Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (231)

Search Parameters:
Keywords = Lewy Body Dementia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 215 KiB  
Article
Personalised Prevention of Falls in Persons with Dementia—A Registry-Based Study
by Per G. Farup, Knut Hestad and Knut Engedal
Geriatrics 2025, 10(4), 106; https://doi.org/10.3390/geriatrics10040106 - 6 Aug 2025
Abstract
Background/Objectives: Multifactorial prevention of falls in persons with dementia has minimal or non-significant effects. Personalised prevention is recommended. We have previously shown that gait speed, basic activities of daily living (ADL), and depression (high Cornell scores) were independent predictors of falls in persons [...] Read more.
Background/Objectives: Multifactorial prevention of falls in persons with dementia has minimal or non-significant effects. Personalised prevention is recommended. We have previously shown that gait speed, basic activities of daily living (ADL), and depression (high Cornell scores) were independent predictors of falls in persons with mild and moderate cognitive impairment. This study explored person-specific risks of falls related to physical, mental, and cognitive functions and types of dementia: Alzheimer’s disease (AD), vascular dementia (VD), mixed Alzheimer’s disease/vascular dementia (MixADVD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB). Methods: The study used data from “The Norwegian Registry of Persons Assessed for Cognitive Symptoms” (NorCog). Differences between the dementia groups and predictors of falls, gait speed, ADL, and Cornell scores were analysed. Results: Among study participants, 537/1321 (40.7%) reported a fall in the past year, with significant variations between dementia diagnoses. Fall incidence increased with age, comorbidity/polypharmacy, depression, and MAYO fluctuation score and with reduced physical activity, gait speed, and ADL. Persons with VD and MixADVD had high fall incidences and impaired gait speed and ADL. Training of physical fitness, endurance, muscular strength, coordination, and balance and optimising treatment of comorbidities and medication enhance gait speed. Improving ADL necessitates, in addition, relief of cognitive impairment and fluctuations. Relief of depression and fluctuations by psychological and pharmacological interventions is necessary to reduce the high fall risk in persons with DLB. Conclusions: The fall incidence and fall predictors varied significantly. Personalised interventions presuppose knowledge of each individual’s fall risk factors. Full article
21 pages, 570 KiB  
Review
Healthcare Complexities in Neurodegenerative Proteinopathies: A Narrative Review
by Seyed-Mohammad Fereshtehnejad and Johan Lökk
Healthcare 2025, 13(15), 1873; https://doi.org/10.3390/healthcare13151873 - 31 Jul 2025
Viewed by 298
Abstract
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences [...] Read more.
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences for patients, caregivers, and healthcare systems. This review aims to synthesize evidence on the healthcare complexities of major neurodegenerative proteinopathies to highlight current knowledge gaps, and to inform future care models, policies, and research directions. Methods: We conducted a comprehensive literature search in PubMed/MEDLINE using combinations of MeSH terms and keywords related to neurodegenerative diseases, proteinopathies, diagnosis, sex, management, treatment, caregiver burden, and healthcare delivery. Studies were included if they addressed the clinical, pathophysiological, economic, or care-related complexities of aging-related neurodegenerative proteinopathies. Results: Key themes identified include the following: (1) multifactorial and unclear etiologies with frequent co-pathologies; (2) long prodromal phases with emerging biomarkers; (3) lack of effective disease-modifying therapies; (4) progressive nature requiring ongoing and individualized care; (5) high caregiver burden; (6) escalating healthcare and societal costs; and (7) the critical role of multidisciplinary and multi-domain care models involving specialists, primary care, and allied health professionals. Conclusions: The complexity and cost of neurodegenerative proteinopathies highlight the urgent need for prevention-focused strategies, innovative care models, early interventions, and integrated policies that support patients and caregivers. Prevention through the early identification of risk factors and prodromal signs is critical. Investing in research to develop effective disease-modifying therapies and improve early detection will be essential to reducing the long-term burden of these disorders. Full article
Show Figures

