Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Leptospirillum ferrooxidans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6201 KiB  
Article
Bioleaching of Mine Tailings by Mesophilic: Acidithiobacillus spp., Leptospirillum ferrooxidans, and Thermophilic: Sulfobacillus thermosulfidooxidans Cultures with the Addition of Ag+ Additive
by Dana Rouchalová, Kamila Rouchalová and Vladimír Čablík
Minerals 2024, 14(3), 255; https://doi.org/10.3390/min14030255 - 28 Feb 2024
Cited by 4 | Viewed by 2181
Abstract
This research focused on applying and comparing the performance of microorganisms with different temperature preferences, assessing the overall percentage recovery of elements (copper, zinc, arsenic, and iron) from mine tailings in the Staré Ransko region (Czech Republic). The study examined the solubilisation process [...] Read more.
This research focused on applying and comparing the performance of microorganisms with different temperature preferences, assessing the overall percentage recovery of elements (copper, zinc, arsenic, and iron) from mine tailings in the Staré Ransko region (Czech Republic). The study examined the solubilisation process using a mesophilic mixed bacterial culture, including Acidithiobacillus ferrooxidans (AF), Acidithiobacillus thiooxidans (AT), Leptospirillum ferrooxidans (LF), and the thermophilic species Sulfobacillus thermosulfidooxidans (ST). Under biotic conditions, constant process parameters were maintained, including a particle size of 71–100 µm, a pH value of 1.8, agitation at 150 rpm, and a pulp density of 10% (w/v). The only exception was the temperature, which varied for optimal multiplication of cultures (30 °C/50 °C). Additionally, the research examined the impact of AgNO3 additive at a concentration of Ag+ ions of 5 mg·L−1. The research focused on the solubilisation of Cu, Zn, Fe, and As and the results demonstrated that the application of microorganisms ST, combined with the action of Ag+ ions, enhanced the kinetics of the extraction process, leading to the highest final recovery of all elements (Cu 91.93%, Zn 85.67%, As 69.16%, and Fe 71.72%) under the specified conditions. The study observed that the most significant increase in solubilisation can be attributed to the additive cation in the case of copper (AF, AT, LF/Ag+ by 40.33%; ST/Ag+ by 44.39%) and arsenic (AF, AT, LF/Ag+ by 23.79%; ST/Ag+ by 26.08%). Notably, the intensification of leaching using thermophilic bacteria at a constant suspension temperature of 50 °C was primarily determined for Zn (ST by 18.36%, ST/Ag+ by 14.24%). After 24 days of extraction, the emergence of secondary minerals, namely CaSO4·2H2O and KFe3(SO4)2(OH)6, was identified. The study highlighted a significant increase in the extraction mechanism kinetics due to the influence of microorganisms, contrasting with the low solubilities observed under abiotic conditions (Cu 9.00%, Zn 14.17%, As 4.28%, Fe 6.23%). Full article
Show Figures

