Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = MCM-41 and SBA-15

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2233 KB  
Article
Formation AgI and ZnI2 Nanocrystals in AgI-ZnI2-SiO2 Hybrid Powders
by Anastasiia Averkina, Igor Valtsifer, Vladimir Strelnikov, Natalia Kondrashova and Viktor Valtsifer
Nanomaterials 2025, 15(24), 1875; https://doi.org/10.3390/nano15241875 - 13 Dec 2025
Viewed by 389
Abstract
AgI and ZnI2 nanocrystals are key components for AgI-ZnI2-SiO2 hybrid powders (HPs), which could be potentially important for atmospheric artificial precipitation technology. HPs were created by the “Hydrothermal template cocondensation” method (“HTC” method). Mesoporous silica dioxide (MCM48, MCM41, SBA15, [...] Read more.
AgI and ZnI2 nanocrystals are key components for AgI-ZnI2-SiO2 hybrid powders (HPs), which could be potentially important for atmospheric artificial precipitation technology. HPs were created by the “Hydrothermal template cocondensation” method (“HTC” method). Mesoporous silica dioxide (MCM48, MCM41, SBA15, SBA16), silver iodides, and zinc iodides were simultaneously grown under specific conditions. The influence of silica dioxide on AgI and ZnI2 nanocrystals characteristics (phase, size, and thermal stability) were studied using various physicochemical analysis methods. In addition to crystal features, some structural and textural properties of the AgI-ZnI2-SiO2 hybrid as an individual agglomerate and its morphology were determined. This showed that nanocrystal features were dependent on synthesis condition. The influence of the nature of the reagent, which is pH-forming, was manifested at the initial stage of the process, and the morphology of the silica dioxide matrix controlled the crystal properties during the post-synthesis phase. It was established that the thermal stability of AgI and ZnI2 nanocrystals increased due to the protective shielding function of that SiO2 matrix. Full article
Show Figures

Graphical abstract

10 pages, 7512 KB  
Article
Direct Detailed Surface Structure Imaging of Mesoporous Silica by Low-Voltage Scanning Electron Microscopy
by Lei Wang, Dechang Zhang, Yonghong He and Yu Deng
Appl. Sci. 2025, 15(23), 12845; https://doi.org/10.3390/app152312845 - 4 Dec 2025
Viewed by 535
Abstract
Mesoporous silica and its derivatives might enable applications ranging from biomedicine to petrochemical processing. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and N2 adsorption–desorption measurements are usually used to characterize the ordered porous system. However, none of these methods convey the full [...] Read more.
Mesoporous silica and its derivatives might enable applications ranging from biomedicine to petrochemical processing. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and N2 adsorption–desorption measurements are usually used to characterize the ordered porous system. However, none of these methods convey the full surface information. In this work, a low-voltage scanning electron microscope (LVSEM) with beam deceleration technology was employed to image detailed surface structures of ~2 nm pore size silica (MCM-41), SBA-15, KIT-6, and mesoporous silica nanospheres (MSNSs). The prospects for the development of this application of ultra-high-resolution scanning electron microscopy (SEM) are discussed in the characterization of the ordered porous materials. We demonstrate that the complete dimension range of the mesoscopic surface structure (2–50 nm) could be resolved by current low-voltage SEM technology. Full article
Show Figures

