Cognitive Decline in Parkinsonism: From Clinical Phenotypes to the Genetic Background
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Forms of PD
3.1.1. Typical Mid-/Late-Onset Genetic PD with Variable Cognitive Decline
LRRK2 Mutation Carriers
VPS35 Mutation Carriers
APOE
3.1.2. Early- or Mid-Onset Genetic PD with Variable Cognitive Decline
SNCA Mutation Carriers
PRKN Mutation Carriers
PINK1 Mutation Carriers
DJ-1 Mutation Carriers
3.1.3. Typical or Early-Onset Genetic PD with Variable Cognitive Decline
GBA Mutation Carriers
3.2. Genetic Background of Dementia with Lewy Bodies (DLB) and Its Effect on Cognitive Impairment
3.2.1. APOE
3.2.2. SNCA
3.2.3. GBA
3.3. Genetic Forms of Atypical Parkinsonian Syndromes Associated with Cognitive Decline
3.3.1. Corticobasal Syndrome
3.3.2. Progressive Supranuclear Palsy
3.4. Genetic Forms of Frontotemporal Dementia with Parkinsonism
3.4.1. MAPT Gene Mutations
3.4.2. GRN Gene Mutations
3.4.3. C9orf72 Genetic Locus Mutations
3.4.4. Other Mutations Related to FTD and Parkinsonism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ALS | amyotrophic lateral sclerosis |
APOE | apolipoprotein E |
bvFTD | behavioral variant of Frontotemporal Dementia |
CBS | Corticobasal Syndrome |
CBD | corticobasal degeneration |
C9orf72 | chromosome 9 open reading frame 72 |
DLB | Dementia with Lewy Bodies |
DJ-1 | PARK7 (related to Parkinson’s disease) |
DPRs | dipeptide-repeat proteins |
FTD | Frontotemporal Dementia |
FUS | Fused-in-Sarcoma |
GWAS | Genome-Wide Association Study |
iPD | idiopathic PD (henceforth iPD) |
LB | Lewy body |
LRRK2 | leucine-rich repeat kinase 2 |
MAPT | microtubule-associated protein tau |
MCI | Mild Cognitive Impairment |
MMSE | Mini Mental State Examination |
MoCA | Montreal Cognitive Assessment |
MSA | Multiple Systems Atrophy |
PPMI | Parkinson’s Progression Markers Initiative |
PNFA | progressive non-fluent/agrammatic aphasia |
PD | Parkinson’s disease |
PINK1 | PTEN-induced kinase 1 |
PSP | Progressive Supranuclear Palsy |
RBD | REM Sleep Behavior Disorder |
SNCA | α-synuclein |
svPPA | semantic variant of Primary Progressive Aphasia |
TBK1 | TANK-binding kinase 1 |
VCP | Valosin-containing protein |
VPS35 | vesicular sorting protein 35 |
AD | Alzheimer’s disease |
ALS | amyotrophic lateral sclerosis |
APOE | apolipoprotein E |
bvFTD | behavioral variant of Frontotemporal Dementia |
CBS | Corticobasal Syndrome |
CBD | corticobasal degeneration |
References
- Koros, C.; Stefanis, L.; Scarmeas, N. Parkinsonism and dementia. J. Neurol. Sci. 2022, 433, 120015. [Google Scholar] [CrossRef] [PubMed]
- Wise, A.H.; Alcalay, R.N. Genetics of cognitive dysfunction in Parkinson’s disease. Prog. Brain Res. 2022, 269, 195–226. [Google Scholar]
- Planas-Ballvé, A.; Vilas, D. Cognitive Impairment in Genetic Parkinson’s Disease. Park. Dis. 2021, 2021, 8610285. [Google Scholar] [CrossRef]
- Koros, C.; Simitsi, A.; Stefanis, L. Genetics of Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 132, 197–231. [Google Scholar] [PubMed]
- Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.; Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R.J.; Calne, D.B.; et al. Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron 2004, 44, 601–607. [Google Scholar] [CrossRef]
- Funayama, M.; Hasegawa, K.; Ohta, E.; Kawashima, N.; Komiyama, M.; Kowa, H.; Tsuji, S.; Obata, F. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol. 2005, 57, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, R.N.; Mejia-Santana, H.; Tang, M.X.; Rakitin, B.; Rosado, L.; Ross, B.; Verbitsky, M.; Kisselev, S.; Louis, E.D.; Comella, C.L.; et al. Self-report of cognitive impairment and mini-mental state examination performance in PRKN, LRRK2, and GBA carriers with early onset Parkinson’s disease. J. Clin. Exp. Neuropsychol. 2010, 32, 775–779. [Google Scholar] [CrossRef]
- Alcalay, R.N.; Mejia-Santana, H.; Mirelman, A.; Saunders-Pullman, R.; Raymond, D.; Palmese, C.; Caccappolo, E.; Ozelius, L.; Orr-Urtreger, A.; Clark, L.; et al. Neuropsychological performance in LRRK2 G2019S carriers with Parkinson’s disease. Park. Relat. Disord. 2015, 21, 106–110. [Google Scholar] [CrossRef]
- Srivatsal, S.; Cholerton, B.; Leverenz, J.B.; Wszolek, Z.K.; Uitti, R.J.; Dickson, D.W.; Weintraub, D.; Trojanowski, J.Q.; Van Deerlin, V.M.; Quinn, J.F.; et al. Cognitive profile of LRRK2-related Parkinson’s disease. Mov. Disord. 2015, 30, 728–733. [Google Scholar] [CrossRef]
- Somme, J.H.; Molano Salazar, A.; Gonzalez, A.; Tijero, B.; Berganzo, K.; Lezcano, E.; Fernandez Martinez, M.; Zarranz, J.J.; Gómez-Esteban, J.C. Cognitive and behavioral symptoms in Parkinson’s disease patients with the G2019S and R1441G mutations of the LRRK2 gene. Park. Relat. Disord. 2015, 21, 494–499. [Google Scholar] [CrossRef]
- Sharma, M.; Ioannidis, J.P.A.; Aasly, J.O.; Annesi, G.; Brice, A.; Bertram, L.; Bozi, M.; Barcikowska, M.; Crosiers, D.; Clarke, C.E.; et al. A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J. Med. Genet. 2012, 49, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Lesage, S.; Houot, M.; Mangone, G.; Tesson, C.; Bertrand, H.; Forlani, S.; Anheim, M.; Brefel-Courbon, C.; Broussolle, E.; Thobois, S.; et al. Genetic and Phenotypic Basis of Autosomal Dominant Parkinson’s Disease in a Large Multi-Center Cohort. Front. Neurol. 2020, 11, 682. [Google Scholar] [CrossRef]
