Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = Lens culinaris Medik

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6040 KB  
Article
Exploring Phenological and Agronomic Parameters of Greek Lentil Landraces for Developing Climate-Resilient Cultivars Adapted to Mediterranean Conditions
by Iakovina Bakoulopoulou, Ioannis Roussis, Ioanna Kakabouki, Evangelia Tigka, Panteleimon Stavropoulos, Antonios Mavroeidis, Stella Karydogianni, Dimitrios Bilalis and Panayiota Papastylianou
Crops 2025, 5(6), 91; https://doi.org/10.3390/crops5060091 - 17 Dec 2025
Viewed by 369
Abstract
Lentil (Lens culinaris Medik. subsp. culinaris) is a Mediterranean legume crop of high value due to nutritional quality and adaptability; however, its cultivation is increasingly threatened due to climate uncertainty and reduction in genetic diversity in modern cultivars. The present research [...] Read more.
Lentil (Lens culinaris Medik. subsp. culinaris) is a Mediterranean legume crop of high value due to nutritional quality and adaptability; however, its cultivation is increasingly threatened due to climate uncertainty and reduction in genetic diversity in modern cultivars. The present research study evaluated 31 Greek lentil accessions (twenty-two landraces and nine commercial cultivars of both small and large seed types) in a semi-arid environment of Central Greece, over two cropping seasons, focusing on phenological, morphological, yield, and quality traits. The great diversity observed at the morpho-phenological and qualitative levels implies the high genotypic diversity of these genetic resources. Small-seeded landraces performed better in seed and biological yield, harvest index, and protein content, having greater phenological stability and tolerance to the Mediterranean environments. In particular, the highest seed yield was observed in LAX small-seeded landrace (1930 kg ha−1), followed by TSO (1559 kg ha−1), DIG (1449 kg ha−1), and EGL (1437 kg ha−1) small-seeded landraces. As for the regression analysis, seed yield was positively correlated with days to flowering (TF: r = 0.076, p < 0.01), plant height (PH: r = 0.143, p < 0.05), number of pods per plant (NPP: r = 0.941, p < 0.001), number of seeds per pod (NPP: r = 0.432, p < 0.001), number of branches (NPB: r = 0.234, p < 0.01), biological yield (BY: r = 0.683, p < 0.001), and harvest index (HI: r = 0.650, p < 0.001). Principal component analysis (PCA) distinguished small-seeded landraces associated with adaptive and yield traits from large-seeded cultivars associated with seed size. Greek lentil landraces, especially the small-seeded genotypes (e.g., LAX and DIG), have great potential for use in the development of climate-tolerant and high-yielding lentil varieties adapted for sustainable Mediterranean production. Breeding programs can target the crossing of landraces with large-seeded cultivars (e.g., IKAm and THEm) to develop varieties that combine stress tolerance, adaptation, and high productivity with adaptation to different seed sizes. Subsequent studies on drought tolerance and heat resistance are still important for continued improvement in lentil productivity in a changing climate. Full article
Show Figures

