Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = Lorentz-force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3490 KiB  
Article
Energy-Efficient CO2 Conversion for Carbon Utilization Using a Gliding Arc/Glow Discharge with Magnetic Field Acceleration—Optimization and Characterization
by Svetlana Lazarova, Snejana Iordanova, Stanimir Kolev, Veselin Vasilev and Tsvetelina Paunska
Energies 2025, 18(14), 3816; https://doi.org/10.3390/en18143816 - 17 Jul 2025
Viewed by 281
Abstract
The dry conversion of CO2 into CO and O2 provides an attractive path for CO2 utilization which allows for the use of the CO produced for the synthesis of valuable hydrocarbons. In the following work, the CO2 conversion is [...] Read more.
The dry conversion of CO2 into CO and O2 provides an attractive path for CO2 utilization which allows for the use of the CO produced for the synthesis of valuable hydrocarbons. In the following work, the CO2 conversion is driven by an arc discharge at atmospheric pressure, producing hot plasma. This study presents a series of experiments aiming to optimize the process. The results obtained include the energy efficiency and the conversion rate of the process, as well as the electrical parameters of the discharge (current and voltage signals). In addition, optical emission spectroscopy diagnostics based on an analysis of C2’s Swan bands are used to determine the gas temperature in the discharge. The data is analyzed according to several aspects—an analysis of the arc’s motion based on the electrical signals; an analysis of the effect of the gas flow and the discharge current on the discharge performance for CO2 conversion; and an analysis of the vibrational and rotational temperatures of the arc channel. The results show significant improvements over previous studies. Relatively high gas conversion and energy efficiency are achieved due to the arc acceleration caused by the Lorentz force. The rotational (gas) temperatures are in the order of 5500–6000 K. Full article
Show Figures

Figure 1

12 pages, 5751 KiB  
Article
Chaos of Charged Particles in Quadrupole Magnetic Fields Under Schwarzschild Backgrounds
by Qihan Zhang and Xin Wu
Universe 2025, 11(7), 234; https://doi.org/10.3390/universe11070234 - 16 Jul 2025
Viewed by 146
Abstract
A four-vector potential of an external test electromagnetic field in a Schwarzschild background is described in terms of a combination of dipole and quadrupole magnetic fields. This combination is an interior solution of the source-free Maxwell equations. Such external test magnetic fields cause [...] Read more.
A four-vector potential of an external test electromagnetic field in a Schwarzschild background is described in terms of a combination of dipole and quadrupole magnetic fields. This combination is an interior solution of the source-free Maxwell equations. Such external test magnetic fields cause the dynamics of charged particles around the black hole to be nonintegrable, and are mainly responsible for chaotic dynamics of charged particles. In addition to the external magnetic fields, some circumstances should be required for the onset of chaos. The effect of the magnetic fields on chaos is shown clearly through an explicit symplectic integrator and a fast Lyapunov indicator. The inclusion of the quadrupole magnetic fields easily induces chaos, compared with that of the dipole magnetic fields. This result is because the Lorentz forces from the quadrupole magnetic fields are larger than those from the dipole magnetic fields. In addition, the Lorentz forces act as attractive forces, which are helpful for bringing the occurrence of chaos in the nonintegrable case. Full article
Show Figures