Figure 1

18 pages, 10621 KiB  
Article
A Bioleaching Process for Sustainable Recycling of Complex Structures with Multi-Metal Layers
by Eva Pakostova and Anuradha Herath
Sustainability 2023, 15(19), 14068; https://doi.org/10.3390/su151914068 - 22 Sep 2023
Cited by 6 | Viewed by 3022
Abstract
Industrial waste is accumulating, while primary metal resources are depleting. Bioleaching has been shown to be a cost-effective and environmentally friendly approach to metal recovery from waste, but improved designs are needed for large-scale recycling. Metal components that are manufactured by electrodeposition over [...] Read more.
Industrial waste is accumulating, while primary metal resources are depleting. Bioleaching has been shown to be a cost-effective and environmentally friendly approach to metal recovery from waste, but improved designs are needed for large-scale recycling. Metal components that are manufactured by electrodeposition over a mandrel can be difficult to recycle using conventional techniques due to their complex geometry and inner Ag coating. A sustainable biotechnology for separating Cu and Ag from waste electrodeposited components is presented. Two-step bioleaching experiments were performed, during which Cu was solubilized by Fe3+ regenerated by Acidithiobacillus (At.) ferrooxidans CF3 and a consortium of ten acidophilic Fe2+-oxidizers. High Cu recovery rates were achieved in agitated flasks (22 °C, pH 1.9), with At. ferrooxidans solubilizing 94.7% Cu in 78 days and the consortium 99.2% Cu in 59 days. Copper bio-solubilization was significantly accelerated in a laboratory-scale bioreactor (32 °C, 1 L air min−1) using the bacterial consortium adapted to elevated Cu concentrations, reaching >99.6% Cu extraction in only 12 days. The bioreactor was dominated by Leptospirillum and Acidithiobacillus, with their proportions changing (from 83.2 to 59% of total reads and from 3.6 to 29.4%, respectively) during the leaching process. Dissolved Cu was recovered from the bioleachates (containing 14 to 22 g Cu L−1) using electrowinning; >99% of the Cu was deposited (with Cu purity of 98.5 to 99.9%) in 3.33 h (at current efficiency between 80 and 92%). The findings emphasize the importance of a bioleaching system design to achieve economical separation of base and precious metals from industrial wastes. The presented technology minimizes waste generation and energy consumption. On a larger scale, it has the potential to contribute to the development of industrial recycling processes that will protect natural resources and contribute to the Net Zero target. Full article
(This article belongs to the Special Issue Interaction of Microorganisms with Metals and Minerals)
Show Figures

Figure 1

20 pages, 5192 KiB  
Article
A Novel Two-Stage Method of Co-Leaching of Manganese–Silver Ore and Silver-Bearing Pyrite Based on Successive Chemical and Bio Treatments: Optimization and Mechanism Study
by Jianzhi Sun, He Shang, Qidong Zhang, Xue Liu, Liulu Cai, Jiankang Wen and Han Yang
Metals 2023, 13(2), 438; https://doi.org/10.3390/met13020438 - 20 Feb 2023
Cited by 4 | Viewed by 2545
Abstract
In this work, bio-hydrometallurgy technology was employed and a novel two-stage method based on successive chemical and bio treatments was proposed to collaboratively utilize manganese–silver ore and silver-bearing pyrite. In the optimization research of the chemical leaching stage, the sensitive factors for the [...] Read more.
In this work, bio-hydrometallurgy technology was employed and a novel two-stage method based on successive chemical and bio treatments was proposed to collaboratively utilize manganese–silver ore and silver-bearing pyrite. In the optimization research of the chemical leaching stage, the sensitive factors for the Mn leaching efficiency were screened by Plackett–Burman design, and central compound design was performed to settle the optimized parameters. A mixed strain of bacteria containing Sulfobacillus thermosulfidooxidans, At. caldus and Leptospirillum ferrooxidans was applied in the bioleaching stage. A conventional cyanidation process carried out with the Mn leaching residuals suggested an efficient recovery of Ag. Applying a two-stage method with the optimum conditions, the leaching efficiency of 95.3% (Mn) and 96.3% (Ag) were obtained with 284.94 kg/t silver-bearing pyrite addition and 277.44 kg/t sulfuric acid consumption with a temperature at 77.73 °C and stirring speed at 287.76 rpm. Mineral behaviors were investigated with XRD and SEM/EDS analysis, and it was revealed that the oxidation of sulfur is the crux in reducing the usage of reagents, and the presence of leaching bacteria enhanced the oxidation efficiently. Through optimization and mechanism study, this paper provides an opportunity to co-leach the manganese–silver ore and silver-bearing pyrite process in a more economical and environmental way. Full article
(This article belongs to the Special Issue New Technologies in Leaching and Recovery of Valuable Metals)
Show Figures

