inhibition of the cell cycle and DNA replication. The ERK and PI3K signaling pathways were also significantly deregulated in the ARAF p.S214C mutants regardless of sorafenib treatment. Conclusions: This study demonstrates the oncogenicity and sorafenib sensitivity of the ARAF p.S214C mutation in lung cancer cells, which may serve as a biomarker for predicting the sorafenib response in lung cancer patients. Importantly, investigating the gene–drug sensitivity pairs in clinically exceptional responders may guide and accelerate personalized cancer therapies based on specific tumor mutations. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

23 pages, 4887 KiB  
Article
JAK2 Inhibition Augments the Anti-Proliferation Effects by AKT and MEK Inhibition in Triple-Negative Breast Cancer Cells
by Kyu Sic You, Tae-Sung Kim, Su Min Back, Jeong-Soo Park, Kangdong Liu, Yeon-Sun Seong, Dong Joon Kim and Yong Weon Yi
Int. J. Mol. Sci. 2025, 26(13), 6139; https://doi.org/10.3390/ijms26136139 - 26 Jun 2025
Viewed by 557
Abstract
Janus kinase 2 (JAK2) inhibitors have gained regulatory approval for treating various human diseases. While the JAK2/signal tranducer and activator of transcription 3 (STAT3) pathway plays a role in tumorigenesis, JAK2/STAT3 inhibitors have shown limited therapeutic efficacy in triple-negative breast cancer (TNBC). In [...] Read more.
Janus kinase 2 (JAK2) inhibitors have gained regulatory approval for treating various human diseases. While the JAK2/signal tranducer and activator of transcription 3 (STAT3) pathway plays a role in tumorigenesis, JAK2/STAT3 inhibitors have shown limited therapeutic efficacy in triple-negative breast cancer (TNBC). In this study, we assessed the antiproliferative effects of clinically approved JAK2 inhibitors in TNBC cell lines (MDA-MB-231 and HS578T) using the MTT assay. Among the four JAK2 inhibitors evaluated (fedratinib, cerdulatinib, peficitinib, and filgotinib), fedratinib significantly inhibited the proliferation of TNBC cells with IC50 values below 2 μM. Fedratinib also demonstrated superior efficacy in inhibiting long-term colony formation compared to other JAK2 inhibitors. Western blot analyses showed that fedratinib uniquely inhibits the phosphoinositide 3-kinase (PI3K)/AKT pathway and moderately affects the MAP kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, in addition to targeting JAK2/STAT3 signaling. Moreover, fedratinib distinctly decreased MYC and cyclin D1 protein levels while inducing poly (ADP-ribose) polymerase (PARP) cleavage and apoptotic cell death more effectively than other JAK2 inhibitors. We next investigated the effects of simultaneously inhibiting JAK2/STAT3 together with the MEK/ERK or PI3K/AKT pathways, as well as the impact of triple pathway inhibition. Notably, combining ceduratinib with either cobimetinib (MEK inhibitor) and ipatasertib (AKT inhibitor) or trametinib (MEK inhibitor) and alpelisib (PI3K inhibitor) mimicked the effects of fedratinib on the cell proliferation, MYC and cyclin D1 suppression, and pro-apoptotic protein induction. These finding suggest that JAK2 inhibition enhances the anticancer effects of concurrent MEK/ERK and PI3K/AKT pathway inhibition, while JAK2 inhibition alone shows minimal efficacy in TNBC cells. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