Figure 1

18 pages, 3659 KB  
Article
Longer Internode with Same Cell Length: LcSOC1-b2 Gene Involved in Height to First Pod but Not Flowering in Lentil (Lens culinaris Medik.)
by Marzhan Kuzbakova, Gulmira Khassanova, Satyvaldy Jatayev, Nurgul Daniyeva, Crystal Sweetman, Colin L. D. Jenkins, Kathleen L. Soole and Yuri Shavrukov
Plants 2025, 14(8), 1157; https://doi.org/10.3390/plants14081157 - 8 Apr 2025
Cited by 1 | Viewed by 1013
Abstract
Stem internode length determines height to first pod (HFP), an important trait for mechanical harvesting in legume crops. In the present study, this trait in lentil was (Lens culinaris Medik.) examined using scanning electron microscopy (SEM) of epidermal cells in stem internodes [...] Read more.
Stem internode length determines height to first pod (HFP), an important trait for mechanical harvesting in legume crops. In the present study, this trait in lentil was (Lens culinaris Medik.) examined using scanning electron microscopy (SEM) of epidermal cells in stem internodes of two parents, Flip92-36L and ILL-1552, with long and short HFP, respectively. No significant differences in cell length, but differences in cell width were seen. This indicates that HFP was determined by cell number rather than cell length. The candidate gene family for HFP, Suppressor of Overexpression of Constans 1 (SOC1), a member of the MADS-box transcription factor family, controls both flowering time (FT) and HFP traits. Six LcSOC1 genes were identified in this study, and their expression was analysed. Most of the genes studied showed constitutive expression during vegetative growth, flowering, and seed development stages. Expression of LcSOC1-a seems to be involved in the transition to flowering and FT, whereas expression of LcSOC1-b2 was strongly associated with HFP but not FT. Two haplotypes with two SNP each were identified in LcSOC1-b2 among eight sequenced lentil accessions, and an SNP-based ASQ marker was developed and used for genotyping of a lentil germplasm collection. Significant association between LcSOC1-b2 haplotypes and HFP was found in this study, indicating a primary role for this gene in internode length, potentially by regulating cell number. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 800 KB  
Article
Evaluation of the Effects of Cultivar and Location on the Interaction of Lentil Seed Characteristics with Optimal Cooking Time
by Dimitrios Sarakatsianos, Dimitra Polyzou, Athanasios Mavromatis, Dimitrios N. Vlachostergios and Dimitrios Gerasopoulos
Seeds 2024, 3(4), 575-588; https://doi.org/10.3390/seeds3040039 - 30 Oct 2024
Viewed by 1384
Abstract
The most important product of the lentil crop (Lens culinaris Medik) is the seeds. The main seed characteristics are their size, color, and the cooking time required to make them edible. Cultivar, location of cultivation, and their interaction are the primary factors [...] Read more.
The most important product of the lentil crop (Lens culinaris Medik) is the seeds. The main seed characteristics are their size, color, and the cooking time required to make them edible. Cultivar, location of cultivation, and their interaction are the primary factors of raw or cooked seed characteristics. The study examined the impact of five different lentil cultivars (Dimitra, Elpida, Thessalia, Samos, and 03-24L), as influenced by the cultivation environment in four different zones or nine different locations in Central-Northern Greece, on cooking time. The optimal cooking time (OCT) was calculated by cooking the seeds for 0–60 min to determine the percentage of cooked seeds using the penetration test. OCT was associated with the characteristics of both raw (mass of 1000 seeds, external color, and the percentage of mature/immature seeds) and cooked (color and organoleptic characteristics of the cooking media as well as mass increase and hardness and organoleptic characteristics of the seeds) seeds for 30 min. Depending on location, each cultivar had a different mass of 1000 seeds; Elpida had the highest mass (63.9 g), and Dimitra had the lowest (33.1 g). This was linked to OCT, which was among the highest (57.5 min) for Elpida, lowest (49 min) for Dimitra, and intermediate for Thessalia, Samos, or 03-24L. The average OCT was 55.9 min for all samples. The seed from the five locations with the shortest OCT was considered appropriate for human consumption. Two locations yielded seeds with intermediate OCT, while the other two produced the highest OCT; these were recommended for processing or propagation. In this study, the cultivar factor had a greater effect on raw seed characteristics, while the location factor had a greater effect on cooked seed characteristics and OCT than either the location, the cultivar factor, or the cultivar x location interaction. Full article
Show Figures