Figure 1

27 pages, 464 KiB  
Review
Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction
by Manuel Glauco Carbone, Giovanni Pagni, Claudia Tagliarini, Icro Maremmani and Angelo Giovanni Icro Maremmani
Int. J. Environ. Res. Public Health 2025, 22(8), 1171; https://doi.org/10.3390/ijerph22081171 - 24 Jul 2025
Viewed by 630
Abstract
This narrative review examines the effects of caffeine on brain health in older adults, with particular attention to its potential for dependence—an often-overlooked issue in geriatric care. Caffeine acts on central adenosine, dopamine, and glutamate systems, producing both stimulating and rewarding effects that [...] Read more.
This narrative review examines the effects of caffeine on brain health in older adults, with particular attention to its potential for dependence—an often-overlooked issue in geriatric care. Caffeine acts on central adenosine, dopamine, and glutamate systems, producing both stimulating and rewarding effects that can foster tolerance and habitual use. Age-related pharmacokinetic and pharmacodynamic changes prolong caffeine’s half-life and increase physiological sensitivity in the elderly. While moderate consumption may enhance alertness, attention, and possibly offer neuroprotective effects—especially in Parkinson’s disease and Lewy body dementia—excessive or prolonged use may lead to anxiety, sleep disturbances, and cognitive or motor impairment. Chronic exposure induces neuroadaptive changes, such as adenosine receptor down-regulation, resulting in tolerance and withdrawal symptoms, including headache, irritability, and fatigue. These symptoms, often mistaken for typical aging complaints, may reflect a substance use disorder yet remain under-recognized due to caffeine’s cultural acceptance. The review explores caffeine’s mixed role in neurological disorders, being beneficial in some and potentially harmful in others, such as restless legs syndrome and frontotemporal dementia. Given the variability in individual responses and the underestimated risk of dependence, personalized caffeine intake guidelines are warranted. Future research should focus on the long-term cognitive effects and the clinical significance of caffeine use disorder in older populations. Full article
(This article belongs to the Section Behavioral and Mental Health)
23 pages, 356 KiB  
Review
Cognitive Decline in Parkinsonism: From Clinical Phenotypes to the Genetic Background
by Christos Koros, Evangelia Stanitsa, Efthalia Angelopoulou, Sokratis G. Papageorgiou and Leonidas Stefanis
Biomedicines 2025, 13(7), 1624; https://doi.org/10.3390/biomedicines13071624 - 2 Jul 2025
Viewed by 1072
Abstract
Background/Objectives: Cognitive impairment often occurs in various parkinsonian syndromes. The course of deficits in cognitive functions ranges from mild cognitive decline to severe deterioration. Affected cognitive domains are also variable. The genetic background of patients exhibiting parkinsonism with concomitant cognitive decline is [...] Read more.
Background/Objectives: Cognitive impairment often occurs in various parkinsonian syndromes. The course of deficits in cognitive functions ranges from mild cognitive decline to severe deterioration. Affected cognitive domains are also variable. The genetic background of patients exhibiting parkinsonism with concomitant cognitive decline is still elusive. A significant part of current research in Parkinson’s disease and other parkinsonian syndromes is targeted towards the genetic aspects of these disorders. The aim of the present review was to summarize existing studies focusing on the investigation of the interplay between genetic data in parkinsonism and associated cognitive symptoms. Methods: A review of English-language articles published between 2000 and 2024 was conducted, focusing on genetic studies of Parkinson’s disease and atypical parkinsonian syndromes with cognitive decline, using the databases PUBMED, SCOPUS, and EMBASE. Results: We have selected a clinical phenotype-wise assessment of parkinsonian conditions with cognitive deficits, including typical or early-onset Parkinson’s disease, dementia with Lewy bodies, Corticobasal Syndrome, Progressive Supranuclear Palsy, and frontotemporal dementia with parkinsonism. Both typical and atypical parkinsonian syndromes with concomitant cognitive decline were explored. Conclusions: Genetic background likely contributes to the heterogeneity of cognitive impairment in parkinsonian syndromes, with specific mutations linked to distinct cognitive symptoms. The integration of genetic data and a more thorough neuropsychological assessment with clinical, imaging, and biomarkers may enhance diagnosis and enable personalized therapies. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
31 pages, 10891 KiB  
Review
Development of Positron Emission Tomography Radiotracers for Imaging α-Synuclein Aggregates
by Xiaodi Guo, Jie Xiang, Keqiang Ye and Zhentao Zhang
Cells 2025, 14(12), 907; https://doi.org/10.3390/cells14120907 - 16 Jun 2025
Cited by 1 | Viewed by 977
Abstract
Neurodegenerative diseases (NDDs) that are characterized by the accumulation of alpha-synuclein (α-syn) aggregates in both neurons and the non-neuronal cells of the brain are called synucleinopathies. The most common synucleinopathies includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), multiple system atrophy (MSA), and [...] Read more.
Neurodegenerative diseases (NDDs) that are characterized by the accumulation of alpha-synuclein (α-syn) aggregates in both neurons and the non-neuronal cells of the brain are called synucleinopathies. The most common synucleinopathies includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Significant progress has been made in the development of positron emission tomography (PET) radiotracers for synucleinopathies, yielding several α-syn tracers that have entered clinical studies. However, selective α-syn imaging still faces inherent challenges. This review provides a comprehensive overview of the progress in α-syn PET radiotracers from three angles: Alzheimer’s disease (AD)-derived scaffolds, representative compound scaffolds and analogs, and the identification of α-syn tracers through high-throughput screening (HTS). We discuss the characteristics, advantages, and limitations of the tracers for preclinical and clinical application. Finally, future directions in the development of radioligands for proteinopathies are discussed. There is no clinical available PET radiotracer for imaging α-syn aggregates, but these advances have laid a key foundation for non-invasive α-syn imaging and early diagnosis of synucleinopathies. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Graphical abstract