- Cutillo, G.; Simon, D.K.; Eleuteri, S. VPS35 and the mitochondria: Connecting the dots in Parkinson’s disease pathophysiology. Neurobiol. Dis. 2020, 145, 105056. [Google Scholar] [CrossRef]
- Struhal, W.; Presslauer, S.; Spielberger, S.; Zimprich, A.; Auff, E.; Bruecke, T.; Poewe, W.; Ransmayr, G. VPS35 Parkinson’s disease phenotype resembles the sporadic disease. J. Neural Transm. 2014, 121, 755–759. [Google Scholar] [CrossRef]
- Paul, K.C.; Rausch, R.; Creek, M.M.; Sinsheimer, J.S.; Bronstein, J.M.; Bordelon, Y.; Ritz, B. APOE, MAPT, and COMT and Parkinson’s Disease Susceptibility and Cognitive Symptom Progression. J. Park. Dis. 2016, 6, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Siddiqui, U.F.; Anastasiou, Z.; Weintraub, D.; Schott, J.M. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: A cohort study. Lancet Neurol. 2017, 16, 66–75. [Google Scholar] [CrossRef]
- Williams-Gray, C.H.; Goris, A.; Saiki, M.; Foltynie, T.; Compston, D.A.S.; Sawcer, S.J.; Barker, R.A. Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s Disease. J. Neurol. 2009, 256, 493–498. [Google Scholar] [CrossRef]
- Huang, X.; Chen, P.; Kaufer, D.I.; Tröster, A.I.; Poole, C. Apolipoprotein E and Dementia in Parkinson Disease. Arch. Neurol. 2006, 63, 189. [Google Scholar] [CrossRef] [PubMed]
- Koros, C.; Brockmann, K.; Simitsi, A.; Bougea, A.; Liu, H.; Hauser, A.; Schulte, C.; Lerche, S.; Pachi, I.; Papagiannakis, N.; et al. Impact of APOE Genotype on Cognition in Idiopathic and Genetic Forms of Parkinson’s Disease. Mov. Disord. 2023, 38, 907–909. [Google Scholar] [CrossRef]
- Dickson, D.W.; Heckman, M.G.; Murray, M.E.; Soto, A.I.; Walton, R.L.; Diehl, N.N.; Van Gerpen, J.A.; Uitti, R.J.; Wszolek, Z.K.; Ertekin-Taner, N.; et al. APOE «4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology 2018, 91, E1182–E1195. [Google Scholar] [CrossRef]
- Tsuang, D.; Leverenz, J.B.; Lopez, O.L.; Hamilton, R.L.; Bennett, D.A.; Schneider, J.A.; Buchman, A.S.; Larson, E.B.; Crane, P.K.; Kaye, J.A.; et al. APOE ϵ4 Increases Risk for Dementia in Pure Synucleinopathies. JAMA Neurol. 2013, 70, 223. [Google Scholar] [CrossRef] [PubMed]
- Kasten, M.; Klein, C. The many faces of alpha-synuclein mutations. Mov. Disord. 2013, 28, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, L.; Petrucci, S.; Di Giuda, D.; Serra, L.; Spanò, B.; Sensi, M.; Ginevrino, M.; Cocciolillo, F.; Bozzali, M.; Valente, E.M.; et al. The Contursi Family 20 Years Later: Intrafamilial Phenotypic Variability of the SNCA p.A53T Mutation. Mov. Disord. 2016, 31, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, D.; Antonelou, R.; Miligkos, M.; Maniati, M.; Papagiannakis, N.; Bostantjopoulou, S.; Leonardos, A.; Koros, C.; Simitsi, A.; Papageorgiou, S.G.; et al. Motor and Nonmotor Features of Carriers of the p.A53T Alpha-Synuclein Mutation: A Longitudinal Study. Mov. Disord. 2016, 31, 1226–1230. [Google Scholar] [CrossRef]
- Markopoulou, K.; Dickson, D.W.; McComb, R.D.; Wszolek, Z.K.; Katechalidou, L.; Avery, L.; Stansbury, M.S.; Chase, B.A. Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Acta Neuropathol. 2008, 116, 25–35. [Google Scholar] [CrossRef]
- Bostantjopoulou, S.; Katsarou, Z.; Papadimitriou, A.; Veletza, V.; Hatzigeorgiou, G.; Lees, A. Clinical features of parkinsonian patients with the α-synuclein (G209A) mutation. Mov. Disord. 2001, 16, 1007–1013. [Google Scholar] [CrossRef]
- Spira, P.J.; Sharpe, D.M.; Halliday, G.; Cavanagh, J.; Nicholson, G.A. Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann. Neurol. 2001, 49, 313–319. [Google Scholar] [CrossRef]
- Papapetropoulos, S.; Ellul, J.; Paschalis, C.; Athanassiadou, A.; Papadimitriou, A.; Papapetropoulos, T. Clinical characteristics of the alpha-synuclein mutation (G209A)-associated Parkinson’s disease in comparison with other forms of familial Parkinson’s disease in Greece. Eur. J. Neurol. 2003, 10, 281–286. [Google Scholar] [CrossRef]
- Morfis, L.; Cordato, D.J. Dementia with Lewy bodies in an elderly Greek male due to α-synuclein gene mutation. J. Clin. Neurosci. 2006, 13, 942–944. [Google Scholar] [CrossRef]
- Koros, C.; Stamelou, M.; Simitsi, A.; Beratis, I.; Papadimitriou, D.; Papagiannakis, N.; Fragkiadaki, S.; Kontaxopoulou, D.; Papageorgiou, S.G.; Stefanis, L. Selective cognitive impairment and hyposmia in p.A53T SNCA PD vs typical PD. Neurology 2018, 90, e864–e869. [Google Scholar] [CrossRef]
- Simitsi, A.M.; Sfikas, E.; Koros, C.; Papagiannakis, N.; Beratis, I.; Papadimitriou, D.; Antonellou, R.; Fragiadaki, S.; Kontaxopoulou, D.; Picillo, M.; et al. Motor and nonmotor features of p.A53T alpha-synuclein PD vs idiopathic PD: Longitudinal data from the PPMI study. J. Neurol. 2025, 272, 203. [Google Scholar] [CrossRef] [PubMed]