Figure 1

21 pages, 874 KB  
Review
Exploring Volatile Profiles and De-Flavoring Strategies for Enhanced Acceptance of Lentil-Based Foods: A Review
by Francesca Vurro, Davide De Angelis, Giacomo Squeo, Francesco Caponio, Carmine Summo and Antonella Pasqualone
Foods 2024, 13(16), 2608; https://doi.org/10.3390/foods13162608 - 20 Aug 2024
Cited by 14 | Viewed by 5257
Abstract
Lentils are marketed as dry seeds, fresh sprouts, flours, protein isolates, and concentrates used as ingredients in many traditional and innovative food products, including dairy and meat analogs. Appreciated for their nutritional and health benefits, lentil ingredients and food products may be affected [...] Read more.
Lentils are marketed as dry seeds, fresh sprouts, flours, protein isolates, and concentrates used as ingredients in many traditional and innovative food products, including dairy and meat analogs. Appreciated for their nutritional and health benefits, lentil ingredients and food products may be affected by off-flavor notes described as “beany”, “green”, and “grassy”, which can limit consumer acceptance. This narrative review delves into the volatile profiles of lentil ingredients and possible de-flavoring strategies, focusing on their effectiveness. Assuming that appropriate storage and processing are conducted, so as to prevent or limit undesired oxidative phenomena, several treatments are available: thermal (pre-cooking, roasting, and drying), non-thermal (high-pressure processing, alcohol washing, pH variation, and addition of adsorbents), and biotechnological (germination and fermentation), all of which are able to reduce the beany flavor. It appears that lentil is less studied than other legumes and more research should be conducted. Innovative technologies with great potential, such as high-pressure processing or the use of adsorbents, have been not been explored in detail or are still totally unexplored for lentil. In parallel, the development of lentil varieties with a low LOX and lipid content, as is currently in progress for soybean and pea, would significantly reduce off-flavor notes. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

19 pages, 7885 KB  
Article
Metabolic Aspects of Lentil–Fusarium Interactions
by Chrysanthi Foti, Antonios Zambounis, Evmorfia P. Bataka, Chrysanthi Kalloniati, Evangelia Panagiotaki, Christos T. Nakas, Emmanouil Flemetakis and Ourania I. Pavli
Plants 2024, 13(14), 2005; https://doi.org/10.3390/plants13142005 - 22 Jul 2024
Cited by 1 | Viewed by 1623
Abstract
Fusarium oxysporum f. sp. lentis (Fol) is considered the most destructive disease for lentil (Lens culinaris Medik.) worldwide. Despite the extensive studies elucidating plants’ metabolic response to fungal agents, there is a knowledge gap in the biochemical mechanisms governing Fol [...] Read more.
Fusarium oxysporum f. sp. lentis (Fol) is considered the most destructive disease for lentil (Lens culinaris Medik.) worldwide. Despite the extensive studies elucidating plants’ metabolic response to fungal agents, there is a knowledge gap in the biochemical mechanisms governing Fol-resistance in lentil. Τhis study aimed at comparatively evaluating the metabolic response of two lentil genotypes, with contrasting phenotypes for Fol-resistance, to Fol-inoculation. Apart from gaining insights into the metabolic reprogramming in response to Fol-inoculation, the study focused on discovering novel biomarkers to improve early selection for Fol-resistance. GC-MS-mediated metabolic profiling of leaves and roots was employed to monitor changes across genotypes and treatments as well as their interaction. In total, the analysis yielded 178 quantifiable compounds, of which the vast majority belonged to the groups of carbohydrates, amino acids, polyols and organic acids. Despite the magnitude of metabolic fluctuations in response to Fol-inoculation in both genotypes under study, significant alterations were noted in the content of 18 compounds, of which 10 and 8 compounds referred to roots and shoots, respectively. Overall data underline the crucial contribution of palatinitol and L-proline in the metabolic response of roots and shoots, respectively, thus offering possibilities for their exploitation as metabolic biomarkers for Fol-resistance in lentil. To the best of our knowledge, this is the first metabolomics-based approach to unraveling the effects of Fol-inoculation on lentil’s metabolome, thus providing crucial information related to key aspects of lentil–Fol interaction. Future investigations in metabolic aspects of lentil–Fol interactions will undoubtedly revolutionize the search for metabolites underlying Fol-resistance, thus paving the way towards upgrading breeding efforts to combat fusarium wilt in lentil. Full article
Show Figures