19 pages, 791 KiB  
Article
Targeted Therapy for Complex Lymphatic Anomalies in Patients with Noonan Syndrome and Related Disorders
by Erika K. S. M. Leenders, Vera C. van den Brink, Lotte E. R. Kleimeier, Danielle T. J. Woutersen, Catelijne H. Coppens, Jeroen den Hertog, Willemijn M. Klein, Tuula Rinne, Sabine L. Vrancken, Saskia N. de Wildt, Jos M. T. Draaisma and Joris Fuijkschot
Int. J. Mol. Sci. 2025, 26(13), 6126; https://doi.org/10.3390/ijms26136126 - 26 Jun 2025
Viewed by 522
Abstract
Recent diagnostic advances reveal that lymphatic disease in Noonan syndrome (NS) and other NS-like RASopathies often stems from central conducting lymphatic anomalies (CCLAs). The RAS/MAPK-ERK pathway plays a central role in lymphangiogenesis. Targeting this pathway with MEK-inhibitor trametinib has emerged as a promising [...] Read more.
Recent diagnostic advances reveal that lymphatic disease in Noonan syndrome (NS) and other NS-like RASopathies often stems from central conducting lymphatic anomalies (CCLAs). The RAS/MAPK-ERK pathway plays a central role in lymphangiogenesis. Targeting this pathway with MEK-inhibitor trametinib has emerged as a promising therapeutic strategy for managing CCLAs in patients with NS-like RASopathies. This case series assessed the clinical outcomes of trametinib therapy in eight patients with NS-like RASopathies and CCLA, each offering unique insights into the therapeutic efficacy of MEK inhibition. In infants, a lower dose of 0.01 mg/kg/day and earlier discontinuation of trametinib therapy effectively alleviated the symptoms of congenital chylothorax and rescued the lymphatic phenotype, compared to similar published cases. Moreover, four patients aged >11 y showed a slower response and did not achieve complete symptomatic recovery. In conclusion, it is advised to consider trametinib therapy for patients with severe, therapy-refractory CCLA in patients with NS-like RASopathies. However, individual responses to trametinib therapy may vary, with some patients demonstrating more favorable outcomes than others. Further investigation into potential enhancers and suppressors of the lymphatic phenotype is necessary for more accurate treatment predictions. While these factors are likely genetic, we cannot rule out other intrinsic or physiological factors. Full article
(This article belongs to the Special Issue Lymphatic Disorders: From Molecular Mechanisms to Therapies)
Show Figures

Figure 1

17 pages, 4743 KiB  
Article
Uncovering Anti-Melanoma Mechanisms of Bambusa stenostachya Leaf Compounds via Network Pharmacology and Molecular Docking
by Gen Maxxine C. Darilag, Hsuan-Chieh Liu, Cheng-Yang Hsieh, Lemmuel L. Tayo, Nicholas Dale D. Talubo, Shu-Ching Yang, Ching-Hui Chang, Ying-Pin Huang, Shih-Chi Lee, Yung-Chuan Liu and Po-Wei Tsai
Int. J. Mol. Sci. 2025, 26(13), 6120; https://doi.org/10.3390/ijms26136120 - 25 Jun 2025
Viewed by 546
Abstract
Skin cancer, particularly melanoma, remains a major public health concern due to its high mortality rate. Current treatment options, including chemotherapy with dacarbazine and doxorubicin, have shown limited efficacy, achieving only a 20% objective response rate over six months, along with severe side [...] Read more.
Skin cancer, particularly melanoma, remains a major public health concern due to its high mortality rate. Current treatment options, including chemotherapy with dacarbazine and doxorubicin, have shown limited efficacy, achieving only a 20% objective response rate over six months, along with severe side effects such as cardiotoxicity. Given these limitations, there is a growing interest in herbal medicine as a source of novel anticancer compounds. Bambusa stenostachya, a bamboo species native to Taiwan, was investigated for its potential anti-melanoma properties using network pharmacology and molecular docking. LC-MS analysis identified seven bioactive compounds, including quinic acid and isovitexin, which satisfied Lipinski’s drug-likeness criteria. Among the seven bioactive compounds identified, five belong to the flavonoid family, while two are classified as phenolic compounds that modulate signaling pathways related to cancer and exhibit antioxidant activity, respectively. Through pathway enrichment analysis, four key melanoma-associated genes (PIM1, MEK1, CDK2, and PDK1) were identified as potential therapeutic targets. Ensemble docking results demonstrated that naringin-7-rhamnoglucoside exhibited the highest binding affinity (−6.30 kcal/mol) with phosphoinositide-dependent kinase-1, surpassing the affinities of standard chemotherapeutic agents. Additionally, the average docking scores for naringin-7-rhamnoglucoside and the remaining three proteins were as follows: PIM1 (−5.92), MEK1 (−6.07), and CDK2 (−5.26). These findings suggest that the bioactive compounds in B. stenostachya may play a crucial role in inhibiting melanoma progression by modulating metabolic and signaling pathways. Further in vitro and in vivo studies are necessary to validate these computational findings and explore the potential of B. stenostachya as a complementary therapeutic agent for melanoma. Full article
Show Figures