Figure 1

24 pages, 11574 KiB  
Article
Using Adaptive Surrogate Models to Accelerate Multi-Objective Design Optimization of MEMS
by Ali Nazari, Armin Aghajani, Phiona Buhr, Byoungyoul Park, Yunli Wang and Cyrus Shafai
Micromachines 2025, 16(7), 753; https://doi.org/10.3390/mi16070753 (registering DOI) - 26 Jun 2025
Viewed by 572
Abstract
This study presents a comprehensive multi-objective optimization framework specifically designed for micro-electromechanical systems (MEMS). The framework integrates both traditional and adaptive optimization techniques, named Surrogate-Assisted Multi-Objective Optimization (SAMOO) and Adaptive-SAMOO (A-SAMOO), respectively. By addressing key limitations of traditional approaches, such as the consideration [...] Read more.
This study presents a comprehensive multi-objective optimization framework specifically designed for micro-electromechanical systems (MEMS). The framework integrates both traditional and adaptive optimization techniques, named Surrogate-Assisted Multi-Objective Optimization (SAMOO) and Adaptive-SAMOO (A-SAMOO), respectively. By addressing key limitations of traditional approaches, such as the consideration of objective constraints and the provision of multiple design options, the proposed framework enhances both flexibility and practical applicability. Results show that adaptive optimization outperforms traditional offline methods by delivering a greater number and higher quality of optimal solutions while requiring fewer finite element method simulations. The adaptive approach showed a significant advantage by attaining high-quality solutions while requiring only 2.8% of the finite element method (FEM) evaluations compared to traditional methods that do not incorporate surrogate models. This performance boost highlights the advantages of online learning in enhancing the accuracy, speed, and diversity of solutions in MEMS optimization. These optimization schemes were tested on multiple MEMS devices with varying physics and complexities, specifically the U-shaped Lorentz force actuator, serpentine Lorentz force actuator, and thermal actuator. The results highlight the robustness and versatility of the proposed methods, particularly in addressing cases involving discrete design variables and strict objective constraints. This comprehensive, step-by-step framework serves as a valuable resource for researchers and practitioners aiming to optimize MEMS designs from the ground up, providing a reliable and effective approach to multi-objective optimization in MEMS applications. Full article
(This article belongs to the Special Issue MEMS Actuators and Their Applications)
Show Figures

Figure 1

30 pages, 8909 KiB  
Review
Recent Design and Application Advances in Micro-Electro-Mechanical System (MEMS) Electromagnetic Actuators
by Jianqun Cheng, Ning Xue, Bocang Qiu, Boqi Qin, Qingchun Zhao, Gang Fang, Zhihui Yao, Wenyi Zhou and Xuguang Sun
Micromachines 2025, 16(6), 670; https://doi.org/10.3390/mi16060670 - 31 May 2025
Viewed by 3455
Abstract
Micro-electro-mechanical system (MEMS) electromagnetic actuators have rapidly evolved into critical components of various microscale applications, offering significant advantages including precision, controllability, high force density, and rapid responsiveness. Recent advancements in actuator design, fabrication methodologies, smart control integration, and emerging application domains have significantly [...] Read more.
Micro-electro-mechanical system (MEMS) electromagnetic actuators have rapidly evolved into critical components of various microscale applications, offering significant advantages including precision, controllability, high force density, and rapid responsiveness. Recent advancements in actuator design, fabrication methodologies, smart control integration, and emerging application domains have significantly broadened their capabilities and practical applications. This comprehensive review systematically analyzes the recent developments in MEMS electromagnetic actuators, highlighting core operating principles such as Lorentz force and magnetic attraction/repulsion mechanisms and examining state-of-the-art fabrication technologies, such as advanced microfabrication techniques, additive manufacturing, and innovative material applications. Additionally, we provide an in-depth discussion on recent enhancements in actuator performance through smart and adaptive integration strategies, focusing on improved reliability, accuracy, and dynamic responsiveness. Emerging application fields, particularly micro-optical systems, microrobotics, precision micromanipulation, and microfluidic components, are extensively explored, demonstrating how recent innovations have significantly impacted these sectors. Finally, critical challenges, including miniaturization constraints, integration complexities, power efficiency, and reliability issues, are identified, alongside a prospective outlook outlining promising future research directions. This review aims to serve as an authoritative resource, fostering further innovation and technological advancement in MEMS actuators and related interdisciplinary fields. Full article
(This article belongs to the Special Issue Magnetic Manipulation in Micromachines)
Show Figures