- Puschmann, A.; Ross, O.A.; Vilariño-Güell, C.; Lincoln, S.J.; Kachergus, J.M.; Cobb, S.A.; Lindquist, S.G.; Nielsen, J.E.; Wszolek, Z.K.; Farrer, M.; et al. A Swedish family with de novo α-synuclein A53T mutation: Evidence for early cortical dysfunction. Park. Relat. Disord. 2009, 15, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Bougea, A.; Koros, C.; Stamelou, M.; Simitsi, A.; Papagiannakis, N.; Antonelou, R.; Papadimitriou, D.; Breza, M.; Tasios, K.; Fragkiadaki, S.; et al. Frontotemporal dementia as the presenting phenotype of p.A53T mutation carriers in the alpha-synuclein gene. Park. Relat. Disord. 2017, 35, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Koros, C.; Strohäker, T.; Schulte, C.; Bozi, M.; Varvaresos, S.; Ibáñez de Opakua, A.; Simitsi, A.M.; Bougea, A.; Voumvourakis, K.; et al. A Novel SNCA A30G Mutation Causes Familial Parkinson’s Disease. Mov. Disord. 2021, 36, 1624–1633. [Google Scholar] [CrossRef]
- Alefanti, I.; Koros, C.; Tsami, V.; Simitsi, A.M.; Kartanou, C.; Papagiannakis, N.; Bozi, M.; Antonelou, R.; Maniati, M.; Hauser, A.; et al. The novel p. A30G SNCA pathogenic variant in Greek patients with familial and sporadic Parkinson’s disease. Eur. J. Neurol. 2025, 32, e16562. [Google Scholar] [CrossRef]
- Zarranz, J.J.; Alegre, J.; Gómez-Esteban, J.C.; Lezcano, E.; Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atarés, B.; et al. The new mutation, E46K, of α-synuclein causes parkinson and Lewy body dementia. Ann. Neurol. 2004, 55, 164–173. [Google Scholar] [CrossRef]
- Somme, J.H.; Gomez-Esteban, J.C.; Molano, A.; Tijero, B.; Lezcano, E.; Zarranz, J.J. Initial neuropsychological impairments in patients with the E46K mutation of the α-synuclein gene (PARK 1). J. Neurol. Sci. 2011, 310, 86–89. [Google Scholar] [CrossRef]
- Pimentel, M.M.G.; Rodrigues, F.C.; Leite, M.A.A.; Campos Júnior, M.; Rosso, A.L.; Nicaretta, D.H.; Pereira, J.S.; Silva, D.J.; Della Coletta, M.V.; Vasconcellos, L.F.R.; et al. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation. Park. Relat. Disord. 2015, 21, 586–589. [Google Scholar] [CrossRef]
- Krüger, R.; Kuhn, W.; Müller, T.; Woitalla, D.; Graeber, M.; Kösel, S.; Przuntek, H.; Epplen, J.T.; Schols, L.; Riess, O. AlaSOPro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 1998, 18, 106–108. [Google Scholar] [CrossRef]
- Krüger, R.; Schöls, L.; Müller, T.; Kuhn, W.; Woitalla, D.; Przuntek, H.; Epplen, J.T.; Riess, O. Evaluation of the γ-synuclein gene in German Parkinson’s disease patients. Neurosci. Lett. 2001, 310, 191–193. [Google Scholar] [CrossRef]
- Appel-Cresswell, S.; Vilarino-Guell, C.; Encarnacion, M.; Sherman, H.; Yu, I.; Shah, B.; Weir, D.; Thompson, C.; Szu-Tu, C.; Trinh, J.; et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord. 2013, 28, 811–813. [Google Scholar] [CrossRef]
- Proukakis, C.; Dudzik, C.G.; Brier, T.; MacKay, D.S.; Cooper, J.M.; Millhauser, G.L.; Houlden, H.; Schapira, A.H. A novel α-synuclein missense mutation in Parkinson disease. Neurology 2013, 80, 1062–1064. [Google Scholar] [CrossRef]
- Kiely, A.P.; Asi, Y.T.; Kara, E.; Limousin, P.; Ling, H.; Lewis, P.; Proukakis, C.; Quinn, N.; Lees, A.J.; Hardy, J.; et al. A-synucleinopathy associated with G51D SNCA mutation: A link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013, 125, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Tokutake, T.; Ishikawa, A.; Yoshimura, N.; Miyashita, A.; Kuwano, R.; Nishizawa, M.; Ikeuchi, T. Clinical and neuroimaging features of patient with early-onset Parkinson’s disease with dementia carrying SNCA p.G51D mutation. Park. Relat. Disord. 2014, 20, 262–264. [Google Scholar] [CrossRef]
- Daida, K.; Shimonaka, S.; Shiba-Fukushima, K.; Ogata, J.; Yoshino, H.; Okuzumi, A.; Hatano, T.; Motoi, Y.; Hirunagi, T.; Katsuno, M.; et al. α-Synuclein V15A Variant in Familial Parkinson’s Disease Exhibits a Weaker Lipid-Binding Property. Mov. Disord. 2022, 37, 2075–2085. [Google Scholar] [CrossRef] [PubMed]
- Diaw, S.H.; Borsche, M.; Streubel-Gallasch, L.; Dulovic-Mahlow, M.; Hermes, J.; Lenz, I.; Seibler, P.; Klein, C.; Brüggemann, N.; Vos, M.; et al. Characterization of the pathogenic α-Synuclein Variant V15A in Parkinson’s disease. NPJ Park. Dis. 2023, 9, 148. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, K.; Devine, M.J.; Jin, L.; Johnson, J.; Bird, T.; Muenter, M.; Waters, C.; Adler, C.H.; Caselli, R.; Houlden, H.; et al. Clinical features, with video documentation, of the original familial lewy body parkinsonism caused by α-synuclein triplication (Iowa kindred). Mov. Disord. 2011, 26, 2134–2136. [Google Scholar] [CrossRef]
- Singleton, A.B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; et al. α-Synuclein Locus Triplication Causes Parkinson’s Disease. Science 2003, 302, 841. [Google Scholar] [CrossRef]
- Fuchs, J.; Nilsson, C.; Kachergus, J.; Munz, M.; Larsson, E.-M.; Schüle, B.; Langston, J.W.; Middleton, F.A.; Ross, O.A.; Hulihan, M.; et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 2007, 68, 916–922. [Google Scholar] [CrossRef]
- Olgiati, S.; Thomas, A.; Quadri, M.; Breedveld, G.J.; Graafland, J.; Eussen, H.; Douben, H.; de Klein, A.; Onofrj, M.; Bonifati, V. Early-onset parkinsonism caused by alpha-synuclein gene triplication: Clinical and genetic findings in a novel family. Park. Relat. Disord. 2015, 21, 981–986. [Google Scholar] [CrossRef]
- Chartier-Harlin, M.-C.; Kachergus, J.; Roumier, C.; Mouroux, V.; Douay, X.; Lincoln, S.; Levecque, C.; Larvor, L.; Andrieux, J.; Hulihan, M.; et al. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004, 364, 1167–1169. [Google Scholar] [CrossRef]