Figure 1

17 pages, 6842 KB  
Article
Inside the Framework: Structural Exploration of Mesoporous Silicas MCM-41, SBA-15, and SBA-16
by Agnieszka Karczmarska, Wiktoria Laskowska, Danuta Stróż and Katarzyna Pawlik
Materials 2025, 18(15), 3597; https://doi.org/10.3390/ma18153597 - 31 Jul 2025
Cited by 6 | Viewed by 1934
Abstract
In the rapidly evolving fields of materials science, catalysis, electronics, drug delivery, and environmental remediation, the development of effective substrates for molecular deposition has become increasingly crucial. Ordered mesoporous silica materials have garnered significant attention due to their unique structural properties and exceptional [...] Read more.
In the rapidly evolving fields of materials science, catalysis, electronics, drug delivery, and environmental remediation, the development of effective substrates for molecular deposition has become increasingly crucial. Ordered mesoporous silica materials have garnered significant attention due to their unique structural properties and exceptional potential as substrates for molecular immobilization across these diverse applications. This study compares three mesoporous silica powders: MCM-41, SBA-15, and SBA-16. A multi-technique characterization approach was employed, utilizing low- and wide-angle X-ray diffraction (XRD), nitrogen physisorption, and transmission electron microscopy (TEM) to elucidate the structure–property relationships of these materials. XRD analysis confirmed the amorphous nature of silica frameworks and revealed distinct pore symmetries: a two-dimensional hexagonal (P6mm) structure for MCM-41 and SBA-15, and three-dimensional cubic (Im3¯m) structure for SBA-16. Nitrogen sorption measurements demonstrated significant variations in textural properties, with MCM-41 exhibiting uniform cylindrical mesopores and the highest surface area, SBA-15 displaying hierarchical meso- and microporosity confirmed by NLDFT analysis, and SBA-16 showing a complex 3D interconnected cage-like structure with broad pore size distribution. TEM imaging provided direct visualization of particle morphology and internal pore architecture, enabling estimation of lattice parameters and identification of structural gradients within individual particles. The integration of these complementary techniques proved essential for comprehensive material characterization, particularly for MCM-41, where its small particle size (45–75 nm) contributed to apparent structural inconsistencies between XRD and sorption data. This integrated analytical approach provides valuable insights into the fundamental structure–property relationships governing ordered mesoporous silica materials and demonstrates the necessity of combined characterization strategies for accurate structural determination. Full article
Show Figures

Graphical abstract

15 pages, 2458 KB  
Article
Removal of Metal Ions in Spin-on Hardmask Using Functionalized Porous Silica Adsorbents
by Won Kim, Kiseok Lee, Hyosik Kim, Mingi Choi, Suk-Koo Hong and Ji Eun Lee
Appl. Sci. 2025, 15(13), 7185; https://doi.org/10.3390/app15137185 - 26 Jun 2025
Cited by 1 | Viewed by 943
Abstract
The ongoing miniaturization of semiconductor devices necessitates continuous advancements in lithographic processes, which are critical for high-precision circuit formation. To prevent substrate damage during the etching step, a spin-on hardmask (SOH) layer is often introduced between the photoresist (PR) and the substrate. However, [...] Read more.
The ongoing miniaturization of semiconductor devices necessitates continuous advancements in lithographic processes, which are critical for high-precision circuit formation. To prevent substrate damage during the etching step, a spin-on hardmask (SOH) layer is often introduced between the photoresist (PR) and the substrate. However, residual metal ions in SOH solutions can adversely affect integrated circuit performance, underscoring the need for efficient and chemically compatible removal strategies. This study investigates the adsorption of metal ions (Al3+, Cr3+, Cu2+, Fe3+, Ni2+, and Ti4+) from SOH solutions using mesoporous silica materials—MCM-41 and SBA-15—functionalized with various groups (–OH, –NH2, –SH, and –CH3). Adsorption performance was evaluated under solvent-only, monomer-containing, and polymer-containing conditions. Among the tested materials, amine-functionalized mesoporous silica exhibited the highest adsorption efficiency, with SBA-15-NH2 showing relatively effective and uniform performance in polymer-containing systems. Isotherm analysis supported a monolayer chemical adsorption mechanism, suggesting the significance of surface functional groups in the adsorption process. These findings demonstrate the potential of functionalized mesoporous silica as a promising candidate for trace metal ion removal in semiconductor manufacturing, offering enhanced yield and improved process reliability. Full article
Show Figures