Figure 1

22 pages, 1739 KiB  
Article
Design of a Lorentz Force Magnetic Bearing Group Steering Law Based on an Adaptive Weighted Pseudo-Inverse Law
by Chenyu Wang, Lei Li, Weijie Wang, Yanbin Zhao, Baiqi Li and Yuan Ren
Sensors 2025, 25(10), 3242; https://doi.org/10.3390/s25103242 - 21 May 2025
Viewed by 476
Abstract
Aiming at the high-precision torque output and saturation singularity avoidance problems in Lorentz force magnetic bearing (LFMB) swarms for magnetic levitation spacecraft, this study designs a manipulation law based on an adaptive weighted pseudo-inverse law. The system monitors each magnetic bearing’s working state [...] Read more.
Aiming at the high-precision torque output and saturation singularity avoidance problems in Lorentz force magnetic bearing (LFMB) swarms for magnetic levitation spacecraft, this study designs a manipulation law based on an adaptive weighted pseudo-inverse law. The system monitors each magnetic bearing’s working state in real time using high-precision position and current sensors. As the key input for the adaptive weighted pseudo-inverse control law, the sensor data’s measurement accuracy directly determines torque distribution effectiveness and attitude control precision. First, considering electromagnetic back-EMF effects, individual LFMB dynamics are modeled via the equivalent magnetic circuit method, with working principles elucidated. Subsequently, saturation coefficients for LFMB swarms are designed. Incorporating spacecraft maneuvering requirements, a genetic optimization algorithm establishes the optimal mounting configuration under task constraints. Considering the LFMB swarm configuration characteristics, this study proposes an adaptive weighted pseudo-inverse maneuvering law tailored to operational constraints. By designing an adaptive weighting matrix, the maneuvering law adjusts each LFMB’s torque output in real time, reducing residual saturation effects on attitude control speed and accuracy. Simulation results demonstrate that the proposed mounting configuration and adaptive weighted pseudo-inverse maneuvering law effectively mitigate saturation singularity’s impact on attitude control accuracy while reducing total energy consumption by 22%, validating the method’s effectiveness and superiority. Full article
Show Figures

Figure 1

22 pages, 1130 KiB  
Article
Two-Mode Hereditary Model of Solar Dynamo
by Evgeny Kazakov, Gleb Vodinchar and Dmitrii Tverdyi
Mathematics 2025, 13(10), 1669; https://doi.org/10.3390/math13101669 - 20 May 2025
Viewed by 249
Abstract
The magnetic field of the Sun is formed by the mechanism of hydromagnetic dynamo. In this mechanism, the flow of the conducting medium (plasma) of the convective zone generates a magnetic field, and this field corrects the flow using the Lorentz force, creating [...] Read more.
The magnetic field of the Sun is formed by the mechanism of hydromagnetic dynamo. In this mechanism, the flow of the conducting medium (plasma) of the convective zone generates a magnetic field, and this field corrects the flow using the Lorentz force, creating feedback. An important role in dynamo is played by memory (hereditary), when a change in the current state of a physical system depends on its states in the past. Taking these effects into account may provide a more accurate description of the generation of the Sun’s magnetic field. This paper generalizes classical dynamo models by including hereditary feedback effects. The feedback parameters such as the presence or absence of delay, delay duration, and memory duration are additional degrees of freedom. This can provide more diverse dynamic modes compared to classical memoryless models. The proposed model is based on the kinematic dynamo problem, where the large-scale velocity field is predetermined. The field in the model is represented as a linear combination of two stationary predetermined modes with time-dependent amplitudes. For these amplitudes, equations are obtained based on the kinematic dynamo equations. The model includes two generators of a large-scale magnetic field. In the first, the field is generated due to large-scale flow of the medium. The second generator has a turbulent nature; in it, generation occurs due to the nonlinear interaction of small-scale pulsations of the magnetic field and velocity. Memory in the system under study is implemented in the form of feedback distributed over all past states of the system. The feedback is represented by an integral term of the type of convolution of a quadratic form of phase variables with a kernel of a fairly general form. The quadratic form models the influence of the Lorentz force. This integral term describes the turbulent generator quenching. Mathematically, this model is written with a system of integro-differential equations for amplitudes of modes. The model was applied to a real space object, namely, the solar dynamo. The model representation of the Sun’s velocity field was constructed based on helioseismological data. Free field decay modes were chosen as components of the magnetic field. The work considered cases when hereditary feedback with the system arose instantly or with a delay. The simulation results showed that the model under study reproduces dynamic modes characteristic of the solar dynamo, if there is a delay in the feedback. Full article
(This article belongs to the Special Issue Advances in Nonlinear Dynamical Systems of Mathematical Physics)
Show Figures