Figure 1

15 pages, 2131 KiB  
Article
Bioleaching of Sulfide Minerals by Leptospirillum ferriphilum CC from Polymetallic Mine (Armenia)
by Arevik Vardanyan, Anna Khachatryan, Laura Castro, Sabine Willscher, Stoyan Gaydardzhiev, Ruiyong Zhang and Narine Vardanyan
Minerals 2023, 13(2), 243; https://doi.org/10.3390/min13020243 - 8 Feb 2023
Cited by 8 | Viewed by 3669
Abstract
A strain of Leptospirillum sp. CC previously isolated from Akhtala polymetallic ore (Armenia) was studied. The main morphological and physiological characteristics of CC were revealed. The optimal growth temperature was 40 °C and optimal pH 1.5. A phylogenetic analysis based on 16S rRNA [...] Read more.
A strain of Leptospirillum sp. CC previously isolated from Akhtala polymetallic ore (Armenia) was studied. The main morphological and physiological characteristics of CC were revealed. The optimal growth temperature was 40 °C and optimal pH 1.5. A phylogenetic analysis based on 16S rRNA gene sequences (GenBank ID OM272948) showed that isolate CC was clustered with L. ferriphilum and possessed 99.8% sequence similarity with the strain L. ferriphilum OL12-2 (KF356024). The molar fraction of DNA (G + C) of the isolate was 58.5%. Bioleaching experiment indicates that L. ferriphilum CC can oxidize Fe(II) efficiently, and after 17 days, 44.1% of copper and 91.4% of iron are extracted from chalcopyrite and pyrite, respectively. The efficiency of L. ferriphilum CC in pyrite oxidation increases 1.7 times when co-cultivated with At. ferrooxidans ZnC. However, the highest activity in pyrite oxidation shows the association of L.ferriphilum CC with heterotrophic Acidocella sp. RBA bacteria. It was shown that bioleaching of copper and iron from chalcopyrite by association of L. ferriphilum CC, At. ferrooxidans ZnC, and At. albertensis SO-2 in comparison with pure culture L. ferriphilum CC for 21 days increased about 1.2 and 1.4–1.6 times, respectively. Full article
Show Figures