Figure 1

21 pages, 5808 KB  
Article
Influence of the Synthesis Method on the Textural and Morphological Characteristics of Ni-Based Mesoporous Molecular Sieves
by Dănuța Matei, Mihai Postelnicu, Sonia Mihai and Diana-Luciana Cursaru
Materials 2025, 18(5), 1012; https://doi.org/10.3390/ma18051012 - 25 Feb 2025
Cited by 2 | Viewed by 985
Abstract
Purely siliceous MCM-41, MCM-48, SBA-15, and Ni-containing molecular sieves were synthesized by the sol–gel method. The impact of the Ni loaded by incorporation and impregnation in the framework of molecular sieves on the textural and morphological characteristics of the solids was comprehensively investigated. [...] Read more.
Purely siliceous MCM-41, MCM-48, SBA-15, and Ni-containing molecular sieves were synthesized by the sol–gel method. The impact of the Ni loaded by incorporation and impregnation in the framework of molecular sieves on the textural and morphological characteristics of the solids was comprehensively investigated. The incorporation method proved to be more effective in terms of textural and morphological properties; therefore, we also investigated the influence of Ni incorporation on the structure of MCM-41 at different loadings (3, 6 and 9 wt.%). Moreover, all solids were characterized by FT-IR, TGA, XRD, SEM-EDS, and N2 adsorption. The resulting mesoporous materials exhibit a porous structure with well-defined pore sizes of about 2.0–5.0 nm and high specific surface areas (634 m2g−1 for SBA-15, 1592 m2g−1 for MCM-48, and 1769 m2g−1 for MCM-41) alongside uniform pore size distributions. The MCM-41 structure remained unchanged after loading of Ni; however, its surface area and pore diameter decreased due to pore blockage. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

14 pages, 23408 KB  
Article
In Situ Synthesis of Zr-Doped Mesoporous Silica Based on Zr-Containing Silica Residue and Its High Adsorption Efficiency for Methylene Blue
by Haiou Wang, Weidong Chen, Shufang Yan, Chunxia Guo, Wen Ma and Ao Yang
Coatings 2025, 15(1), 77; https://doi.org/10.3390/coatings15010077 - 13 Jan 2025
Cited by 4 | Viewed by 1347
Abstract
Zr-containing silica residue (ZSR) is an industrial by-product of ZrOCl2 production obtained through an alkali fusion process using zircon sand. In this study, low-cost and efficient Zr-doped mesoporous silica adsorption materials (Zr-MCM-41 and Zr-SBA-15) were prepared in one step via the hydrothermal [...] Read more.
Zr-containing silica residue (ZSR) is an industrial by-product of ZrOCl2 production obtained through an alkali fusion process using zircon sand. In this study, low-cost and efficient Zr-doped mesoporous silica adsorption materials (Zr-MCM-41 and Zr-SBA-15) were prepared in one step via the hydrothermal synthesis method using ZSR as the silicon source for the removal of methylene blue (MB) from dye-contaminated wastewater. The samples were characterized using X-ray fluorescence (XRF) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry (TG), and N2 adsorption–desorption measurements. The findings indicate that the synthesized Zr-MCM-41 and Zr-SBA-15 possess highly ordered mesoscopic structures with high specific surface areas of 910 and 846 m2/g, large pore volumes of 1.098 and 1.154 cm3/g, and average pore diameters of 4.18 and 5.35 nm, respectively. The results of the adsorption experiments show that the adsorbent has better adsorption properties under alkaline conditions. The adsorption process obeys the pseudo-quadratic kinetic model and the Freundlich adsorption isotherm model, indicating the coexistence of physical and chemisorption processes. The maximum adsorption capacities of Zr-MCM-41 and Zr-SBA-15 are 618.43 and 516.58 mg/g, respectively, as calculated by the Langmuir model (pH = 9, temperature of 25 °C). Compared with mesoporous silica prepared with sodium silicate as the silicon source, Zr-MCM-41 and Zr-SBA-15 have different structural properties and better adsorption properties due to Zr doping. These findings indicate that ZSR is the preferred silicon source for preparing mesoporous silica, and the mesoporous silica prepared using Zr silicon slag is a promising adsorbent and has great application potential in wastewater treatment. Full article
Show Figures