Figure 1

19 pages, 9180 KiB  
Article
Effect of Process Parameters on Metallurgical Behavior of Liquid Steel in a Thickened Compact Strip Production Mold with Electromagnetic Braking
by Panpan Wang, Xufeng Qin, Changgui Cheng, Jianjun Zhang and Yang Li
Processes 2025, 13(5), 1427; https://doi.org/10.3390/pr13051427 - 7 May 2025
Viewed by 428
Abstract
Herein, a three-dimensional mathematical model was established to investigate the metallurgical behavior of liquid steel in a funnel-shaped mold equipped with single-ruler electromagnetic braking (EMBr). The effects of mold thicknesses, electromagnetic intensity, and casting speed in flow behavior were investigated. The results indicate [...] Read more.
Herein, a three-dimensional mathematical model was established to investigate the metallurgical behavior of liquid steel in a funnel-shaped mold equipped with single-ruler electromagnetic braking (EMBr). The effects of mold thicknesses, electromagnetic intensity, and casting speed in flow behavior were investigated. The results indicate that with EMBr, multiple pairs of induced current loops are present in the horizontal section of the magnetic pole center, distributed in pairs between the jets and broad faces. The Lorentz force acting on the main jet, which impacts the downward and upward flow at adjacent broad faces, is opposite in direction. Increasing mold thickness results in a larger jet penetration depth, leading to a higher meniscus temperature near the narrow faces accompanied by elevated velocity and turbulent kinetic energy. EMBr can lead to a decrease in shell thickness and an improvement in its uniformity at mold exit. For the thickened mold, as the magnetic flux density increases and the casting speed decreases, the penetration depth of jets and velocity near the narrow faces and meniscus decreases. The shell thickness decreases as the casting speed increases, with the lowest non-uniformity coefficient of 6.78% observed at a casting speed of 5.0 m/min. Full article
(This article belongs to the Special Issue Advanced Ladle Metallurgy and Secondary Refining)
Show Figures

Figure 1

27 pages, 1276 KiB  
Article
Transient Post-Buckling of Microfluid-Conveying FG-CNTs Cylindrical Microshells Embedded in Kerr Foundation and Exposed to a 2D Magnetic Field
by Mohammed Sobhy
Mathematics 2025, 13(9), 1518; https://doi.org/10.3390/math13091518 - 5 May 2025
Cited by 1 | Viewed by 1983
Abstract
Dynamic post-buckling behavior of microscale cylindrical shells reinforced with functionally graded carbon nanotubes (FG-CNTs) and conveying microfluid is discussed for the first time. The microshell is embedded in a Kerr foundation and subjected to an axial compressive load and a two-dimensional magnetic field [...] Read more.
Dynamic post-buckling behavior of microscale cylindrical shells reinforced with functionally graded carbon nanotubes (FG-CNTs) and conveying microfluid is discussed for the first time. The microshell is embedded in a Kerr foundation and subjected to an axial compressive load and a two-dimensional magnetic field effect. CNTs dispersion across the shell thickness follows a power law, with five distribution types developed. The modified couple stress theory is applied to incorporate the small-size effect using a single material parameter. Furthermore, the Knudsen number is used to address the small-size effect on the microfluid. The external force between the magnetic fluid and microshell is modeled by applying the Navier–Stokes equation depending on the fluid velocity. Nonlinear motion equations of the present model are derived using Hamilton’s principle, containing the Lorentz magnetic force. According to the Galerkin method, the equations of motion are transformed into an algebraic system to be solved, determining the post-buckling paths. Numerical results indicate that the presence of the magnetic field, CNT reinforcement, and fluid flow improves the load-bearing performance of the cylindrical microshells. Also, many new parametric effects on the post-buckling curves of the FG-CNT microshells have been discovered, including the shell geometry, magnetic field direction, length scale parameter, Knudsen number, and CNT distribution types. Full article
Show Figures

Figure 1

17 pages, 2604 KiB  
Article
A Modified Nonlinear Lorentz Model for Third-Order Optical Nonlinearity
by Yao Xia and Jinjie Liu
Mathematics 2025, 13(8), 1354; https://doi.org/10.3390/math13081354 - 21 Apr 2025
Viewed by 328
Abstract
In this study, we propose a new nonlinear polarization model that modifies the polarization equation to account for the material’s nonlinear response. Specifically, the nonlinear restoring force in our model is reformulated as an electric field-dependent function, derived from the nonlinear Lorentz model. [...] Read more.
In this study, we propose a new nonlinear polarization model that modifies the polarization equation to account for the material’s nonlinear response. Specifically, the nonlinear restoring force in our model is reformulated as an electric field-dependent function, derived from the nonlinear Lorentz model. Additionally, we perform a comparative analysis of the Kerr model, the Duffing model, the nonlinear Lorentz model, and our modified nonlinear Lorentz model (MNL) by solving Maxwell’s equations using the finite-difference time-domain (FDTD) method. This research focuses on the third-order nonlinearity of these models under varying light intensities and different ratios of resonant frequency to carrier frequency. First, in the example we studied, our results show that the MNL model produces results closer to the Kerr model when the light intensity is significantly high. Second, the comparison under different resonant frequencies reveals that all models converge to the Kerr model when the carrier frequency is much lower than the resonant frequency. However, when the carrier frequency significantly exceeds the resonant frequency, the differences between the Kerr model and the other models become more noticeable. The third-order nonlinearity of our MNL model aligns more closely with the Kerr model than the nonlinear Lorentz and Duffing models do when the ratio of resonant frequency to carrier frequency is between 1 and 2. Full article
Show Figures