- Ibáñez, P.; Bonnet, A.-M.; Débarges, B.; Lohmann, E.; Tison, F.; Agid, Y.; Dürr, A.; Brice, A.; Pollak, P. Causal relation between α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004, 364, 1169–1171. [Google Scholar] [CrossRef]
- Nishioka, K.; Hayashi, S.; Farrer, M.J.; Singleton, A.B.; Yoshino, H.; Imai, H.; Kitami, T.; Sato, K.; Kuroda, R.; Tomiyama, H.; et al. Clinical heterogeneity of α-synuclein gene duplication in Parkinson’s disease. Ann. Neurol. 2006, 59, 298–309. [Google Scholar] [CrossRef]
- Ross, O.A.; Braithwaite, A.T.; Skipper, L.M.; Kachergus, J.; Hulihan, M.M.; Middleton, F.A.; Nishioka, K.; Fuchs, J.; Gasser, T.; Maraganore, D.M.; et al. Genomic investigation of α-synuclein multiplication and parkinsonism. Ann. Neurol. 2008, 63, 743–750. [Google Scholar] [CrossRef]
- Kara, E.; Kiely, A.P.; Proukakis, C.; Giffin, N.; Love, S.; Hehir, J.; Rantell, K.; Pandraud, A.; Hernandez, D.G.; Nacheva, E.; et al. A 6.4 Mb Duplication of the α-Synuclein Locus Causing Frontotemporal Dementia and Parkinsonism. JAMA Neurol. 2014, 71, 1162. [Google Scholar] [CrossRef]
- Kasten, M.; Hartmann, C.; Hampf, J.; Schaake, S.; Westenberger, A.; Vollstedt, E.J.; Balck, A.; Domingo, A.; Vulinovic, F.; Dulovic, M.; et al. Genotype-Phenotype Relations for the Parkinson’s Disease Genes Parkin, PINK1, DJ1: MDSGene Systematic Review. Mov. Disord. 2018, 33, 730–741. [Google Scholar] [CrossRef]
- Koentjoro, B.; Park, J.; Ha, A.D.; Sue, C.M. Phenotypic variability of parkin mutations in single kindred. Mov. Disord. 2012, 27, 1299–1303. [Google Scholar] [CrossRef]
- Lohmann, E.; Dursun, B.; Lesage, S.; Hanagasi, H.A.; Sevinc, G.; Honore, A.; Bilgic, B.; Gürvit, H.; Dogu, O.; Kaleagası, H.; et al. Genetic bases and phenotypes of autosomal recessive Parkinson disease in a Turkish population. Eur. J. Neurol. 2012, 19, 769–775. [Google Scholar] [CrossRef]
- Caccappolo, E.; Alcalay, R.N.; Mejia-Santana, H.; Tang, M.-X.; Rakitin, B.; Rosado, L.; Louis, E.D.; Comella, C.L.; Colcher, A.; Jennings, D.; et al. Neuropsychological Profile of Parkin Mutation Carriers with and without Parkinson Disease: The CORE-PD Study. J. Int. Neuropsychol. Soc. 2011, 17, 91–100. [Google Scholar] [CrossRef]
- Tan, M.M.X.; Malek, N.; Lawton, M.A.; Hubbard, L.; Pittman, A.M.; Joseph, T.; Hehir, J.; Swallow, D.M.A.; Grosset, K.A.; Marrinan, S.L.; et al. Genetic analysis of Mendelian mutations in a large UK population-based Parkinson’s disease study. Brain 2019, 142, 2828–2844. [Google Scholar] [CrossRef]
- Koros, C.; Bougea, A.; Alefanti, I.; Simitsi, A.M.; Papagiannakis, N.; Pachi, I.; Sfikas, E.; Antonelou, R.; Stefanis, L. A Global Perspective of GBA1-Related Parkinson’s Disease: A Narrative Review. Genes 2024, 15, 1605. [Google Scholar] [CrossRef]
- Alcalay, R.N.; Caccappolo, E.; Mejia-Santana, H.; Tang, M.X.; Rosado, L.; Orbe Reilly, M.; Ruiz, D.; Louis, E.D.; Comella, C.L.; Nance, M.A.; et al. Cognitive and Motor Function in Long-Duration PARKIN-Associated Parkinson Disease. JAMA Neurol. 2014, 71, 62. [Google Scholar] [CrossRef]
- Lesage, S.; Lunati, A.; Houot, M.; Romdhan, S.B.; Clot, F.; Tesson, C.; Mangone, G.; Toullec, B.L.; Courtin, T.; Larcher, K.; et al. Characterization of Recessive Parkinson Disease in a Large Multicenter Study. Ann. Neurol. 2020, 88, 843–850. [Google Scholar] [CrossRef]
- Nybø, C.J.; Gustavsson, E.K.; Farrer, M.J.; Aasly, J.O. Neuropathological findings in PINK1-associated Parkinson’s disease. Park. Relat. Disord. 2020, 78, 105–108. [Google Scholar] [CrossRef]
- Taipa, R.; Pereira, C.; Reis, I.; Alonso, I.; Bastos-Lima, A.; Melo-Pires, M.; Magalhães, M. DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology. Brain 2016, 139, 1680–1687. [Google Scholar] [CrossRef]
- Aasly, J.O. Long-Term Outcomes of Genetic Parkinson’s Disease. J. Mov. Disord. 2020, 13, 81–96. [Google Scholar] [CrossRef]
- Sidransky, E.; Nalls, M.A.; Aasly, J.O.; Aharon-Peretz, J.; Annesi, G.; Barbosa, E.R.; Bar-Shira, A.; Berg, D.; Bras, J.; Brice, A.; et al. Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson’s Disease. N. Engl. J. Med. 2009, 361, 1651–1661. [Google Scholar] [CrossRef]
- Petrucci, S.; Ginevrino, M.; Trezzi, I.; Monfrini, E.; Ricciardi, L.; Albanese, A.; Avenali, M.; Barone, P.; Bentivoglio, A.R.; Bonifati, V.; et al. GBA-Related Parkinson’s Disease: Dissection of Genotype–Phenotype Correlates in a Large Italian Cohort. Mov. Disord. 2020, 35, 2106–2111. [Google Scholar] [CrossRef]
- Ren, J.; Zhou, G.; Wang, Y.; Zhang, R.; Guo, Z.; Zhou, H.; Zheng, H.; Sun, Y.; Ma, C.; Lu, M.; et al. Association of GBA genotype with motor and cognitive decline in Chinese Parkinson’s disease patients. Front. Aging Neurosci. 2023, 15, 1091919. [Google Scholar] [CrossRef]
- Goker-Alpan, O.; Lopez, G.; Vithayathil, J.; Davis, J.; Hallett, M.; Sidransky, E. The Spectrum of Parkinsonian Manifestations Associated with Glucocerebrosidase Mutations. Arch. Neurol. 2008, 65, 1353–1357. [Google Scholar] [CrossRef]