Figure 1

15 pages, 3561 KB  
Article
The Valorisation of Biochar Produced from Black Liquor Pyrolysis for the Development of CO2 Adsorbents
by Anca Maria Zaharioiu, Violeta-Carolina Niculescu, Claudia Sandru, Stefan Ionut Spiridon, Amalia Soare, Simona Oancea and Florian Marin
Molecules 2024, 29(23), 5613; https://doi.org/10.3390/molecules29235613 - 27 Nov 2024
Cited by 3 | Viewed by 1531
Abstract
The paper manufacturing process produces liquid and gaseous alternative fuels, as well as solid wastes. These can be subsequently treated through chemical processing, oxidation, and thermal activation, resulting in adsorbent materials with CO2 adsorption capacities. The valorisation of black liquor waste resulting [...] Read more.
The paper manufacturing process produces liquid and gaseous alternative fuels, as well as solid wastes. These can be subsequently treated through chemical processing, oxidation, and thermal activation, resulting in adsorbent materials with CO2 adsorption capacities. The valorisation of black liquor waste resulting from paper manufacturing was achieved through a catalytic pyrolysis process using two catalysts previously prepared in house (Cu-Zn-MCM-41 and Ni-SBA-16). The HCl-treated adsorbent material, resulting from Ni-SBA-16-catalysed pyrolysis, was selected for use in CO2 adsorption tests as it had the highest specific surface area (224.06 m2/g) and pore volume (0.28 cm3/g). The adsorption experimental setup was linked to a gas chromatograph in order to evaluate CO2 adsorption efficiency using a binary gas mixture consisting of 81% CO2 and 19% N2. With a CO2 adsorption capacity of 1.61 mmol/g, a separation efficiency of 99.78%, and a CO2 recovery yield of 90.02%, it can be concluded that the developed adsorbent material resulting from Ni-SBA16-catalysed pyrolysis and HCl treatment represents a viable solution for black liquor pyrolytic solid waste removal and reduction in greenhouse gases. Full article
Show Figures

Figure 1

10 pages, 2063 KB  
Article
Size Dependence of the Tetragonal to Orthorhombic Phase Transition of Ammonia Borane in Nanoconfinement
by Shah Najiba, Jiuhua Chen, Mohammad S. Islam, Yongzhou Sun, Andriy Durygin and Vadym Drozd
Materials 2024, 17(22), 5672; https://doi.org/10.3390/ma17225672 - 20 Nov 2024
Viewed by 1054
Abstract
We have investigated the thermodynamic property modification of ammonia borane via nanoconfinement. Two different mesoporous silica scaffolds, SBA-15 and MCM-41, were used to confine ammonia borane. Using in situ Raman spectroscopy, we examined how pore size influences the phase transition temperature from tetragonal [...] Read more.
We have investigated the thermodynamic property modification of ammonia borane via nanoconfinement. Two different mesoporous silica scaffolds, SBA-15 and MCM-41, were used to confine ammonia borane. Using in situ Raman spectroscopy, we examined how pore size influences the phase transition temperature from tetragonal (I4mm) to orthorhombic (Pmn21) for ammonia borane. In bulk ammonia borane, the phase transition occurs at around 217 K; however, confinement in SBA-15 (with ~8 nm pore sizes) reduces this temperature to approximately 195 K, while confinement in MCM-41 (with pore sizes of 2.1–2.7 nm) further lowers it to below 90 K. This suppression of the phase transition as a function of pore size has not been previously studied using Raman spectroscopy. The stability of the I4mm phase at a much lower temperature can be interpreted by incorporating the surface energy terms to the overall free energy of the system in a simple thermodynamic model, which leads to a significant increase in the surface energy when transitioning from the tetragonal phase to the orthorhombic phase. Full article
Show Figures

Graphical abstract

26 pages, 22269 KB  
Article
Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes
by Magdalena Blachnio, Malgorzata Zienkiewicz-Strzalka and Anna Derylo-Marczewska
Molecules 2024, 29(9), 2087; https://doi.org/10.3390/molecules29092087 - 1 May 2024
Cited by 12 | Viewed by 2615
Abstract
In this work, various types of silica materials were used for the synthesis of chitosan–silica composites. The composites were obtained using the chitosan (Ch) immobilization process from an aqueous solution on various silica phases, i.e., amorphous diatomite (ChAD), crystalline diatomite (ChCD), mesoporous silica [...] Read more.
In this work, various types of silica materials were used for the synthesis of chitosan–silica composites. The composites were obtained using the chitosan (Ch) immobilization process from an aqueous solution on various silica phases, i.e., amorphous diatomite (ChAD), crystalline diatomite (ChCD), mesoporous silica MCM-41 (ChMCM), and mesoporous silica SBA-15 (ChSBA). Textural, structural, morphological, and surface properties of the materials were determined by using various measurement techniques, i.e., low-temperature adsorption/desorption isotherms of nitrogen, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), potentiometric titration, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The adsorption properties towards various anionic dyes, i.e., acid red 88 (AR88), acid orange 8 (AO8), and orange G (OG), were evaluated based on kinetic and equilibrium measurements. The ChSBA, ChAD, and ChMCM composites were characterized by relatively high adsorption capacities (am) for AR88, with values equal to 0.78, 0.71, and 0.69 mmol/g, respectively. These composites were also distinguished by the rapid AR88 adsorption rate, with the values of half-time parameter t0.5 equal to 0.35, 2.84, and 1.53 min, respectively. The adsorption equilibrium and kinetic data were analyzed by applying the generalized Langmuir isotherm and the multi-exponential equation (m-exp), respectively. An interaction mechanism between the dyes and the obtained materials was proposed. Full article
Show Figures