Figure 1

18 pages, 22450 KiB  
Article
A Mechanism of Argon Arc Remelting of LPBF 18Ni300 Steel Surfaces
by Xiaoping Zeng, Yehui Sun, Hong Zhang, Zhi Jia and Quan Kang
Coatings 2025, 15(4), 481; https://doi.org/10.3390/coatings15040481 - 18 Apr 2025
Cited by 1 | Viewed by 449
Abstract
This study aims to reduce pores, cracks, and other defects on the surface of laser powder bed fusion (LPBF)-fabricated 18Ni300 steel and improve its surface quality. Remelting was carried out on the surface with an argon arc as the heat source. Then, the [...] Read more.
This study aims to reduce pores, cracks, and other defects on the surface of laser powder bed fusion (LPBF)-fabricated 18Ni300 steel and improve its surface quality. Remelting was carried out on the surface with an argon arc as the heat source. Then, the surface layer was characterized using SEM, EDS, XRD, EBSD, and hardness testing. The results showed the following: When the pulse current I increased from 16 A to 20 A, the surface hardness of LPBF 18Ni300 increased due to a decrease in defects and an increase in the martensite phase. The driving forces of convection in the molten pool (such as buoyancy, Lorentz magnetic force, surface tension, and plasma flow force) rose with an increase in current. When the current I exceeded 20 A, the convection became more intense, making it easier for gas to be entrained into the melt pool, forming pores and introducing new defects, resulting in a decrease in surface hardness. The primary factors affecting the hardness of LPBF 18Ni300 after surface argon arc remelting were pore (defect) weakening and phase transformation strengthening, while the secondary factors included grain refinement strengthening and texture strengthening. The solidification mode of the remelted layer was: L → A → M + A′. The phase transition mode of the heat-affected zone was: M + A′ → Areverse → Mtemper. Compared with the base material and heat-affected zone, the grains in the remelted layer formed a stronger <001> texture with a larger average size (2.51 μm) and a lower misorientation angle. The content of the residual austenite A′ was relatively high in the remelted layer. It was distributed in the form of strips along grain boundaries, and it always maintained a shear–coherent relationship with martensite. Full article
Show Figures

Figure 1

15 pages, 7269 KiB  
Article
Investigation of the Effect of Coil Current Waveform on Electromagnetic Tube Forming
by Fangxiong Deng, Xiaofei Xu, Yang Wang, Zhiyong Yu and Can Jiang
Metals 2025, 15(4), 367; https://doi.org/10.3390/met15040367 - 27 Mar 2025
Viewed by 383
Abstract
The coil current frequency and waveform have a great impact on the forming performance of the workpiece in electromagnetic forming. However, existing research is mostly limited to analyzing the influence of either frequency or waveform on the forming outcome independently, which makes it [...] Read more.
The coil current frequency and waveform have a great impact on the forming performance of the workpiece in electromagnetic forming. However, existing research is mostly limited to analyzing the influence of either frequency or waveform on the forming outcome independently, which makes it challenging to fully reveal the intrinsic relationship between current parameters and forming results. In this work, three discharge circuit structures are developed to generate different coil currents composed of various frequencies and waveforms, and their effects on deformation of AA6061 Aluminium alloy tube are systematically investigated through numerical and experimental approaches. Results show that a conventional circuit can generate an attenuated oscillating sinusoidal waveform consisting of several pulse half-waves, while a circuit composed of a thyristor switch can generate a half-wave current, and a circuit consisting of a crowbar circuit can generate a current with a slow decay rate. Further, it is found that at a high-frequency discharge, a current having a slow decay rate is favorable for forming efficiency, as well as reducing coil temperature, while at a low-frequency discharge, the current waveform has almost no effect on the forming efficiency; thus, a half-wave current is highly recommended to significantly reduce the coil temperature. The obtained results are of great significance in guiding the design of coil currents and optimizing electromagnetic forming technology. Full article
Show Figures