Figure 1

17 pages, 937 KB  
Article
Lentil Cultivar Evaluation in Diverse Organic Mediterranean Environments
by Dimitrios Baxevanos, Anastasia Kargiotidou, Christos Noulas, Antigoni-Maria Kouderi, Maria Aggelakoudi, Christos Petsoulas, Evangelia Tigka, Athanasios Mavromatis, Ioannis Tokatlidis, Dimitrios Beslemes and Dimitrios N. Vlachostergios
Agronomy 2024, 14(4), 790; https://doi.org/10.3390/agronomy14040790 - 11 Apr 2024
Cited by 7 | Viewed by 3068
Abstract
Lentil (Lens culinaris Medik.) production faces challenges due to shifting environmental conditions, potentially leading to a transition towards cooler or highland Mediterranean environments. This study assessed the responses of five lentil genotypes across five diverse locations (L1–L5) managed under organic cropping systems [...] Read more.
Lentil (Lens culinaris Medik.) production faces challenges due to shifting environmental conditions, potentially leading to a transition towards cooler or highland Mediterranean environments. This study assessed the responses of five lentil genotypes across five diverse locations (L1–L5) managed under organic cropping systems over two seasons, focusing on key parameters including seed yield (SY), crude protein (CP), cooking time (CT), seed loss percentage (SL), and yield loss per hectare (YL) caused by bruchid (Bruchus sp.). Excessive seasonal rainfall (500 mm), low winter temperatures (−17.9 °C), bruchid SL, and spring sowing were identified as crucial, particularly in challenging environments like highlands. Genotype selection was highlighted as essential for balancing yield and stability, with the small-seeded cultivar ‘Dimitra’ demonstrating lower YL due to bruchid. Additionally, increased CP was noted in response to heightened bruchid infestations. Specific recommendations were proposed for different environments: In productive lowland areas with low bruchid pressure and high CTs (L1), prioritizing cultivars like ‘Samos’, ‘Dimitra’, and ‘Thessalia’ enhances quality. Locations with high bruchid populations (L4) were not favored organic production but can serve as genetic resistance screening sites. High-elevation environments (L3, L5) proved significantly less productive, underscoring the requirement for earlier and winter-hardy cultivars. These insights guide lentil cultivation, emphasizing the need for tailored breeding strategies adaptable to changing environments. Full article
(This article belongs to the Special Issue Modern Seed Technologies for Developing Dynamic Agriculture)
Show Figures

Figure 1

13 pages, 275 KB  
Article
Characterization of Spanish Lentil Germplasm: Seed Composition and Agronomic Performance Evaluation
by Pilar Brun, Marcelino de los Mozos, Maria Cristina Alcántara, Francisco Perea, María Camacho and Dulce Nombre Rodriguez Navarro
Sustainability 2024, 16(6), 2548; https://doi.org/10.3390/su16062548 - 20 Mar 2024
Cited by 1 | Viewed by 1669
Abstract
Lentil (Lens culinaris Medik.) is a resilient annual herb belonging to the Fabaceae family. Known for their ability to fix atmospheric nitrogen in symbiosis with rhizobia, lentils demonstrate moderate drought tolerance. Legumes are key crops in sustainable agriculture due to their low [...] Read more.
Lentil (Lens culinaris Medik.) is a resilient annual herb belonging to the Fabaceae family. Known for their ability to fix atmospheric nitrogen in symbiosis with rhizobia, lentils demonstrate moderate drought tolerance. Legumes are key crops in sustainable agriculture due to their low water and N requirements. This study evaluates the symbiotic responsiveness of various lentil accessions from the Spanish germplasm bank to different rhizobia strains. Additionally, the nutritional profile of seeds was determined, encompassing energy, fat, available carbohydrates, sugars, proteins, fibre, mineral content, and macro and micronutrients. Phenolic compound content was assessed using advanced UHPLC-HRMS techniques. The agronomic performance of six selected accessions was evaluated across two distinct locations under rainfed conditions and varying management systems. Notably, the protein content of the evaluated accessions exceeded 25%, particularly in two standout accessions, namely BGE025596 and BGE026702, with protein levels surpassing 30% and fat content below 2%. Furthermore, accessions BGE016362 and BGE026702 exhibited exceptional iron (Fe) content, exceeding 1 g/100 g of seed flour. It was observed that coloured microsperma lentil accessions harboured higher concentrations of phenolic compounds than non-coloured macrosperma seeds’ antioxidants and anti-inflammatories. Agronomic performance varied based on cropping region and accession origin. Full article
(This article belongs to the Section Sustainable Agriculture)
20 pages, 3931 KB  
Article
Agronomic Performances and Seed Yield Components of Lentil (Lens culinaris Medikus) Germplasm in a Semi-Arid Environment
by Giovanni Preiti, Antonio Calvi, Giuseppe Badagliacca, Emilio Lo Presti, Michele Monti and Monica Bacchi
Agronomy 2024, 14(2), 303; https://doi.org/10.3390/agronomy14020303 - 30 Jan 2024
Cited by 4 | Viewed by 3857
Abstract
Lentil (Lens culinaris Medik.) is widely known among grain legumes for its high nutritional quality, playing an important role in enhancing Mediterranean farming systems as a sustainable crop. Field experiments comparing 121 lentil accessions (microsperma and macrosperma types from different countries) [...] Read more.
Lentil (Lens culinaris Medik.) is widely known among grain legumes for its high nutritional quality, playing an important role in enhancing Mediterranean farming systems as a sustainable crop. Field experiments comparing 121 lentil accessions (microsperma and macrosperma types from different countries) were conducted in a semi-arid environment of south Italy over two growing seasons (2016/2017 and 2017/2018). Their agronomic performance was determined, focusing on phenological, morphological, productive, and qualitative variability. Changes in rainfall and temperatures affected the agronomic traits, especially yield components. In both years, the average grain yield (GY) (2.31 and 2.22 t ha−1, respectively) was above the threshold of 2 t ha−1. Consistent yield exceeding the field average in both growing seasons revealed the superiority of accessions from Egypt, Cyprus, Algeria, Nepal, and Tunisia. Moreover, microsperma yielded more (+0.31 and +0.41 t ha−1 in the first and second year, respectively) than macrosperma accessions. Flowering (DASF—days after sowing to flowering) and thousand seed weight (TSW) appeared to be the most important traits related to grain yield. Flowering earliness seems to act as a mechanism for overcoming abiotic stresses. The analysis of yield components revealed a different productive determinism within the two subspecies. As also highlighted by the Principal Component Analysis, microsperma accessions presented on average a significantly higher number of pods per plant (PP) and seeds per pod (SP), despite the considerable variability among countries of origin. The results showed phenological and morphological variability among genotypes, which should be taken into account in view of future selection programs focused on obtaining lentil ideotypes suitable for the Mediterranean environment. Full article
Show Figures