Figure 1

17 pages, 2354 KB  
Article
Mesoporous Silica Nanocatalyst-Based Pyrolysis of a By-Product of Paper Manufacturing, Black Liquor
by Florian Marin, Felicia Bucura, Violeta-Carolina Niculescu, Antoaneta Roman, Oana Romina Botoran, Marius Constantinescu, Stefan Ionuț Spiridon, Eusebiu Ilarian Ionete, Simona Oancea and Anca Maria Zaharioiu
Sustainability 2024, 16(8), 3429; https://doi.org/10.3390/su16083429 - 19 Apr 2024
Cited by 4 | Viewed by 2069
Abstract
The valorization of black liquor, a by-product produced in considerable quantities from the paper manufacturing processes, has demonstrated the effectiveness of thermal reconversion into pyrolysis gas, bio-oil, and bio-char, a sustainable approach placing the feedstock into a circular economy concept. The present study [...] Read more.
The valorization of black liquor, a by-product produced in considerable quantities from the paper manufacturing processes, has demonstrated the effectiveness of thermal reconversion into pyrolysis gas, bio-oil, and bio-char, a sustainable approach placing the feedstock into a circular economy concept. The present study focused on developing disposal solutions through energy recovery via pyrolysis at 300 °C and 450 °C when lignite and nanomaterials (such as Cu-Zn-MCM-41, Ni-SBA-3, or Ni-SBA16) were used as catalysts. The results were compared to those of non-catalytic pyrolysis. The use of the Cu-Zn-MCM-41 catalyst proved to be efficient for pyrolysis gas production, reaching 55.22 vol% CH4. The increase in the calorific value of the pyrolysis gas was associated with the use of the Cu-Zn-MCM-41, showing a value of 42.23 MJ/m3 compared to that of the non-catalytic process, which yielded 39.56 MJ/m3. The bio-oil resulting from the pyrolysis with Cu-Zn-MCM-41 showed the highest energy value at 6457 kcal/kg compared to that obtained with the other two nanocatalysts, Ni-SBA-3 and Ni-SBA-16, as well as that of the raw material, which had a value of 3769 kcal/kg. The analysis of bio-char revealed no statistically significant differences when comparing the outcomes from using the various nanocatalysts, suggesting their minimal impact on the energy content. Full article
Show Figures

Figure 1

14 pages, 4984 KB  
Article
Experimental Investigation and Proposal of Artificial Neural Network Models of Lead and Cadmium Heavy Metal Ion Removal from Water Using Porous Nanomaterials
by Atef El Jery, Moutaz Aldrdery, Naoufel Ghoudi, Mohammadreza Moradi, Ismat Hassan Ali, Hussam H. Tizkam and Saad Sh. Sammen
Sustainability 2023, 15(19), 14183; https://doi.org/10.3390/su151914183 - 25 Sep 2023
Cited by 29 | Viewed by 2625
Abstract
This study used porous nanomaterials MCM-41 and SBA-15, as well as their modified species, to remove lead and cadmium ions from water. We used X-ray diffraction (XRD), a scanning electron microscope (SEM), the Brunauer–Emmett–Teller (BET), and the Fourier transform infrared (FT-IR) method to [...] Read more.
This study used porous nanomaterials MCM-41 and SBA-15, as well as their modified species, to remove lead and cadmium ions from water. We used X-ray diffraction (XRD), a scanning electron microscope (SEM), the Brunauer–Emmett–Teller (BET), and the Fourier transform infrared (FT-IR) method to investigate the characteristics of porous nanomaterials. Additionally, atomic absorption spectroscopy (AAS) measured the concentration of lead and cadmium ions. The stratigraphic analysis showed the samples’ isothermal shape to be type IV. This study investigated the amount, absorbent, pH changes, and adsorption time parameters. We observed that the adsorption efficiency of lead by the synthesized samples was higher than that of the adsorption of cadmium. Mesoporous structures also displayed increased adsorption efficiency due to the amino group. Four testing stages were conducted to determine the reproducibility of the adsorption by the synthesized samples, with the results showing no significant changes. As a result of the adsorption process, the structure of the recycled sample NH2-MCM-41 was preserved. We also used artificial neural networks (ANN) to propose predictive models based on the experimental results. The ANN models were very accurate, such that the mean absolute error (MAE) was less than 2% and the R2 was higher than 0.98. Full article
Show Figures