Figure 1

22 pages, 2571 KiB  
Article
Numerical Analysis of Steady-State Multi-Field Coupling in Electro-Fused Magnesia Furnace
by Cunjian Weng, Zhen Wang, Xianping Luo and Hui Li
Materials 2025, 18(5), 1049; https://doi.org/10.3390/ma18051049 - 27 Feb 2025
Viewed by 717
Abstract
The internal conditions of the high-temperature molten pool in an electro-fused magnesia furnace (EFMF) are difficult to measure, and the temperature distribution–energy conservation relationship in the EFMF cannot be effectively evaluated. Assuming that the feeding speed is constant, the heat absorbed by the [...] Read more.
The internal conditions of the high-temperature molten pool in an electro-fused magnesia furnace (EFMF) are difficult to measure, and the temperature distribution–energy conservation relationship in the EFMF cannot be effectively evaluated. Assuming that the feeding speed is constant, the heat absorbed by the newly added raw materials is equal to the rated power minus the heating power required to maintain thermal balance. Therefore, the EFMF can be approximately described by a steady-state model. In order to analyze the state of the molten pool of EFMF at different smelting stages, this study first constructed a three-dimensional steady-state multi-physics field numerical simulation model. The calculations show that the equivalent resistance of the molten pool varies approximately between 1 mΩ and 0.4 mΩ. Furthermore, the equivalent reactance produced by the whole conductive circuit is almost of the same order as the resistance. The Reynolds number of the convection inside the molten pool exceeds 105, which means that the flow inside the molten pool is forced convection dominated by the Lorentz force. Moreover, the turbulence makes the temperature uniformity of the molten pool (the temperature gradient near the solid–liquid interface is approximately within 300 K/m) far greater than that of the unmelted raw materials with very low thermal conductivity (the average temperature gradient reaches over 1000 K/m); the respective proportions of arc power and Joule heating power can be predicted by the model. When the molten pool size is small, the proportion of Joule heating power is high, reaching about 20% of the rated power (3700 kVA); as the molten pool size increases, the convection effect is relatively weakened, and the proportion of Joule heating power also decreases accordingly, only 5% to 10%; the model prediction and experimental estimation results are in good agreement, which makes it feasible to conduct a quantitative analysis of the power distribution in different smelting stages. Full article
Show Figures

Figure 1

15 pages, 1862 KiB  
Article
Double-Period Gravitational Dynamics from a Multifractal Perspective of Motion
by Vlad Ghizdovat, Maricel Agop, Florin Nedeff, Valentin Nedeff, Dragos Ioan Rusu and Decebal Vasincu
Fractal Fract. 2025, 9(3), 132; https://doi.org/10.3390/fractalfract9030132 - 20 Feb 2025
Viewed by 511
Abstract
Assimilating complex systems to multifractal-type objects reveals continuous and non-differentiable curve dynamics, aligning with the Multifractal Theory of Motion. Two scenarios, a Schrödinger-type and a Madelung-type multifractal scenario, are possible in this setting. If the Madelung scenario employs maximized information entropy for a [...] Read more.
Assimilating complex systems to multifractal-type objects reveals continuous and non-differentiable curve dynamics, aligning with the Multifractal Theory of Motion. Two scenarios, a Schrödinger-type and a Madelung-type multifractal scenario, are possible in this setting. If the Madelung scenario employs maximized information entropy for a distribution density, then Newtonian and oscillator-type forces can be determined. In the presence of these forces and a matter background, we analyze the two-body problem. The obtained results are as follows: a generalized Hubble-type law, a dependence of Newton’s constant on the epoch and background density, a generalization of Lorentz transform (involving the Hubble constant, Newton’s constant, the speed of light, and cosmic matter density), etc. Moreover, in the same scenario, the functionality of a diffusion-type equation implies instabilities, such as period doubling, through an SL(2R) invariance. Thus, multiple infragalactic and extragalactic instabilities are exemplified. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