Figure 1

14 pages, 4202 KB  
Article
Blue and Red LED Lights Differently Affect Growth Responses and Biochemical Parameters in Lentil (Lens culinaris)
by Benedetta Bottiglione, Alessandra Villani, Linda Mastropasqua, Silvana De Leonardis and Costantino Paciolla
Biology 2024, 13(1), 12; https://doi.org/10.3390/biology13010012 - 24 Dec 2023
Cited by 4 | Viewed by 5517
Abstract
Light-emitting diodes are an attractive tool for improving the yield and quality of plant products. This study investigated the effect of different light intensity and spectral composition on the growth, bioactive compound content, and antioxidant metabolism of lentil (Lens culinaris Medik.) seedlings [...] Read more.
Light-emitting diodes are an attractive tool for improving the yield and quality of plant products. This study investigated the effect of different light intensity and spectral composition on the growth, bioactive compound content, and antioxidant metabolism of lentil (Lens culinaris Medik.) seedlings after 3 and 5 days of LED treatment. Two monochromatic light quality × three light intensity treatments were tested: red light (RL) and blue light (BL) at photosynthetic photon flux density (PPFD) of 100, 300, and 500 μmol m−2 s−1. Both light quality and intensity did not affect germination. At both harvest times, the length of seedling growth under BL appeared to decrease, while RL stimulated the growth with an average increase of 26.7% and 62% compared to BL and seedlings grown in the darkness (D). A significant blue light effect was detected on ascorbate reduced form, with an average increase of 35% and 50% compared to RL-grown plantlets in the two days of harvesting, respectively. The content of chlorophyll and carotenoids largely varied according to the wavelength and intensity applied and the age of the seedlings. Lipid peroxidation increased with increasing light intensity in both treatments, and a strong H2O2 formation occurred in BL. These results suggest that red light can promote the elongation of lentil seedlings, while blue light enhances the bioactive compounds and the antioxidant responses. Full article
Show Figures