- Simitsi, A.; Koros, C.; Moraitou, M.; Papagiannakis, N.; Antonellou, R.; Bozi, M.; Angelopoulou, E.; Stamelou, M.; Michelakakis, H.; Stefanis, L. Phenotypic Characteristics in GBA-Associated Parkinson’s Disease: A Study in a Greek Population. J. Park. Dis. 2018, 8, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, K.; Srulijes, K.; Pflederer, S.; Hauser, A.; Schulte, C.; Maetzler, W.; Gasser, T.; Berg, D. GBA-associated Parkinson’s disease: Reduced survival and more rapid progression in a prospective longitudinal study. Mov. Disord. 2015, 30, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, R.N.; Caccappolo, E.; Mejia-Santana, H.; Tang, M.-X.; Rosado, L.; Orbe Reilly, M.; Ruiz, D.; Ross, B.; Verbitsky, M.; Kisselev, S.; et al. Cognitive performance of GBA mutation carriers with early-onset PD. Neurology 2012, 78, 1434–1440. [Google Scholar] [CrossRef]
- Mata, I.F.; Leverenz, J.B.; Weintraub, D.; Trojanowski, J.Q.; Chen-Plotkin, A.; Van Deerlin, V.M.; Ritz, B.; Rausch, R.; Factor, S.A.; Wood-Siverio, C.; et al. GBA Variants are associated with a distinct pattern of cognitive deficits in P arkinson’s disease. Mov. Disord. 2016, 31, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Cilia, R.; Tunesi, S.; Marotta, G.; Cereda, E.; Siri, C.; Tesei, S.; Zecchinelli, A.L.; Canesi, M.; Mariani, C.B.; Meucci, N.; et al. Survival and dementia in GBA-associated Parkinson’s disease: T he mutation matters. Ann. Neurol. 2016, 80, 662–673. [Google Scholar] [CrossRef]
- Iwaki, H.; Blauwendraat, C.; Leonard, H.L.; Liu, G.; Maple-Grødem, J.; Corvol, J.-C.; Pihlstrøm, L.; van Nimwegen, M.; Hutten, S.J.; Nguyen, K.-D.H.; et al. Genetic risk of Parkinson disease and progression: An analysis of 13 longitudinal cohorts. Neurol. Genet. 2019, 5, e348. [Google Scholar] [CrossRef]
- Walton, R.L.; Koga, S.; Beasley, A.I.; White, L.J.; Griesacker, T.; Murray, M.E.; Kasanuki, K.; Hou, X.; Fiesel, F.C.; Springer, W.; et al. Role of GBA variants in Lewy body disease neuropathology. Acta Neuropathol. 2024, 147, 54. [Google Scholar] [CrossRef]
- Lerche, S.; Schulte, C.; Srulijes, K.; Pilotto, A.; Rattay, T.W.; Hauser, A.; Stransky, E.; Deuschle, C.; Csoti, I.; Lachmann, I.; et al. Cognitive impairment in Glucocerebrosidase (GBA)-associated PD: Not primarily associated with cerebrospinal fluid Abeta and Tau profiles. Mov. Disord. 2017, 32, 1780–1783. [Google Scholar] [CrossRef]
- Vann Jones, S.A.; O’Brien, J.T. The prevalence and incidence of dementia with Lewy bodies: A systematic review of population and clinical studies. Psychol. Med. 2014, 44, 673–683. [Google Scholar] [CrossRef]
- OINAS, M.; SULKAVA, R.; POLVIKOSKI, T.; KALIMO, H.; PAETAU, A. Reappraisal of a consecutive autopsy series of patients with primary degenerative dementia: Lewy-related pathology. APMIS 2007, 115, 820–827. [Google Scholar] [CrossRef]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Goddard, T.R.; Brookes, K.J.; Sharma, R.; Moemeni, A.; Rajkumar, A.P. Dementia with Lewy Bodies: Genomics, Transcriptomics, and Its Future with Data Science. Cells 2024, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Macoir, J. The Cognitive and Language Profile of Dementia with Lewy Bodies. Am. J. Alzheimers. Dis. Other Demen. 2022, 37, 15333175221106901. [Google Scholar] [CrossRef]
- Pillai, J.A.; Bena, J.; Bonner-Jackson, A.; Leverenz, J.B. Impact of APOE ε4 genotype on initial cognitive symptoms differs for Alzheimer’s and Lewy body neuropathology. Alzheimer’s Res. Ther. 2021, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Orme, T.; Guerreiro, R.; Bras, J. The Genetics of Dementia with Lewy Bodies: Current Understanding and Future Directions. Curr. Neurol. Neurosci. Rep. 2018, 18, 67. [Google Scholar] [CrossRef]
- Guerreiro, R.; Ross, O.A.; Kun-Rodrigues, C.; Hernandez, D.G.; Orme, T.; Eicher, J.D.; Shepherd, C.E.; Parkkinen, L.; Darwent, L.; Heckman, M.G.; et al. Investigating the genetic architecture of dementia with Lewy bodies: A two-stage genome-wide association study. Lancet Neurol. 2018, 17, 64–74. [Google Scholar] [CrossRef]
- Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef]
- Hardy, J.; Crook, R.; Prihar, G.; Roberts, G.; Raghavan, R.; Perry, R. Senile dementia of the Lewy body type has an apolipoprotein E ε4 allele frequency intermediate between controls and Alzheimer’s disease. Neurosci. Lett. 1994, 182, 1–2. [Google Scholar] [CrossRef]
- Harrington, C.R.; Louwagie, J.; Rossau, R.; Vanmechelen, E.; Perry, R.H.; Perry, E.K.; Xuereb, J.H.; Roth, M.; Wischik, C.M. Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types: Significance for etiological theories of Alzheimer’s disease. Am. J. Pathol. 1994, 145, 1472–1484. [Google Scholar]
- Bousiges, O.; Cretin, B.; Muller, C.; Botzung, A.; Sanna, L.; Anthony, P.; Philippi, N.; Demuynck, C.; Blanc, F. Involvement of ApoE4 in dementia with Lewy bodies in the prodromal and demented stages: Evaluation of the Strasbourg cohort. GeroScience 2024, 46, 1527–1542. [Google Scholar] [CrossRef]
- Pasanen, P.; Myllykangas, L.; Siitonen, M.; Raunio, A.; Kaakkola, S.; Lyytinen, J.; Tienari, P.J.; Pöyhönen, M.; Paetau, A. A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol. Aging 2014, 35, 2180.e1–2180.e5. [Google Scholar] [CrossRef] [PubMed]