23 pages, 14284 KiB  
Article
Development and Performance Analysis of an Electromagnetic Pump for a Thermal Hydraulic Experimental Loop of a Lead-Cooled Fast Reactor
by Zi’ang Li, Lanfei Yuan, Chenglong Wang, Suizheng Qiu and Ying Li
Energies 2025, 18(3), 750; https://doi.org/10.3390/en18030750 - 6 Feb 2025
Viewed by 939
Abstract
With the advancement of lead–bismuth fast reactors, there has been increasing attention directed towards the design of and manufacturing technology for electromagnetic pumps employed to drive liquid lead–bismuth eutectic (LBE). These electromagnetic pumps are characterized by a simple structure, effective sealing, and ease [...] Read more.
With the advancement of lead–bismuth fast reactors, there has been increasing attention directed towards the design of and manufacturing technology for electromagnetic pumps employed to drive liquid lead–bismuth eutectic (LBE). These electromagnetic pumps are characterized by a simple structure, effective sealing, and ease of flow control. They exploit the excellent electrical conductivity of liquid metals, allowing the liquid metal to be propelled by Lorentz forces generated by the traveling magnetic field within the pump. To better understand the performance characteristics of electromagnetic pumps and master the techniques for integrated manufacturing and performance optimization, this study conducted fundamental research, development of key components, and the assembly of the complete pump. Consequently, an annular linear induction pump (ALIP) suitable for liquid lead–bismuth eutectic was developed. Additionally, within the lead–bismuth thermal experimental loop, startup and preheating experiments, performance tests, and flow-head experiments were conducted on this electromagnetic pump. The experimental results demonstrated that the output flow of the electromagnetic pump increased linearly with the input current. When the input current reached 99 A, the loop achieved a maximum flow rate of 8 m3/h. The efficiency of the electromagnetic pump also increased with the input current, with a maximum efficiency of 5.96% during the experiments. Finally, by analyzing the relationship between the flow rate and the pressure difference of the electromagnetic pump, a flow-head model specifically applicable to lead–bismuth electromagnetic pumps was established. Full article
(This article belongs to the Special Issue Thermal Hydraulics and Safety Research for Nuclear Reactors)
Show Figures

Figure 1

23 pages, 14366 KiB  
Article
Effects of Longitudinal External Magnetic Field on Metal Transfer Behavior and Spatter Formation in CO2 Arc Welding
by Dang Khoi Le, Shinichi Tashiro, Bin Xu, Anthony B. Murphy, Quang Ngoc Trinh, Van Hanh Bui, Toshifumi Yuji, Sarizam B. Mamat, Kenta Yamanaka, Manabu Tanaka and Lei Xiao
Materials 2025, 18(3), 537; https://doi.org/10.3390/ma18030537 - 24 Jan 2025
Viewed by 977
Abstract
Excessive spatter formation in conventional CO2 arc welding significantly diminishes welding quality and efficiency, posing a critical challenge for industrial applications. To address this issue, this study investigated the mechanisms of metal transfer behavior and spatter formation under the influence of a [...] Read more.
Excessive spatter formation in conventional CO2 arc welding significantly diminishes welding quality and efficiency, posing a critical challenge for industrial applications. To address this issue, this study investigated the mechanisms of metal transfer behavior and spatter formation under the influence of a longitudinal magnetic field (LMF) using a shadow-graph technique with high-speed imaging and back-laser illumination, also coupled with Computational Fluid Dynamics (CFD)-based arc-droplet numerical simulations. The results show that increasing the magnetic flux density (MFD) from 0 to 2 mT shifted the transfer mode from the repelled transfer to the globular transfer, while higher MFDs (3–4 mT) induced rotating repelled transfer. The globular transfer at 2 mT was considered to be primarily produced by the centrifugal effect due to the rotational motion of the molten metal inside the droplet, which was caused by the Lorentz force affected by LMF. The higher droplet temperature in this condition also contributed to forming this transfer mode, preventing the formation of repelled transfer through a decrease in the arc pressure. On the contrary, in the higher MFDs, the droplet temperature decreased to increase the arc pressure, lifting the droplet up. Furthermore, the very strong centrifugal effect rotated the molten metal column around the wire axis to induce the rotating repelled transfer. The spatter formation was found to occur with the two-stage motion of the curved long tail without LMF and at 4 mT, and also with the exploding molten metal column at 4 mT, due to an imbalance of the Lorentz force acting on the molten metal. On the other hand, the neck formation facilitated smooth droplet detachment without forming the curved long tail at 2 mT, reducing spatter significantly. These findings offer valuable insights for optimizing welding quality and efficiency by stabilizing globular transfer under an optimal LMF. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Figure 1

Back to TopTop