Figure 1

1 pages, 162 KiB  
Abstract
Microbial-Induced Corrosion of 3D-Printed Stainless Steels: A Surface Science Investigation
by Brianna L. Young, Jamie S. Quinton and Sarah L. Harmer
Mater. Proc. 2021, 6(1), 9; https://doi.org/10.3390/CMDWC2021-09973 - 8 May 2021
Viewed by 932
Abstract
Stainless steel is a material manufactured for its high corrosive resistance and is the first choice of material in a range of applications. Microbial-induced corrosion can cause significant damage to metals and is responsible for approximately 20% of corrosive damage. The corrosive resistance [...] Read more.
Stainless steel is a material manufactured for its high corrosive resistance and is the first choice of material in a range of applications. Microbial-induced corrosion can cause significant damage to metals and is responsible for approximately 20% of corrosive damage. The corrosive resistance of stainless steel is reduced during manufacturing processes, including welding or joining methods, as the connection points prevent the metal from reforming its passivation layer. Additive manufacturing processes allow for intricate designs to be produced without the need for welding or bolts. However, it is unknown how the layering method of additive manufacturing (AM) will affect stainless steel’s passivation layer and, in turn, its corrosive resistance. This research compares the corrosive resistance of 316L stainless steel produced using laser metal deposition and traditionally manufactured AISI 316 stainless steel to determine how the layering manufacturing method affects the corrosive resistance of the material. Samples are incubated over a 21-day period with Acidithiobacillus ferrooxidans (A.f) and Leptospirillum ferooxidans (L.f) in a modified HH medium with an approximate pH of 1.8 and kept at a constant temperature of 30 °C. Scanning electron microscopy and Auger electron spectroscopy surface analysis techniques are used to identify any corrosive processes on the surface of the samples. This research is an introductory analysis of the corrosive resistance of AM 316 stainless steel using the laser metal deposition technique. The results show how stainless steel produced using laser metal deposition will react in acidic environments and are used to determine if it could be used in conjunction with other materials in underground pipes for acidic soils. Full article
(This article belongs to the Proceedings of The 1st Corrosion and Materials Degradation Web Conference)
24 pages, 4648 KiB  
Article
From Laboratory towards Industrial Operation: Biomarkers for Acidophilic Metabolic Activity in Bioleaching Systems
by Sabrina Marín, Mayra Cortés, Mauricio Acosta, Karla Delgado, Camila Escuti, Diego Ayma and Cecilia Demergasso
Genes 2021, 12(4), 474; https://doi.org/10.3390/genes12040474 - 25 Mar 2021
Cited by 8 | Viewed by 2754
Abstract
In the actual mining scenario, copper bioleaching, mainly raw mined material known as run-of-mine (ROM) copper bioleaching, is the best alternative for the treatment of marginal resources that are not currently considered part of the profitable reserves because of the cost associated with [...] Read more.
In the actual mining scenario, copper bioleaching, mainly raw mined material known as run-of-mine (ROM) copper bioleaching, is the best alternative for the treatment of marginal resources that are not currently considered part of the profitable reserves because of the cost associated with leading technologies in copper extraction. It is foreseen that bioleaching will play a complementary role in either concentration—as it does in Minera Escondida Ltd. (MEL)—or chloride main leaching plants. In that way, it will be possible to maximize mines with installed solvent-extraction and electrowinning capacities that have not been operative since the depletion of their oxide ores. One of the main obstacles for widening bioleaching technology applications is the lack of knowledge about the key events and the attributes of the technology’s critical events at the industrial level and mainly in ROM copper bioleaching industrial operations. It is relevant to assess the bed environment where the bacteria–mineral interaction occurs to learn about the limiting factors determining the leaching rate. Thus, due to inability to accurately determine in-situ key variables, their indirect assessment was evaluated by quantifying microbial metabolic-associated responses. Several candidate marker genes were selected to represent the predominant components of the microbial community inhabiting the industrial heap and the metabolisms involved in microbial responses to changes in the heap environment that affect the process performance. The microbial community’s predominant components were Acidithiobacillus ferrooxidans, At. thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus sp. Oxygen reduction, CO2 and N2 fixation/uptake, iron and sulfur oxidation, and response to osmotic stress were the metabolisms selected regarding research results previously reported in the system. After that, qPCR primers for each candidate gene were designed and validated. The expression profile of the selected genes vs. environmental key variables in pure cultures, column-leaching tests, and the industrial bioleaching heap was defined. We presented the results obtained from the industrial validation of the marker genes selected for assessing CO2 and N2 availability, osmotic stress response, as well as ferrous iron and sulfur oxidation activity in the bioleaching heap process of MEL. We demonstrated that molecular markers are useful for assessing limiting factors like nutrients and air supply, and the impact of the quality of recycled solutions. We also learned about the attributes of variables like CO2, ammonium, and sulfate levels that affect the industrial ROM-scale operation. Full article
(This article belongs to the Special Issue Genetics and Genomics of Acidophiles)
Show Figures

Graphical abstract

14 pages, 3761 KiB  
Article
A Column Leaching Model of Low-Grade Chalcopyrite Ore: Mineral Preferences and Chemical Reactivity
by Heike Bostelmann and Gordon Southam
Minerals 2020, 10(12), 1132; https://doi.org/10.3390/min10121132 - 17 Dec 2020
Cited by 1 | Viewed by 2583
Abstract
Bioleaching models to examine copper extraction from low-grade chalcopyrite ores were set up to identify the influence of pyrite on leaching efficacy. A combination of scanning electron microscopy and geochemical analysis showed that extraction was marginally enhanced by the addition of pyrite when [...] Read more.
Bioleaching models to examine copper extraction from low-grade chalcopyrite ores were set up to identify the influence of pyrite on leaching efficacy. A combination of scanning electron microscopy and geochemical analysis showed that extraction was marginally enhanced by the addition of pyrite when using a combination of Leptospirillum ferrooxidans, an iron oxidiser, Acidithiobacillus thiooxidans, a sulphur oxidising species and Acidithiobacillus ferrooxidans, an iron and sulphur oxidiser. Extensive biofilms formed on the pyrite surfaces (>106 cells/mm2) but were severely limited on chalcopyrite, possessing approximately the same number of cells as quartz grains, an internal non-nutrient control “substrate” (with ca. 2 × 103 cells/mm2). The presence of dissolved copper did not inhibit the growth of this consortium. Indirect “bioleaching” of chalcopyrite appears to be limited by proton activity at the chalcopyrite surface. Full article
(This article belongs to the Special Issue Bio-recovery of Copper, Lead and Zinc)
Show Figures