16 pages, 3942 KiB  
Article
Safety, Cognitive, and Behavioral Outcomes in Patients with Dementia with Lewy Bodies Treated with Nilotinib
by Fernando Pagan, Yasar Torres-Yaghi, Michaeline Hebron, Barbara Wilmarth, R. Scott Turner, Sara Matar, Xiaoguang Liu, Dalila Ferrante, Giuseppe Esposito, Jaeil Ahn and Charbel Moussa
J. Clin. Med. 2025, 14(12), 4245; https://doi.org/10.3390/jcm14124245 - 14 Jun 2025
Viewed by 700
Abstract
Background/Objectives: We previously demonstrated that nilotinib can sufficiently enter the brain to pharmacologically inhibit discoidin domain receptors (DDR)-1 in patients with Parkinson’s and Alzheimer’s disease. We primarily hypothesized that nilotinib is safe, and may alter disease-related biomarkers to improve, motor, cognitive and/or behavioral [...] Read more.
Background/Objectives: We previously demonstrated that nilotinib can sufficiently enter the brain to pharmacologically inhibit discoidin domain receptors (DDR)-1 in patients with Parkinson’s and Alzheimer’s disease. We primarily hypothesized that nilotinib is safe, and may alter disease-related biomarkers to improve, motor, cognitive and/or behavioral features in dementia with Lewy bodies (DLB). Methods: Forty-three participants were randomized 1:1 into nilotinib, 200 mg, or matching placebo in a single-center, phase 2, randomized, double-blind study. Study drug was taken orally once daily for 6 months followed by one-month wash-out. Results: Of 43 individuals enrolled, 14 were women (33%); age (mean ± SD) was 73 ± 8.5 years. Nilotinib was safe and well-tolerated, and more adverse events were noted in the placebo (74) vs. nilotinib (37) groups (p = 0.054). The number of falls were reduced in the nilotinib (six) compared to placebo (21) group (p = 0.006). Cerebrospinal fluid homovanillic acid, a biomarker of dopamine levels, was increased (p = 0.004), while the ratio of pTau181/Aβ42 was reduced (p = 0.034). The Alzheimer’s Disease Assessment Scale—cognition 14 improved by 2.8 pts (p = 0.037), and no differences were observed in Movement Disorders Society–Unified Parkinson’s Disease Rating Scale parts II and III. However, part I (cognition) improved (p = 0.044) in nilotinib compared to placebo. Conclusions: Nilotinib demonstrates favorable safety, biomarkers, and efficacy outcomes in patients with DLB supporting further trials in DLB or advanced Parkinson’s disease with dementia. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