Figure 1

25 pages, 3664 KB  
Review
Fischer–Tropsch Synthesis Catalysts for Selective Production of Diesel Fraction
by Kristina Mazurova, Albina Miyassarova, Oleg Eliseev, Valentine Stytsenko, Aleksandr Glotov and Anna Stavitskaya
Catalysts 2023, 13(8), 1215; https://doi.org/10.3390/catal13081215 - 16 Aug 2023
Cited by 21 | Viewed by 10862
Abstract
The Fischer–Tropsch process is considered one of the most promising eco-friendly routes for obtaining synthetic motor fuels. Fischer–Tropsch synthesis is a heterogeneous catalytic process in which a synthesis gas (CO/H2) transforms into a mixture of aliphatic hydrocarbons, mainly linear alkanes. Recently, [...] Read more.
The Fischer–Tropsch process is considered one of the most promising eco-friendly routes for obtaining synthetic motor fuels. Fischer–Tropsch synthesis is a heterogeneous catalytic process in which a synthesis gas (CO/H2) transforms into a mixture of aliphatic hydrocarbons, mainly linear alkanes. Recently, an important direction has been to increase the selectivity of the process for the diesel fraction. Diesel fuel synthesized via the Fischer–Tropsch method has a number of advantages over conventional fuel, including the high cetane number, the low content of aromatic, and the practically absent sulfur and nitrogen impurities. One of the possible ways to obtain a high yield of diesel fuel via the Fischer–Tropsch process is the development of selective catalysts. In this review, the latest achievements in the field of production of diesel via Fischer–Tropsch synthesis using catalysts are reviewed for the first time. Catalytic systems based on Al2O3 and mesoporous silicates, such as MCM-41, SBA-15, and micro- and mesoporous zeolites, are observed. Together with catalytic systems, the main factors that influence diesel fuel selectivity such as temperature, pressure, CO:H2 ratio, active metal particle size, and carrier pore size are highlighted. The motivation behind this work is due to the increasing need for alternative processes in diesel fuel production with a low sulfur content and better exploitation characteristics. Full article
Show Figures

Graphical abstract

13 pages, 4704 KB  
Article
Sub-THz Vibrational Dynamics in Ordered Mesoporous Silica Nanoparticles
by Eduardo Hernando Abad, Frédéric Bouyer, Laroussi Chaabane, Alan Zerrouki, Jérémie Margueritat and Lucien Saviot
Nanomaterials 2023, 13(14), 2078; https://doi.org/10.3390/nano13142078 - 15 Jul 2023
Cited by 1 | Viewed by 2020
Abstract
The vibrational dynamics in the sub-THz range of mesoporous silica nanoparticles (MSNs) having ordered cylindrical mesopores was investigated. MCM-41 and SBA-15 particles were synthesized, and their structure was determined using scanning electron microscopy (SEM), low-angle X-ray diffraction (XRD), N2 physisorption analyses, and [...] Read more.
The vibrational dynamics in the sub-THz range of mesoporous silica nanoparticles (MSNs) having ordered cylindrical mesopores was investigated. MCM-41 and SBA-15 particles were synthesized, and their structure was determined using scanning electron microscopy (SEM), low-angle X-ray diffraction (XRD), N2 physisorption analyses, and Raman scattering. Brillouin scattering measurements are reported and enabled determining the stiffness of the silica walls (speed of sound) using finite element calculations for the ordered mesoporous structure. The relevance of this approach is discussed based on the comparison between the numerical and experimental results and previous works reported in the literature. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