Graphical abstract

10 pages, 2773 KiB  
Article
Effect of Graphite on Copper Bioleaching from Waste Printed Circuit Boards
by Linlin Tong, Qianfei Zhao, Ali Reza Kamali, Wolfgang Sand and Hongying Yang
Minerals 2020, 10(1), 79; https://doi.org/10.3390/min10010079 - 19 Jan 2020
Cited by 14 | Viewed by 3706
Abstract
The efficient extraction of copper as a valuable metal from waste printed circuit boards (WPCBs) is currently attracting growing interest. Here, we systematically investigated the impact of bacteria on the efficiency of copper leaching from WPCBs, and evaluated the effect of graphite on [...] Read more.
The efficient extraction of copper as a valuable metal from waste printed circuit boards (WPCBs) is currently attracting growing interest. Here, we systematically investigated the impact of bacteria on the efficiency of copper leaching from WPCBs, and evaluated the effect of graphite on bioleaching performance. The HQ0211 bacteria culture containing Acidithiobacillus ferrooxidans, Ferroplasma acidiphilum, and Leptospirillum ferriphilum enhanced Cu-leaching performance in either ferric sulfate and sulfuric acid leaching, so a final leaching of up to 76.2% was recorded after 5 days. With the addition of graphite, the percentage of copper leaching could be increased to 80.5%. Single-factor experiments confirmed the compatibility of graphite with the HQ0211 culture, and identified the optimal pulp density of WPCBs, the initial pH, and the graphite content to be 2% (w/v), 1.6, and 2.5 g/L, respectively. Full article
(This article belongs to the Special Issue The Processing of Alternative and Urban Ores)
Show Figures

Figure 1

17 pages, 2967 KiB  
Article
Effects of Conventional Flotation Frothers on the Population of Mesophilic Microorganisms in Different Cultures
by Mohammad Jafari, Mehdi Golzadeh, Sied Ziaedin Shafaei, Hadi Abdollahi, Mahdi Gharabaghi and Saeed Chehreh Chelgani
Processes 2019, 7(10), 653; https://doi.org/10.3390/pr7100653 - 25 Sep 2019
Cited by 11 | Viewed by 3736
Abstract
Bioleaching is an environment-friendly and low-investment process for the extraction of metals from flotation concentrate. Surfactants such as collectors and frothers are widely used in the flotation process. These chemical reagents may have inhibitory effects on the activity of microorganisms through a bioleaching [...] Read more.
Bioleaching is an environment-friendly and low-investment process for the extraction of metals from flotation concentrate. Surfactants such as collectors and frothers are widely used in the flotation process. These chemical reagents may have inhibitory effects on the activity of microorganisms through a bioleaching process; however, there is no report indicating influences of reagents on the activity of microorganisms in the mixed culture which is mostly used in the industry. In this investigation, influences of typical flotation frothers (methyl isobutyl carbinol and pine oil) in different concentrations (0.01, 0.10, and 1.00 g/L) were examined on activates of bacteria in the mesophilic mixed culture (Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Acidithiobacillus thiooxidans). For comparison purposes, experiments were repeated by pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans in the same conditions. Results indicated that increasing the dosage of frothers has a negative correlation with bacteria activities while the mixed culture showed a lower sensitivity to the toxicity of these frothers in comparison with examined pure cultures. Outcomes showed the toxicity of Pine oil is lower than methyl isobutyl carbinol (MIBC). These results can be used for designing flotation separation procedures and to produce cleaner products for bio extraction of metals. Full article
(This article belongs to the Special Issue Bioprocess Monitoring and Control)
Show Figures