Figure 1

19 pages, 3103 KB  
Article
Lentil Landrace Seed Origin and Genotype Affects Rhizosphere Microbiome
by Anthoula Gleridou, Georgios Giannopoulos, Alexios N. Polidoros and Photini V. Mylona
Agronomy 2023, 13(12), 2910; https://doi.org/10.3390/agronomy13122910 - 27 Nov 2023
Cited by 3 | Viewed by 2040
Abstract
Lentil (Lens culinaris Medik.) is an essential legume crop providing healthy and nutritious food for people in low- to middle-income countries, worldwide. Lentil roots support symbiotic interactions with soil rhizobia species fostering nitrogen fixation; however, assemblage and diversity of the complete microbial [...] Read more.
Lentil (Lens culinaris Medik.) is an essential legume crop providing healthy and nutritious food for people in low- to middle-income countries, worldwide. Lentil roots support symbiotic interactions with soil rhizobia species fostering nitrogen fixation; however, assemblage and diversity of the complete microbial rhizosphere community and the effect of seed genotype and origin remain largely unexplored. In this study we examined, via metagenomic analysis, the effects of seed origin on the rhizosphere’s communities in samples of the famous Greek lentil landrace, Eglouvis, derived from different local farmers and farming systems (including a Gene Bank sample), in comparison to a commercial variety. The landrace exhibited higher rhizosphere microbiome diversity compared to the commercial variety for all indexes. A core microbiome comprised of 158 taxa was present in all samples, while a greater number of unique bacterial taxa was recorded in the landrace samples compared to the commercial cultivar. Notably, landrace samples originated from organic farming had more than double the number of unique taxa compared to conventional counterparts. The study revealed a higher diversity of N2 fixers and archaea, Crenarchaeota and Thaumarchaeota, in landrace samples and particularly in those derived from organic farming, underpinning the distinct recruiting efficiency of beneficial soil microbes by the landrace. Full article
(This article belongs to the Special Issue Plant Genetic Resources and Biotechnology)
Show Figures

Figure 1

28 pages, 2901 KB  
Article
Integrating BLUP, AMMI, and GGE Models to Explore GE Interactions for Adaptability and Stability of Winter Lentils (Lens culinaris Medik.)
by Md. Amir Hossain, Umakanta Sarker, Md. Golam Azam, Md. Shahriar Kobir, Rajib Roychowdhury, Sezai Ercisli, Daoud Ali, Shinya Oba and Kirill S. Golokhvast
Plants 2023, 12(11), 2079; https://doi.org/10.3390/plants12112079 - 23 May 2023
Cited by 40 | Viewed by 5099
Abstract
Lentil yield is a complicated quantitative trait; it is significantly influenced by the environment. It is crucial for improving human health and nutritional security in the country as well as for a sustainable agricultural system. The study was laid out to determine the [...] Read more.
Lentil yield is a complicated quantitative trait; it is significantly influenced by the environment. It is crucial for improving human health and nutritional security in the country as well as for a sustainable agricultural system. The study was laid out to determine the stable genotype through the collaboration of G × E by AMMI and GGE biplot and to identify the superior genotypes using 33 parametric and non-parametric stability statistics of 10 genotypes across four different conditions. The total G × E effect was divided into two primary components by the AMMI model. For days to flowering, days to maturity, plant height, pods per plant, and hundred seed weight, IPCA1 was significant and accounted for 83%, 75%, 100%, and 62%, respectively. Both IPCA1 and IPCA2 were non-significant for yield per plant and accounted for 62% of the overall G × E interaction. An estimated set of eight stability parameters showed strong positive correlations with mean seed yield, and these measurements can be utilized to choose stable genotypes. The productivity of lentils has varied greatly in the environment, ranging from 786 kg per ha in the MYM environment to 1658 kg per ha in the ISD environment, according to the AMMI biplot. Three genotypes (G8, G7, and G2) were shown to be the most stable based on non-parametric stability scores for grain yield. G8, G7, G2, and G5 were determined as the top lentil genotypes based on grain production using numerical stability metrics such as Francis’s coefficient of variation, Shukla stability value (σi2), and Wrick’s ecovalence (Wi). Genotypes G7, G10, and G4 were the most stable with the highest yield, according to BLUP-based simultaneous selection stability characteristics. The findings of graphic stability methods such as AMMI and GGE for identifying the high-yielding and stable lentil genotypes were very similar. While the GGE biplot indicated G2, G10, and G7 as the most stable and high-producing genotypes, AMMI analysis identified G2, G9, G10, and G7. These selected genotypes would be used to release a new variety. Considering all the stability models, such as Eberhart and Russell’s regression and deviation from regression, additive main effects, multiplicative interactions (AMMI) analysis, and GGE, the genotypes G2, G9, and G7 could be used as well-adapted genotypes with moderate grain yield in all tested environments. Full article
(This article belongs to the Special Issue Advances in Genetics and Breeding of Grain Crops)
Show Figures