43 pages, 2656 KiB  
Review
α-Synuclein Pathology in Synucleinopathies: Mechanisms, Biomarkers, and Therapeutic Challenges
by Oscar Arias-Carrión, Magdalena Guerra-Crespo, Francisco J. Padilla-Godínez, Luis O. Soto-Rojas and Elías Manjarrez
Int. J. Mol. Sci. 2025, 26(11), 5405; https://doi.org/10.3390/ijms26115405 - 4 Jun 2025
Viewed by 1834
Abstract
Parkinson’s disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, [...] Read more.
Parkinson’s disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, including its structure, aggregation mechanisms, cellular interactions, and systemic influences. We highlight the structural diversity of aSyn aggregates, ranging from oligomers to fibrils, their strain-like properties, and their prion-like propagation. While the role of prion-like mechanisms in disease progression remains a topic of ongoing debate, these processes may contribute to the clinical heterogeneity of synucleinopathies. Dysregulation of protein clearance pathways, including chaperone-mediated autophagy and the ubiquitin–proteasome system, exacerbates aSyn accumulation, while post-translational modifications influence its toxicity and aggregation propensity. Emerging evidence suggests that immune responses and alterations in the gut microbiome are key modulators of aSyn pathology, linking peripheral processes—particularly those of intestinal origin—to central neurodegeneration. Advances in biomarker development, such as cerebrospinal fluid assays, post-translationally modified aSyn, and real-time quaking-induced conversion technology, hold promise for early diagnosis and disease monitoring. Furthermore, positron emission tomography imaging and conformation-specific antibodies offer innovative tools for visualising and targeting aSyn pathology in vivo. Despite significant progress, challenges remain in accurately modelling human synucleinopathies, as existing animal and cellular models capture only specific aspects of the disease. This review underscores the need for more reliable aSyn biomarkers to facilitate the development of effective treatments. Achieving this goal requires an interdisciplinary approach integrating genetic, epigenetic, and environmental insights. Full article
(This article belongs to the Special Issue Molecular Insights in Neurodegeneration)
Show Figures

Graphical abstract

17 pages, 488 KiB  
Systematic Review
Dysautonomia in Alzheimer’s Disease: A Systematic Review
by Marianna Papadopoulou, Maria-Ioanna Stefanou, Eleni Bakola, Christos Moschovos, Athanasia Athanasaki, Evdoxia Tsigkaropoulou, Ioannis Michopoulos, George P. Paraskevas, Rossetos Gournellis and Georgios Tsivgoulis
Brain Sci. 2025, 15(5), 502; https://doi.org/10.3390/brainsci15050502 - 14 May 2025
Viewed by 794
Abstract
Background: Alzheimer’s disease (AD) is the most common cause of dementia. In addition to cognitive decline, non-cognitive symptoms, including dysautonomia, have been reported, although these symptoms are rarely acknowledged by patients. Dysautonomia in AD is thought to arise from either cholinergic deficits [...] Read more.
Background: Alzheimer’s disease (AD) is the most common cause of dementia. In addition to cognitive decline, non-cognitive symptoms, including dysautonomia, have been reported, although these symptoms are rarely acknowledged by patients. Dysautonomia in AD is thought to arise from either cholinergic deficits or hypothalamic involvement. A wide range of tests has been used to investigate the role of the autonomic nervous system; however, the results have been inconsistent. Aim: To systematically review all published research investigating autonomic nervous system (ANS) involvement in patients with AD. A comprehensive literature search was conducted in December 2024 across the following databases: PubMed, Cochrane Library, ScienceDirect, and Scopus. Results: A total of 1422 records were identified, of which 30 studies fulfilled the inclusion criteria and were included in the review. Several autonomic tests were employed, with Heart Rate Variability (HRV) being the most frequently used. Other tests included assessments of orthostatic hypotension (OH), postprandial hypotension (PPH), sympathetic skin response (SSR), the tilt test, 123I-MIBG cardiac scintigraphy, norepinephrine (NE) measurements in serum and cerebrospinal fluid, and baroreflex sensitivity. In most studies, AD patients were compared to either healthy controls or patients with other types of dementia. Discussion: The primary finding of this review is that, although patients with AD rarely report dysautonomic symptoms, they frequently exhibit abnormal results on various autonomic tests. In some cases, these findings were sufficient to differentiate AD patients from healthy controls as well as from patients with Diffuse Lewy Body disease (DLB). The inconsistency in reporting symptoms, along with the variability in test results, suggests that autonomic dysfunction in AD may be under-recognized and warrants further investigation. Conclusions: The heterogeneity of the included studies limits the generalizability of the results. However, given the potential impact of dysautonomia on both quality of life and mortality, it is recommended that AD patients be systematically assessed for autonomic dysfunction. Even in the absence of overt symptoms, appropriate treatment should be considered where indicated to mitigate potential risks. Full article
(This article belongs to the Special Issue Aging-Related Changes in Memory and Cognition)
Show Figures