Graphical abstract

13 pages, 7655 KiB  
Article
Adhesion to Mineral Surfaces by Cells of Leptospirillum, Acidithiobacillus and Sulfobacillus from Armenian Sulfide Ores
by Arevik Vardanyan, Narine Vardanyan, Anna Khachatryan, Ruiyong Zhang and Wolfgang Sand
Minerals 2019, 9(2), 69; https://doi.org/10.3390/min9020069 - 24 Jan 2019
Cited by 21 | Viewed by 5223
Abstract
Bioleaching of metal sulfides is an interfacial process where adhesion and subsequent biofilm formation are considered to be crucial for this process. In this study, adhesion and biofilm formation by several acidophiles (Acidithiobacillus, Leptospirillum and Sulfobacillus) isolated from different biotopes [...] Read more.
Bioleaching of metal sulfides is an interfacial process where adhesion and subsequent biofilm formation are considered to be crucial for this process. In this study, adhesion and biofilm formation by several acidophiles (Acidithiobacillus, Leptospirillum and Sulfobacillus) isolated from different biotopes with sulfide ores in Armenia were studied. Results showed that: (1) these bacteria adhere to pyrite surfaces to various extents. A correlation between pyrite biooxidation and adhesion of S. thermosulfidooxidans 6, L. ferriphilum CC, L. ferrooxidans ZC on pyrite surfaces is shown. It is supposed that bioleaching of pyrite by S. thermosulfidooxidans 6, L. ferriphilum CC, L. ferrooxidans ZC occurs by means of indirect leaching: by ferric iron of bacterial origin; (2) cells of At. ferrooxidans 61, L. ferrooxidans ZC and St. thermosulfidooxidans 6 form a monolayer biofilm on pyrite surfaces. The coverage of pyrite surfaces varies among these species. The order of the biofilm coverage is: L. ferrooxidans ZC ≥ At. ferrooxidans 61 > St. thermosulfidooxidans 6; (3) the extracellular polymeric substances (EPS) analysis indicates that the tested strains produce EPS, if grown either on soluble ferrous iron or solid pyrite. EPS are mainly composed of proteins and carbohydrates. Cells excrete higher amounts of capsular EPS than of colloidal EPS. In addition, cells grown on pyrite produce more EPS than ones grown on ferrous iron. Full article
Show Figures

Figure 1

13 pages, 7280 KiB  
Article
Comparative Analysis of Attachment to Chalcopyrite of Three Mesophilic Iron and/or Sulfur-Oxidizing Acidophiles
by Qian Li, Baojun Yang, Jianyu Zhu, Hao Jiang, Jiaokun Li, Ruiyong Zhang and Wolfgang Sand
Minerals 2018, 8(9), 406; https://doi.org/10.3390/min8090406 - 14 Sep 2018
Cited by 21 | Viewed by 4283
Abstract
Adhesion plays an important role in bacterial dissolution of metal sulfides, since the attached cells initiate the dissolution. In addition, biofilms, forming after bacterial attachment, enhance the dissolution. In this study, interactions between initial adhesion force, attachment behavior and copper recovery were comparatively [...] Read more.
Adhesion plays an important role in bacterial dissolution of metal sulfides, since the attached cells initiate the dissolution. In addition, biofilms, forming after bacterial attachment, enhance the dissolution. In this study, interactions between initial adhesion force, attachment behavior and copper recovery were comparatively analyzed for Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans during bioleaching of chalcopyrite. The adhesion forces between bacteria and minerals were measured by atomic force microscopy (AFM). L. ferrooxidans had the largest adhesion force and attached best to chalcopyrite, while A. ferrooxidans exhibited the highest bioleaching of chalcopyrite. The results suggest that the biofilm formation, rather than the initial adhesion, is positively correlated with bioleaching efficiency. Full article
Show Figures