22 pages, 13493 KB  
Article
Cu(II) and Mn(II) Anchored on Functionalized Mesoporous Silica with Schiff Bases: Effects of Supports and Metal–Ligand Interactions on Catalytic Activity
by Mihaela Mureseanu, Mihaela Filip, Irina Bleotu, Cezar Ionut Spinu, Alexandru Horia Marin, Iulia Matei and Viorica Parvulescu
Nanomaterials 2023, 13(12), 1884; https://doi.org/10.3390/nano13121884 - 19 Jun 2023
Cited by 7 | Viewed by 2655
Abstract
New series of Cu(II) and Mn(II) complexes with Schiff base ligands derived from 2-furylmethylketone (Met), 2-furaldehyde (Fur), and 2-hydroxyacetopheneone (Hyd) have been synthesized in situ on SBA-15-NH2, MCM-48-NH2, and MCM-41-NH2 functionalized supports. The hybrid materials were characterized by [...] Read more.
New series of Cu(II) and Mn(II) complexes with Schiff base ligands derived from 2-furylmethylketone (Met), 2-furaldehyde (Fur), and 2-hydroxyacetopheneone (Hyd) have been synthesized in situ on SBA-15-NH2, MCM-48-NH2, and MCM-41-NH2 functionalized supports. The hybrid materials were characterized by X-ray diffraction, nitrogen adsorption–desorption, SEM and TEM microscopy, TG analysis, and AAS, FTIR, EPR, and XPS spectroscopies. Catalytic performances were tested in oxidation with the hydrogen peroxide of cyclohexene and of different aromatic and aliphatic alcohols (benzyl alcohol, 2-methylpropan-1-ol, and 1-buten-3-ol). The catalytic activity was correlated with the type of mesoporous silica support, ligand, and metal–ligand interactions. The best catalytic activity of all tested hybrid materials was obtained in the oxidation of cyclohexene on SBA-15-NH2-MetMn as a heterogeneous catalyst. No leaching was evidenced for Cu and Mn complexes, and the Cu catalysts were more stable due to a more covalent interaction of the metallic ions with the immobilized ligands. Full article
Show Figures

Figure 1

13 pages, 7085 KB  
Article
Thymol-Functionalized Silica Nanomaterials Prepared by Post-Grafting Method: Preparation, Characterization, Bactericidal Activity and Mechanism Research
by Liang Wang, Tianjun Ni and Shiqin Wei
Coatings 2023, 13(1), 86; https://doi.org/10.3390/coatings13010086 - 3 Jan 2023
Cited by 8 | Viewed by 2543
Abstract
In this study, thymol was covalently connected to mesoporous silica nanomaterial by a post-grafting method to obtain a stable antibacterial system, thus overcoming the volatilization of thymol, prolonging the effective time of antibacterial action, and enhancing the antibacterial efficiency of thymol. It was [...] Read more.
In this study, thymol was covalently connected to mesoporous silica nanomaterial by a post-grafting method to obtain a stable antibacterial system, thus overcoming the volatilization of thymol, prolonging the effective time of antibacterial action, and enhancing the antibacterial efficiency of thymol. It was proposed for the first time that such a synthetic route be adopted to synthesize silica-based mesoporous/essential oil antibacterial materials. The post-grafting method could be capable of retaining the mesoporous original structure, which could effectively avoid the porosity reduction and disordered products caused by condensation. Among them, the minimum bactericidal concentration (MBC) of functionalized MCM-41 (silica support) for E. coli and S. aureus were 0.3 mg mL−1 and 0.4 mg mL−1, which were equivalent to 3/4 and 4/5 of free thymol (0.4 mg mL−1 and 0.5 mg mL−1), respectively. Meanwhile, the MBC of functionalized SBA-15 (silica support) for E. coli and S. aureus were both 0.2 mg mL−1, which also reduced the MBC of free thymol. These results revealed thymol-functionalized mesoporous silica nanomaterial could efficiently improve the bactericidal activities of the organic component. Finally, the inhibition mechanism of the post-grafting strategy was also discussed, which referred to how the antibacterial material directly acts on the cell membrane, resulting in cell inactivation. Full article
(This article belongs to the Special Issue Surface Modified Nanoparticles: For Gas and Chemical Sensors)
Show Figures

Figure 1

Back to TopTop