Figure 1

48 pages, 6778 KiB  
Review
A Review of Neuro-ML Breakthroughs in Addressing Neurological Disorders
by Cosmina-Mihaela Rosca and Adrian Stancu
Appl. Sci. 2025, 15(10), 5442; https://doi.org/10.3390/app15105442 - 13 May 2025
Cited by 2 | Viewed by 1394
Abstract
This research aims to explore the interdisciplinary connection between the field of neurology and artificial intelligence (AI) through machine learning (ML) algorithms. The central objective is to evaluate the current state of research in the Neuro-ML field and identify gaps in the literature [...] Read more.
This research aims to explore the interdisciplinary connection between the field of neurology and artificial intelligence (AI) through machine learning (ML) algorithms. The central objective is to evaluate the current state of research in the Neuro-ML field and identify gaps in the literature that require additional approaches. To achieve this objective, 10 analyses were introduced that analyze the distribution of articles based on keywords, countries, years, publishers, and ML algorithms used in the context of neurological diseases. Surveys were also conducted to identify the diseases most frequently studied through ML algorithms. Thus, it was found that Alzheimer’s disease (37 articles for Support Vector Regression—SVR; 31 for Random Forest—RF), Parkinson’s disease (46 articles for SVM and 48 for RF), and multiple sclerosis (9 articles for SVM) are the most studied diseases in the field of Neuro-ML. The study analyzes Alzheimer’s, Parkinson’s, and multiple sclerosis in detail by focusing on diagnosis. The overall results highlight an increase in researchers’ interest in applying ML in neurology, with models such as SVM (597 articles), Artificial Neural Network (525 articles), and RF (457 articles) being the most used. The results highlighted three major gaps: the underrepresentation of rare diseases, the lack of standardization in evaluating the performance of ML models, and the lack of exploration of algorithms with greater implementation difficulty, such as Extreme Gradient Boosting and Multilayer Perceptron. The value analysis of the performance metrics of ML models demonstrates the ability to correctly classify neuro-degenerative diseases, with high accuracy in some cases (for example, 97.46% accuracy in Alzheimer’s diagnosis), but there may still be improvements. Future directions include exploring rare diseases, investigating underutilized algorithms, and developing standardized protocols for evaluating the performance of ML models, which will facilitate the comparison of results across different studies. Full article
(This article belongs to the Special Issue Feature Review Papers in Theoretical and Applied Neuroscience)
Show Figures

Figure 1

37 pages, 1483 KiB  
Review
The Synergistic Roles of Glial Cells and Non-Coding RNAs in the Pathogenesis of Alzheimer’s Disease and Related Dementias (ADRDs)
by Sydney J. Risen, Devin Wahl, Thomas J. LaRocca and Julie A. Moreno
Neuroglia 2025, 6(2), 22; https://doi.org/10.3390/neuroglia6020022 - 6 May 2025
Viewed by 1586
Abstract
This review synthesizes the emerging understanding of the roles of glial cells and non-coding RNAs (ncRNAs) in the pathogenesis and progression of Alzheimer’s disease and related dementias (ADRDs). ADRDs encompass a spectrum of neurodegenerative disorders characterized by cognitive decline, memory impairment, and functional [...] Read more.
This review synthesizes the emerging understanding of the roles of glial cells and non-coding RNAs (ncRNAs) in the pathogenesis and progression of Alzheimer’s disease and related dementias (ADRDs). ADRDs encompass a spectrum of neurodegenerative disorders characterized by cognitive decline, memory impairment, and functional deterioration. The interplay between the most common types of glial cells—astrocytes, microglia, and oligodendrocytes—and ncRNAs is emerging as a critical factor in the development of ADRDs. Glial cells are essential for maintaining homeostasis within the central nervous system (CNS); however, their dysregulation can lead to neuroinflammation and neuronal dysfunction, exacerbating neurodegeneration. Reactive astrocytes and activated microglia can create neurotoxic environments that further impair neuronal health. Concurrently, ncRNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have emerged as significant regulators of glial gene expression, influencing inflammatory responses and glial cell function. Understanding the complex interactions between glial cells and ncRNAs is crucial for developing targeted therapeutic strategies. By elucidating the mechanisms underlying their interactions, this review aims to highlight the critical importance of glial cells and ncRNAs in the context of neurodegenerative diseases, paving the way for innovative approaches to prevent and treat ADRDs. Ultimately, enhancing our understanding of these processes may lead to novel therapies and improved outcomes for individuals affected by these debilitating conditions. Full article
Show Figures