Figure 1

18 pages, 2646 KiB  
Article
COP1 Deficiency in BRAFV600E Melanomas Confers Resistance to Inhibitors of the MAPK Pathway
by Ada Ndoja, Christopher M. Rose, Eva Lin, Rohit Reja, Jelena Petrovic, Sarah Kummerfeld, Andrew Blair, Helen Rizos, Zora Modrusan, Scott Martin, Donald S. Kirkpatrick, Amy Heidersbach, Tao Sun, Benjamin Haley, Ozge Karayel, Kim Newton and Vishva M. Dixit
Cells 2025, 14(13), 975; https://doi.org/10.3390/cells14130975 - 25 Jun 2025
Viewed by 670
Abstract
Aberrant activation of the mitogen-activated protein kinase (MAPK) cascade promotes oncogenic transcriptomes. Despite efforts to inhibit oncogenic kinases, such as BRAFV600E, tumor responses in patients can be heterogeneous and limited by drug resistance mechanisms. Here, we describe patient tumors that acquired COP1 or [...] Read more.
Aberrant activation of the mitogen-activated protein kinase (MAPK) cascade promotes oncogenic transcriptomes. Despite efforts to inhibit oncogenic kinases, such as BRAFV600E, tumor responses in patients can be heterogeneous and limited by drug resistance mechanisms. Here, we describe patient tumors that acquired COP1 or DET1 mutations after treatment with the BRAFV600E inhibitor vemurafenib. COP1 and DET1 constitute the substrate adaptor of the E3 ubiquitin ligase CRL4COP1/DET1, which targets transcription factors, including ETV1, ETV4, and ETV5, for proteasomal degradation. MAPK-MEK-ERK signaling prevents CRL4COP1/DET1 from ubiquitinating ETV1, ETV4, and ETV5, but the mechanistic details are still being elucidated. We found that patient mutations in COP1 or DET1 inactivated CRL4COP1/DET1 in melanoma cells, stabilized ETV1, ETV4, and ETV5, and conferred resistance to inhibitors of the MAPK pathway. ETV5, in particular, enhanced cell survival and was found to promote the expression of the pro-survival gene BCL2A1. Indeed, the deletion of pro-survival BCL2A1 re-sensitized COP1 mutant cells to vemurafenib treatment. These observations indicate that the post-translational regulation of ETV5 by CRL4COP1/DET1 modulates transcriptional outputs in ERK-dependent cancers, and its inactivation contributes to therapeutic resistance. Full article
(This article belongs to the Special Issue Targeting Hallmarks of Cancer)
Show Figures