- Vergouw, L.J.M.; van Steenoven, I.; van de Berg, W.D.J.; Teunissen, C.E.; van Swieten, J.C.; Bonifati, V.; Lemstra, A.W.; de Jong, F.J. An update on the genetics of dementia with Lewy bodies. Park. Relat. Disord. 2017, 43, 1–8. [Google Scholar] [CrossRef]
- Guerreiro, R.; Escott-Price, V.; Darwent, L.; Parkkinen, L.; Ansorge, O.; Hernandez, D.G.; Nalls, M.A.; Clark, L.; Honig, L.; Marder, K.; et al. Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson’s and Alzheimer’s diseases. Neurobiol. Aging 2016, 38, e7–e214. [Google Scholar] [CrossRef]
- Granek, Z.; Barczuk, J.; Siwecka, N.; Rozpędek-Kamińska, W.; Kucharska, E.; Majsterek, I. GBA1 Gene Mutations in α-Synucleinopathies—Molecular Mechanisms Underlying Pathology and Their Clinical Significance. Int. J. Mol. Sci. 2023, 24, 2044. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, J.; Quan, W.; Qin, Y.; Zhang, Q.; Pei, X.; Su, H.; Xu, J.; Chen, J. Effect of GBA gene variants on clinical characteristics of dementia with Lewy bodies: A review and meta-analyses. Neurol. Sci. 2022, 43, 3541–3550. [Google Scholar] [CrossRef] [PubMed]
- Shiner, T.; Mirelman, A.; Weisz, M.G.; Bar-Shira, A.; Ash, E.; Cialic, R.; Nevler, N.; Gurevich, T.; Bregman, N.; Orr-Urtreger, A.; et al. High frequency of GBA gene mutations in dementia with Lewy bodies among Ashkenazi Jews. JAMA Neurol. 2016, 73, 1448–1453. [Google Scholar] [CrossRef]
- Constantinides, V.C.; Paraskevas, G.P.; Paraskevas, P.G.; Stefanis, L.; Kapaki, E. Corticobasal degeneration and corticobasal syndrome: A review. Clin. Park. Relat. Disord. 2019, 1, 66–71. [Google Scholar] [CrossRef]
- Arienti, F.; Lazzeri, G.; Vizziello, M.; Monfrini, E.; Bresolin, N.; Saetti, M.C.; Picillo, M.; Franco, G.; Di Fonzo, A. Unravelling genetic factors underlying corticobasal syndrome: A systematic review. Cells 2021, 10, 171. [Google Scholar] [CrossRef]
- Rhinn, H.; Tatton, N.; McCaughey, S.; Kurnellas, M.; Rosenthal, A. Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol. Sci. 2022, 43, 641–652. [Google Scholar] [CrossRef]
- Gass, J.; Cannon, A.; Mackenzie, I.R.; Boeve, B.; Baker, M.; Adamson, J.; Crook, R.; Melquist, S.; Kuntz, K.; Petersen, R.; et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum. Mol. Genet. 2006, 15, 2988–3001. [Google Scholar] [CrossRef]
- van Swieten, J.C.; Heutink, P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol. 2008, 7, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Coppola, C.; Rossi, G.; Barbarulo, A.M.; Di Fede, G.; Foglia, C.; Piccoli, E.; Piscosquito, G.; Saracino, D.; Tagliavini, F.; Cotrufo, R. A progranulin mutation associated with cortico-basal syndrome in an Italian family expressing different phenotypes of fronto-temporal lobar degeneration. Neurol. Sci. 2012, 33, 93–97. [Google Scholar] [CrossRef]
- Benussi, L.; Ghidoni, R.; Pegoiani, E.; Moretti, D.V.; Zanetti, O.; Binetti, G. Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide. Neurobiol. Dis. 2009, 33, 379–385. [Google Scholar] [CrossRef]
- Yu, C.-E.; Bird, T.D.; Bekris, L.M.; Montine, T.J.; Leverenz, J.B.; Steinbart, E.; Galloway, N.M.; Feldman, H.; Woltjer, R.; Miller, C.A.; et al. The Spectrum of Mutations in Progranulin. Arch. Neurol. 2010, 67, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Taghdiri, F.; Sato, C.; Ghani, M.; Moreno, D.; Rogaeva, E.; Tartaglia, M.C. Novel GRN Mutations in Patients with Corticobasal Syndrome. Sci. Rep. 2016, 6, 22913. [Google Scholar] [CrossRef]
- Spina, S.; Murrell, J.R.; Huey, E.D.; Wassermann, E.M.; Pietrini, P.; Grafman, J.; Ghetti, B. Corticobasal Syndrome Associated with the A9D Progranulin Mutation. J. Neuropathol. Exp. Neurol. 2007, 66, 892–900. [Google Scholar] [CrossRef]
- Guerreiro, R.J.; Santana, I.; Bras, J.M.; Revesz, T.; Rebelo, O.; Ribeiro, M.H.; Santiago, B.; Oliveira, C.R.; Singleton, A.; Hardy, J. Novel progranulin mutation: Screening for PGRN mutations in a Portuguese series of FTD/CBS cases. Mov. Disord. 2008, 23, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Passov, V.; Gavrilova, R.H.; Strand, E.; Cerhan, J.H.; Josephs, K.A. Sporadic Corticobasal Syndrome with Progranulin Mutation Presenting as Progressive Apraxic Agraphia. Arch. Neurol. 2011, 68, 376–380. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Jack, C.R.; Baker, M.; Rademakers, R.; Adamson, J.; Boeve, B.F.; Knopman, D.S.; Parisi, J.F.; Petersen, R.C.; Dickson, D.W.; et al. Voxel-Based Morphometry in Frontotemporal Lobar Degeneration with Ubiquitin-Positive Inclusions with and Without Progranulin Mutations. Arch. Neurol. 2007, 64, 371. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Weigand, S.D.; Boeve, B.F.; Senjem, M.L.; Gunter, J.L.; DeJesus-Hernandez, M.; Rutherford, N.J.; Baker, M.; Knopman, D.S.; Wszolek, Z.K.; et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 2012, 135, 794–806. [Google Scholar] [CrossRef]
- Greaves, C.V.; Rohrer, J.D. An update on genetic frontotemporal dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, J.D.; Ridgway, G.R.; Modat, M.; Ourselin, S.; Mead, S.; Fox, N.C.; Rossor, M.N.; Warren, J.D. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage 2010, 53, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Farg, M.A.; Sundaramoorthy, V.; Sultana, J.M.; Yang, S.; Atkinson, R.A.K.; Levina, V.; Halloran, M.A.; Gleeson, P.A.; Blair, I.P.; Soo, K.Y.; et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet. 2014, 23, 3579–3595. [Google Scholar] [CrossRef] [PubMed]