Figure 1

27 pages, 6414 KiB  
Article
Allosteric Modulation of GCase Enhances Lysosomal Activity and Reduces ER Stress in GCase-Related Disorders
by Ilaria Fregno, Natalia Pérez-Carmona, Mikhail Rudinskiy, Tatiana Soldà, Timothy J. Bergmann, Ana Ruano, Aida Delgado, Elena Cubero, Manolo Bellotto, Ana María García-Collazo and Maurizio Molinari
Int. J. Mol. Sci. 2025, 26(9), 4392; https://doi.org/10.3390/ijms26094392 - 6 May 2025
Viewed by 1349
Abstract
Variants in the GBA1 gene, encoding the lysosomal enzyme glucosylceramidase beta 1 (GCase), are linked to Parkinson’s disease (PD) and Gaucher disease (GD). Heterozygous variants increase PD risk, while homozygous variants lead to GD, a lysosomal storage disorder. Some GBA1 variants impair GCase [...] Read more.
Variants in the GBA1 gene, encoding the lysosomal enzyme glucosylceramidase beta 1 (GCase), are linked to Parkinson’s disease (PD) and Gaucher disease (GD). Heterozygous variants increase PD risk, while homozygous variants lead to GD, a lysosomal storage disorder. Some GBA1 variants impair GCase maturation in the endoplasmic reticulum, blocking lysosomal transport and causing glucosylceramide accumulation, which disrupts lysosomal function. This study explores therapeutic strategies to address these dysfunctions. Using Site-directed Enzyme Enhancement Therapy (SEE-Tx®), two structurally targeted allosteric regulators (STARs), GT-02287 and GT-02329, were developed and tested in GD patient-derived fibroblasts with relevant GCase variants. Treatment with GT-02287 and GT-02329 improved the folding of mutant GCase, protected the GCaseLeu444Pro variant from degradation, and facilitated the delivery of active GCase to lysosomes. This enhanced lysosomal function and reduced cellular stress. These findings validate the STARs’ mechanism of action and highlight their therapeutic potential for GCase-related disorders, including GD, PD, and Dementia with Lewy Bodies. Full article
(This article belongs to the Special Issue Molecular Research of Dystonia and Parkinson’s Disease)
Show Figures