Graphical abstract

16 pages, 4948 KiB  
Article
CYP1A1/20-HETE/GPR75 Axis-Mediated Arachidonic Acid Metabolism Dysregulation in H-Type Hypertension Pathogenesis
by Hangyu Lv, Lingyun Liu, Baoling Bai, Kexin Zhang and Qin Zhang
Int. J. Mol. Sci. 2025, 26(13), 5947; https://doi.org/10.3390/ijms26135947 - 20 Jun 2025
Viewed by 385
Abstract
This study aims to explore the pathogenic mechanism of H-type hypertension. A rat model of H-type hypertension was established through high-methionine dietary intervention, with subsequent folic acid administration. Untargeted serum metabolomic profiling identified a significant reduction in arachidonic acid (AA) levels in the [...] Read more.
This study aims to explore the pathogenic mechanism of H-type hypertension. A rat model of H-type hypertension was established through high-methionine dietary intervention, with subsequent folic acid administration. Untargeted serum metabolomic profiling identified a significant reduction in arachidonic acid (AA) levels in the methionine-enriched group, which were effectively normalized following folic acid supplementation. Transcriptomic analysis revealed methionine-induced upregulation of AA pathway-associated genes Cyp1a1 and Gpr75. In contrast, after the intervention with folic acid, a downregulation of these genes was observed. These findings were corroborated through Western blotting and RT-qPCR validation. In vitro studies using EA.hy926 endothelial cells demonstrated that methionine exposure significantly elevated CYP1A1 expression. Furthermore, methionine stimulation induced marked upregulation of GPR75 and its downstream signaling components (NRAS, MEK1, and ERK1). Population-level evidence from the U.S. NHANES database substantiated significant correlations between essential fatty acids (AA, LA, and GLA) and H-type hypertension prevalence. Our research findings suggest that the CYP1A1/20-HETE/GPR75 axis-mediated dysregulation of AA metabolism may be one of the key pathological mechanisms of H-type hypertension. The research results provide clues for the discovery of new therapeutic targets for H-type hypertension. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

31 pages, 12256 KiB  
Article
Inter-Relationship Between Melanoma Vemurafenib Tolerance Thresholds and Metabolic Pathway Choice
by Pratima Nangia-Makker, Madison Ahrens, Neeraja Purandare, Siddhesh Aras, Jing Li, Katherine Gurdziel, Hyejeong Jang, Seongho Kim and Malathy P Shekhar
Cells 2025, 14(12), 923; https://doi.org/10.3390/cells14120923 - 18 Jun 2025
Viewed by 817
Abstract
Melanomas quickly acquire resistance to vemurafenib, an important therapeutic for BRAFV600 mutant melanomas. Although combating vemurafenib resistance (VemR) to counter mitochondrial metabolic shift using mitochondria-targeting therapies has promise, no studies have analyzed the relationship between vemurafenib tolerance levels and metabolic plasticity. To determine [...] Read more.
Melanomas quickly acquire resistance to vemurafenib, an important therapeutic for BRAFV600 mutant melanomas. Although combating vemurafenib resistance (VemR) to counter mitochondrial metabolic shift using mitochondria-targeting therapies has promise, no studies have analyzed the relationship between vemurafenib tolerance levels and metabolic plasticity. To determine how vemurafenib endurance levels drive metabolic plasticity, we developed isogenic BRAFV600E VemR melanoma models with variant vemurafenib tolerances and performed an integrative analysis of metabolomic and transcriptome alterations using metabolome, Mitoplate-S1, Seahorse, and RNA-seq assays. Regardless of drug tolerance differences, both VemR models display resistance to MEK inhibitor and sensitivity to Wnt/β-catenin inhibitor, ICG-001. β-catenin, MITF, and ABCB5 levels are upregulated in both VemR models, and ICG-001 treatment restored vemurafenib sensitivity with reductions in MITF, ABCB5, phospho-ERK1/2, and mitochondrial respiration. Whereas β-catenin signaling induced TCA cycle and OXPHOS in highly drug tolerant A2058VemR cells, it activated pentose phosphate pathway in M14VemR cells with low vemurafenib tolerance, both of which are inhibited by ICG-001. These data implicate an important role for Wnt/β-catenin signaling in VemR-induced metabolic plasticity. Our data demonstrate that drug tolerance thresholds play a direct role in driving metabolic shifts towards specific routes, thus providing a new basis for delineating VemR melanomas for metabolism-targeting therapies. Full article
(This article belongs to the Collection Pathometabolism: Understanding Disease through Metabolism)
Show Figures

Graphical abstract

Back to TopTop