- Barker, H.V.; Niblock, M.; Lee, Y.-B.; Shaw, C.E.; Gallo, J.-M. RNA Misprocessing in C9orf72-Linked Neurodegeneration. Front. Cell. Neurosci. 2017, 11, 195. [Google Scholar] [CrossRef]
- Zhang, K.; Donnelly, C.J.; Haeusler, A.R.; Grima, J.C.; Machamer, J.B.; Steinwald, P.; Daley, E.L.; Miller, S.J.; Cunningham, K.M.; Vidensky, S.; et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015, 525, 56–61. [Google Scholar] [CrossRef]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef]
- Boeve, B.F.; Boylan, K.B.; Graff-Radford, N.R.; DeJesus-Hernandez, M.; Knopman, D.S.; Pedraza, O.; Vemuri, P.; Jones, D.; Lowe, V.; Murray, M.E.; et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 2012, 135, 765–783. [Google Scholar] [CrossRef]
- Wen, Y.; Zhou, Y.; Jiao, B.; Shen, L. Genetics of Progressive Supranuclear Palsy: A Review. J. Park. Dis. 2021, 11, 93–105. [Google Scholar] [CrossRef]
- Höglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Müller, U.; Nilsson, C.; Whitwell, J.L.; et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 2017, 32, 853–864. [Google Scholar] [CrossRef]
- Yabe, I.; Yaguchi, H.; Kato, Y.; Miki, Y.; Takahashi, H.; Tanikawa, S.; Shirai, S.; Takahashi, I.; Kimura, M.; Hama, Y.; et al. Mutations in bassoon in individuals with familial and sporadic progressive supranuclear palsy-like syndrome. Sci. Rep. 2018, 8, 819. [Google Scholar] [CrossRef]
- Kaat, L.D.; Boon, A.J.W.; Azmani, A.; Kamphorst, W.; Breteler, M.M.B.; Anar, B.; Heutink, P.; van Swieten, J.C. Familial aggregation of parkinsonism in progressive supranuclear palsy. Neurology 2009, 73, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Le Ber, I.; Camuzat, A.; Guillot-Noel, L.; Hannequin, D.; Lacomblez, L.; Golfier, V.; Puel, M.; Martinaud, O.; Deramecourt, V.; Rivaud-Pechoux, S.; et al. C9ORF72 Repeat Expansions in the Frontotemporal Dementias Spectrum of Diseases: A Flow-chart for Genetic Testing. J. Alzheimer’s Dis. 2013, 34, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.; Shimonaka, S.; Elahi, M.; Nishioka, K.; Oji, Y.; Matsumoto, S.-E.; Li, Y.; Yoshino, H.; Mogushi, K.; Hatano, T.; et al. Tau aggregation and seeding analyses of two novel MAPT variants found in patients with motor neuron disease and progressive parkinsonism. Neurobiol. Aging 2019, 84, e13–e240. [Google Scholar] [CrossRef]
- Sanchez-Contreras, M.; Heckman, M.G.; Tacik, P.; Diehl, N.; Brown, P.H.; Soto-Ortolaza, A.I.; Christopher, E.A.; Walton, R.L.; Ross, O.A.; Golbe, L.I.; et al. S tudy of LRRK2 variation in tauopathy: Progressive supranuclear palsy and corticobasal degeneration. Mov. Disord. 2017, 32, 115–123. [Google Scholar] [CrossRef]
- Rohrer, J.D.; Guerreiro, R.; Vandrovcova, J.; Uphill, J.; Reiman, D.; Beck, J.; Isaacs, A.M.; Authier, A.; Ferrari, R.; Fox, N.C.; et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009, 73, 1451–1456. [Google Scholar] [CrossRef]
- Rowe, J.B. Parkinsonism in Frontotemporal Dementias; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 149, ISBN 9780128177303. [Google Scholar]
- Ghetti, B.; Oblak, A.L.; Boeve, B.F.; Johnson, K.A.; Dickerson, B.C.; Goedert, M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: A chameleon for neuropathology and neuroimaging. Neuropathol. Appl. Neurobiol. 2015, 41, 24–46. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Pellencin, E.; Romeo, A.; Giaccone, G.; Rossi, G.; Prioni, S.; Caroppo, P. Dissecting the Clinical Heterogeneity and Genotype-Phenotype Correlations of MAPT Mutations: A Systematic Review. Front. Biosci.—Landmark 2024, 29, 12. [Google Scholar] [CrossRef]
- Baizabal-Carvallo, J.F.; Jankovic, J. Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat. Rev. Neurol. 2016, 12, 175–185. [Google Scholar] [CrossRef]
- Etoom, M.; Alwardat, M.; Aburub, A.S.; Lena, F.; Fabbrizo, R.; Modugno, N.; Centonze, D. Therapeutic interventions for Pisa syndrome in idiopathic Parkinson’s disease. A Scoping Systematic Review. Clin. Neurol. Neurosurg. 2020, 198, 106242. [Google Scholar] [CrossRef]
- Bourinaris, T.; Houlden, H. C9orf72 and its Relevance in Parkinsonism and Movement Disorders: A Comprehensive Review of the Literature. Mov. Disord. Clin. Pract. 2018, 5, 575–585. [Google Scholar] [CrossRef]
- Mackenzie, I.R.; Arzberger, T.; Kremmer, E.; Troost, D.; Lorenzl, S.; Mori, K.; Weng, S.-M.; Haass, C.; Kretzschmar, H.A.; Edbauer, D.; et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: Clinico-pathological correlations. Acta Neuropathol. 2013, 126, 859–879. [Google Scholar] [CrossRef]
- Goldman, J.S.; Quinzii, C.; Dunning-Broadbent, J.; Waters, C.; Mitsumoto, H.; Brannagan, T.H.; Cosentino, S.; Huey, E.D.; Nagy, P.; Kuo, S.H. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotiderepeat expansions in C9orf72. JAMA Neurol. 2014, 71, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Spina, S.; Van Laar, A.D.; Murrell, J.R.; Hamilton, R.L.; Kofler, J.K.; Epperson, F.; Farlow, M.R.; Lopez, O.L.; Quinlan, J.; DeKosky, S.T.; et al. Phenotypic variability in three families with valosin-containing protein mutation. Eur. J. Neurol. 2013, 20, 251–258. [Google Scholar] [CrossRef]