Figure 1

16 pages, 4217 KiB  
Article
Selective Attachment of Leptospirillum ferrooxidans for Separation of Chalcopyrite and Pyrite through Bio-Flotation
by Belinda Bleeze, Jing Zhao and Sarah L. Harmer
Minerals 2018, 8(3), 86; https://doi.org/10.3390/min8030086 - 27 Feb 2018
Cited by 17 | Viewed by 5499
Abstract
The replacement of depressants used in sulfide mineral beneficiation, with bacteria and their metabolites, promises to reduce the environmental impact left by the mining industry. In this study, the attachment of Leptospirillum ferrooxidans, L.f, to chalcopyrite and pyrite was investigated through [...] Read more.
The replacement of depressants used in sulfide mineral beneficiation, with bacteria and their metabolites, promises to reduce the environmental impact left by the mining industry. In this study, the attachment of Leptospirillum ferrooxidans, L.f, to chalcopyrite and pyrite was investigated through Scanning Electron Microscopy (SEM). The impact of selective attachment, bacterial growth conditions, and extracellular polymeric substances (EPS) was investigated through bio-flotation. L.f exhibits selective attachment to pyrite between 0 h and 168 h exposure via an indirect contact mechanism. Separation of chalcopyrite from pyrite was achieved through exposing the minerals for 72 h with an L.f culture grown on either HH media, chalcopyrite, or pyrite. The results produced 80.4, 43.4, and 47.4% recovery of chalcopyrite, respectively. However, EPS supernatant extracted from L.f grown on chalcopyrite, conditioned for 48 h, provided the best separation efficiency by the selective depression of pyrite resulting in 95.8% Cu recovery. Polysaccharide-rich EPS selectively attaches to pyrite within 48 h, depressing its floatability and ensuring successful separation with a PIPX collector. Full article
(This article belongs to the Special Issue Flotation Chemistry)
Show Figures

Graphical abstract

13 pages, 2117 KiB  
Article
A Comparative Study on the Effect of Flotation Reagents on Growth and Iron Oxidation Activities of Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans
by Mohammad Jafari, Said Zia Aldin Shafaei, Hadi Abdollahi, Mahdi Gharabaghi and Saeed Chehreh Chelgani
Minerals 2017, 7(1), 2; https://doi.org/10.3390/min7010002 - 30 Dec 2016
Cited by 19 | Viewed by 5371
Abstract
Recently, extraction of metals from different resources using a simple, efficient, and low-cost technique-known as bioleaching-has been widely considered, and has turned out to be an important global technology. Leptospirillum ferrooxidans and Acidithiobacillus (Thiobacillus) ferrooxidans are ubiquitous bacteria in the biomining industry. To [...] Read more.
Recently, extraction of metals from different resources using a simple, efficient, and low-cost technique-known as bioleaching-has been widely considered, and has turned out to be an important global technology. Leptospirillum ferrooxidans and Acidithiobacillus (Thiobacillus) ferrooxidans are ubiquitous bacteria in the biomining industry. To date, the effects of commercial flotation reagents on the biooxidation activities of these bacteria have not been thoroughly studied. This investigation, by using various systematic measurement methods, studied the effects of various collectors and frothers (collectors: potassium amylxanthate, potassium isobutyl-xanthate, sodium ethylxanthate, potassium isopropylxanthate, and dithiophosphate; and frothers: pine oil and methyl isobutyl carbinol) on L. ferrooxidans and A. ferrooxidans activities. In general, results indicate that in the presence of these collectors and frothers, L. ferrooxidans is less sensitive than T. ferrooxidans. In addition, the inhibition effect of collectors on both bacteria is recommended in the following order: for the collectors, potassium isobutyl-xanthate > dithiophosphate > sodium ethylxanthate > potassium isobutyl-xanthate > potassium amylxanthate; and for the frothers, methyl isobutyl carbinol > pine oil. These results can be used for the optimization of biometallurgical processes or in the early stage of a process design for selection of flotation reagents. Full article
Show Figures

Figure 1

22 pages, 1069 KiB  
Article
Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine
by Catherine M. Kay, Owen F. Rowe, Laura Rocchetti, Kris Coupland, Kevin B. Hallberg and D. Barrie Johnson
Life 2013, 3(1), 189-210; https://doi.org/10.3390/life3010189 - 7 Feb 2013
Cited by 69 | Viewed by 9375
Abstract
A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by [...] Read more.
A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis). Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2) and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans). The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes. Full article
(This article belongs to the Special Issue Extremophiles and Extreme Environments)
Show Figures

Figure 1

Back to TopTop