Figure 1

19 pages, 6545 KiB  
Review
Susceptibility-Weighted Imaging (SWI): Technical Aspects and Applications in Brain MRI for Neurodegenerative Disorders
by Federica Vaccarino, Carlo Cosimo Quattrocchi and Marco Parillo
Bioengineering 2025, 12(5), 473; https://doi.org/10.3390/bioengineering12050473 - 29 Apr 2025
Viewed by 2045
Abstract
Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) sequence sensitive to substances that alter the local magnetic field, such as calcium and iron, allowing phase information to distinguish between them. SWI is a 3D gradient–echo sequence with high spatial resolution that leverages [...] Read more.
Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) sequence sensitive to substances that alter the local magnetic field, such as calcium and iron, allowing phase information to distinguish between them. SWI is a 3D gradient–echo sequence with high spatial resolution that leverages both phase and magnitude effects. The interaction of paramagnetic (such as hemosiderin and deoxyhemoglobin), diamagnetic (including calcifications and minerals), and ferromagnetic substances with the local magnetic field distorts it, leading to signal changes. Neurodegenerative diseases are typically characterized by the progressive loss of neurons and their supporting cells within the neurovascular unit. This cellular decline is associated with a corresponding deterioration of both cognitive and motor abilities. Many neurodegenerative disorders are associated with increased iron accumulation or microhemorrhages in various brain regions, making SWI a valuable diagnostic tool in clinical practice. Suggestive SWI findings are known in Parkinson’s disease, Lewy body dementia, atypical parkinsonian syndromes, multiple sclerosis, cerebral amyloid angiopathy, amyotrophic lateral sclerosis, hereditary ataxias, Huntington’s disease, neurodegeneration with brain iron accumulation, and chronic traumatic encephalopathy. This review will assist radiologists in understanding the technical framework of SWI sequences for a correct interpretation of currently established MRI findings and for its potential future clinical applications. Full article
(This article belongs to the Special Issue Modern Medical Imaging in Disease Diagnosis Applications)
Show Figures

Graphical abstract

12 pages, 1276 KiB  
Article
Apathy in Dementia: A Pilot Study Providing Insights from Neuropsychiatric and Radiological Perspectives
by Ozlem Totuk and Sevki Sahin
J. Clin. Med. 2025, 14(6), 1822; https://doi.org/10.3390/jcm14061822 - 8 Mar 2025
Viewed by 1143
Abstract
Background: Apathy is a common neuropsychiatric symptom in all stages of dementia, significantly complicating patient management. This study examines the prevalence of apathy across Alzheimer’s Disease (AD), Lewy Body Dementia (LBD), Frontotemporal Dementia (FTD), and Vascular Dementia (VD) and explores its associations with [...] Read more.
Background: Apathy is a common neuropsychiatric symptom in all stages of dementia, significantly complicating patient management. This study examines the prevalence of apathy across Alzheimer’s Disease (AD), Lewy Body Dementia (LBD), Frontotemporal Dementia (FTD), and Vascular Dementia (VD) and explores its associations with cognitive functions, neuropsychiatric symptoms, and magnetic resonance imaging (MRI) findings. Methods: This retrospective, cross-sectional study included 200 patients diagnosed with AD, LBD, FTD, and VD along with 100 healthy controls (HCs). Apathy was assessed using the Apathy Evaluation Scale. Depression and anxiety in patients were evaluated using the Geriatric Depression Scale and the Geriatric Anxiety Scale, respectively. Cognitive function was measured with the Mini-Mental State Examination (MMSE) and Addenbrooke’s Cognitive Examination-Revised (ACE-R). MRI findings were evaluated using atrophy scales that are routinely utilized in dementia assessments. Results: Apathy was significantly more prevalent in dementia and MCI patients compared to HC. However, there were no significant differences in apathy prevalence among dementia subtypes. Apathy showed no significant correlation with depression, anxiety, or cognitive performance. Notably, MRI analysis revealed a strong association between apathy and orbitofrontal (OF) sulci atrophy. Conclusions: Apathy is a critical symptom in dementia, linked to OF atrophy and presenting challenges in management. These findings emphasize the importance of integrating apathy assessments in clinical practice. Larger, longitudinal studies are needed to further clarify the pathophysiology and management of apathy in dementia. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