- Jay, T.R.; Von Saucken, V.E.; Landreth, G.E. TREM2 in Neurodegenerative Diseases. Mol. Neurodegener. 2017, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, J.A.; Sears, R.L.; Gao, F.; Klein, E.D.; Karydas, A.; Geschwind, M.D.; Rosen, H.J.; Boxer, A.L.; Guo, W.; et al. An Epigenetic Signature in Peripheral Blood Associated with the Haplotype on 17q21.31, a Risk Factor for Neurodegenerative Tauopathy. PLoS Genet. 2014, 10, e1004211. [Google Scholar] [CrossRef] [PubMed]
- Sevigny, J.; Uspenskaya, O.; Heckman, L.D.; Wong, L.C.; Hatch, D.A.; Tewari, A.; Vandenberghe, R.; Irwin, D.J.; Saracino, D.; Le Ber, I.; et al. Progranulin AAV gene therapy for frontotemporal dementia: Translational studies and phase 1/2 trial interim results. Nat. Med. 2024, 30, 1406–1415. [Google Scholar] [CrossRef]
- van den Berg, L.H.; Rothstein, J.D.; Shaw, P.J.; Babu, S.; Benatar, M.; Bucelli, R.C.; Genge, A.; Glass, J.D.; Hardiman, O.; Libri, V.; et al. Safety, tolerability, and pharmacokinetics of antisense oligonucleotide BIIB078 in adults with C9orf72-associated amyotrophic lateral sclerosis: A phase 1, randomised, double blinded, placebo-controlled, multiple ascending dose study. Lancet Neurol. 2024, 23, 901–912. [Google Scholar] [CrossRef]
PD-Related Pathogenic Mutation | Impact on Cognitive Functions |
---|---|
SNCA—Point mutations | Heterogeneous phenotype depends on the mutation. Executive and visuospatial |
functions are more affected than | |
episodic verbal memory. | |
SNCA—Duplication | Wide spectrum of manifestations from normal cognitive function to dementia in PD. |
SNCA—Triplication | Early-onset dementia with cognitive deficits compatible with dementia in PD. |
LRRK2 | Relative preservation of cognitive functions compared to iPD. |
VPS53 | Signs of MCI, while some patients have normal functions. |
PRKN (Parkin) | Cognitive functions are often normal even several years after the onset of PD. |
PINK1 | A subgroup of carriers presents cognitive impairment. |
DJ-1 | Some patients are without severe cognitive impairment. Other cases exhibit dementia. |
GBA | In most patients, a greater rate of cognitive decline and faster progression is observed in patients with GBA mutations. Particularly pronounced deficits in visuospatial cognitive functions. Also, a risk factor for DLB. |
Atypical Parkinsonism-Related Pathogenic Mutation | Motor–Cognitive Phenotype |
---|---|
MAPT | Apart from the typical FTD phenotype, one in five patients presented with a phenotype on the CBS-PSP spectrum. Parkinsonism in MAPT-associated FTD may precede the behavioral and cognitive symptoms and is often symmetric. Richardson’s syndrome related to MAPT mutations is usually incomplete or atypical (ranging from 0.6% to 14.3% of PSP cases), while CBS occurs less frequently. |
GRN | High phenotypic variability, including FTD, ALS, DLB-like with hallucinations, or PD-like parkinsonism. CBS has been reported as a rather common presentation in patients carrying GRN mutations, often with marked language deficits, asymmetric visuospatial impairment, hemi-neglect, and limb apraxia. Richardson syndrome is rarely seen in GRN cases. |
C9ORF72 | The most common cause of FTD is associated with ALS. Parkinsonian features occur in about one third of cases. C9orf72 has also been linked to phenotypes of typical PD, DLB, Richardson’s syndrome, and CBS. Psychiatric manifestations are also common. |
LRRK2 | Rarely linked to PSP. |
CHMP2B | FTD is accompanied by parkinsonism later during the disease, while Richardson’s syndrome and CBS represent rarer manifestations. |
FUS | Implicated in FTD, also infrequently accompanied by parkinsonism (often with tremor). |
VCP | Some mutations are linked to FTD with parkinsonian features and motor neuron disease. |
TARDBP | Except for FTD-ALS, certain mutations are associated with FTD and related parkinsonism. |
TREM2 | Linked to FTD with parkinsonism. |
TBK1 | Apart from FTD-ALS, also associated with parkinsonian features as well as CBS-PNFA. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koros, C.; Stanitsa, E.; Angelopoulou, E.; Papageorgiou, S.G.; Stefanis, L. Cognitive Decline in Parkinsonism: From Clinical Phenotypes to the Genetic Background. Biomedicines 2025, 13, 1624. https://doi.org/10.3390/biomedicines13071624
Koros C, Stanitsa E, Angelopoulou E, Papageorgiou SG, Stefanis L. Cognitive Decline in Parkinsonism: From Clinical Phenotypes to the Genetic Background. Biomedicines. 2025; 13(7):1624. https://doi.org/10.3390/biomedicines13071624
Chicago/Turabian StyleKoros, Christos, Evangelia Stanitsa, Efthalia Angelopoulou, Sokratis G. Papageorgiou, and Leonidas Stefanis. 2025. "Cognitive Decline in Parkinsonism: From Clinical Phenotypes to the Genetic Background" Biomedicines 13, no. 7: 1624. https://doi.org/10.3390/biomedicines13071624
APA StyleKoros, C., Stanitsa, E., Angelopoulou, E., Papageorgiou, S. G., & Stefanis, L. (2025). Cognitive Decline in Parkinsonism: From Clinical Phenotypes to the Genetic Background. Biomedicines, 13(7), 1624. https://doi.org/10.3390/biomedicines13071624