34 pages, 3550 KiB  
Systematic Review
Neurofilament Light Chain in Cerebrospinal Fluid and Blood in Multiple System Atrophy: A Systematic Review and Meta-Analysis
by Silvia Demiri, Dimitra Veltsista, Vasileios Siokas, Kanellos C. Spiliopoulos, Antonia Tsika, Polyxeni Stamati, Elisabeth Chroni, Efthimios Dardiotis and Ioannis Liampas
Brain Sci. 2025, 15(3), 241; https://doi.org/10.3390/brainsci15030241 - 25 Feb 2025
Cited by 1 | Viewed by 1482
Abstract
Background/Objectives: Multiple system atrophy (MSA) presents a challenging diagnosis due to its clinical overlap with other neurodegenerative disorders, especially other α-synucleinopathies. The main purpose of this systematic review and meta-analysis was to assess neurofilament light chain (NfL) differences in the CSF and [...] Read more.
Background/Objectives: Multiple system atrophy (MSA) presents a challenging diagnosis due to its clinical overlap with other neurodegenerative disorders, especially other α-synucleinopathies. The main purpose of this systematic review and meta-analysis was to assess neurofilament light chain (NfL) differences in the CSF and blood of patients with MSA versus the healthy control group (HC), patients with Parkinson’s disease (PD) and patients with Lewy body dementia (LBD). Secondarily, the diagnostic metrics of CSF and circulating NfL in MSA versus HC, PD, LBD, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) were discussed. Methods: MEDLINE and EMBASE were thoroughly searched for relevant case-control studies. Standardized mean differences (SMDs) were calculated separately for CSF and blood NfL per comparison. Statistical heterogeneity was assessed based on the Q and I^2 statistics. Results: Twenty-five relevant studies were retrieved. Quantitative syntheses revealed elevated CSF and circulating NfL levels in individuals with MSA versus HC [SMD = 1.80 (95%CI = 1.66, 1.94) and SMD = 2.00 (95%CI = 1.36, 2.63), respectively] versus PD [SMD = 1.65 (95%CI = 1.26, 2.03) and SMD = 1.63 (95%CI = 0.84, 2.43), respectively] as well as versus LBD [SMD = 1.17, (95%CI = 0.71, 1.63) and SMD = 0.65 (95%CI = 0.30, 1.00), respectively]. Diagnostic accuracy was outstanding for CSF and blood NfL in MSA versus HC and PD, and it was moderate in MSA versus LBD. On the other hand, it was suboptimal in MSA vs. PSP and CBD. Conclusions: Both CSF and circulating NfL levels are elevated in MSA compared to HC, PD and LBD. To achieve optimal diagnostic properties, further work is required in the standardization of processes and the establishment of reference NfL intervals and/or thresholds. Full article
Show Figures

Figure 1

10 pages, 5842 KiB  
Case Report
Frontal Variant Alzheimer’s Disease or Primary Psychiatric Disorder? A Case Report
by Siew Fai Liew and Weishan Li
Reports 2025, 8(1), 24; https://doi.org/10.3390/reports8010024 - 18 Feb 2025
Viewed by 875
Abstract
Background and Clinical Significance: In our case study, the patient experienced approximately a year-long delay in her diagnosis, where her initial diagnosis was mistakenly a primary psychiatric disorder, resulting in undue stress on her family. The aim of this case study is [...] Read more.
Background and Clinical Significance: In our case study, the patient experienced approximately a year-long delay in her diagnosis, where her initial diagnosis was mistakenly a primary psychiatric disorder, resulting in undue stress on her family. The aim of this case study is to raise awareness of frontal variant Alzheimer’s dementia (fvAD) and to increase knowledge amongst clinicians about this disorder, its management and the need for long-term follow up in specialized clinics. Case Presentation: In January 2023, a 56-year-old woman first presented with a 4-month history of worsening cognitive symptoms with considerable overlapping mood symptoms. Her Mini-Mental State Examination (MMSE) score was 20/28, whereas her Frontal Assessment Battery (FAB) score was 6/18. Upon neuropsychological evaluation, she demonstrated multidomain cognitive deficits, where impairments were most prominent in executive dysfunction, learning, memory and semantic fluency. There was evidence of progressive neurodegenerative changes, with brain MRI (April 2024) showing predominant bilateral frontal and parietal volume loss, sparing the occipital and temporal lobes. Amyloid positron emission tomography (PET) was diffusely positive. A diagnosis of fvAD (frontal variant Alzheimer’s dementia) with BPSD was made. Other differential diagnoses included a major neurocognitive disorder due to multiple etiologies (AD and dementia with Lewy bodies (DLB)), frontotemporal dementia (bvFTD), primary progressive aphasia (PPA) and the psychiatric disorder of pseudodementia secondary to a mood disorder. Conclusions: This case presented significant challenges given the atypical neuropsychological profile and the complexity of the symptom presentation with significant neuropsychiatric overlay. The preliminary research findings underscore the complexity of fvAD, warranting future research using fundamental approaches. Full article
Show Figures

Figure 1

Back to TopTop