Figure 1

11 pages, 3675 KB  
Article
Large Field Screening for Resistance to Broomrape (Orobanche crenata Forsk.) in a Global Lentil Diversity Panel (GLDP) (Lens culinaris Medik.)
by Youness En-nahli, Kamal Hejjaoui, Rachid Mentag, Nour Eddine Es-safi and Moez Amri
Plants 2023, 12(10), 2064; https://doi.org/10.3390/plants12102064 - 22 May 2023
Cited by 6 | Viewed by 2805
Abstract
Broomrape (Orobanche crenata Forsk.) is a serious problem causing important losses to lentil (Lens culinaris Medik.) production and productivity in Mediterranean countries. Despite intensive breeding activities, no resistance sources against O. crenata have been identified so far. In this study, a [...] Read more.
Broomrape (Orobanche crenata Forsk.) is a serious problem causing important losses to lentil (Lens culinaris Medik.) production and productivity in Mediterranean countries. Despite intensive breeding activities, no resistance sources against O. crenata have been identified so far. In this study, a Global Lentil Diversity Panel (GLDP) of 1315 genotypes including local populations, landraces, accessions, improved lines and released varieties were evaluated for their resistance to O. crenata under highly infested field conditions at ICARDA Marchouch research station, Morocco. The trial was conducted according to an augmented design with repeated susceptible checks. The best-performing genotypes were selected based on the correlations between Orobanche infestation parameters and agronomic performance. Results showed significant variation (p < 0.005) among the studied genotypes and between the tested genotypes and checks for BY, D2F, D2M, PH, EODW and NEO. Out of the 1315 tested genotypes, only (1%) showed high to moderate resistance levels to O. crenata. Most of these genotypes are improved lines originating from different breeding programs. the PCA analysis clustered all the tested genotypes into four different groups. Good resistance levels were recorded for the genotypes ILL7723, ILL 7982, ILL 6912, ILL 6415, ILL 9850, ILL 605, ILL 7915, ILL 1861 and ILL 9888 showing a parasitism index and grain yield ranging from 1.69 to 5.99 and 10.97 to 60.19 g m−2, respectively. Person’s correlation showed significant negative correlations between agronomic traits and infestation parameters. Both the path and spatial analysis showed that the D2F, NEO, D2OE, SEV and parasitism index (PI) were the strongest driver traits that influenced the seed yield (SY). Full article
(This article belongs to the Special Issue Breeding of Crop Disease-Resistant Cultivars)
Show Figures

Figure 1

13 pages, 1173 KB  
Article
Crop Yield Prediction Using Hybrid Machine Learning Approach: A Case Study of Lentil (Lens culinaris Medik.)
by Pankaj Das, Girish Kumar Jha, Achal Lama and Rajender Parsad
Agriculture 2023, 13(3), 596; https://doi.org/10.3390/agriculture13030596 - 28 Feb 2023
Cited by 32 | Viewed by 7659
Abstract
This paper introduces a novel hybrid approach, combining machine learning algorithms with feature selection, for efficient modelling and forecasting of complex phenomenon governed by multifactorial and nonlinear behaviours, such as crop yield. We have attempted to harness the benefits of the soft computing [...] Read more.
This paper introduces a novel hybrid approach, combining machine learning algorithms with feature selection, for efficient modelling and forecasting of complex phenomenon governed by multifactorial and nonlinear behaviours, such as crop yield. We have attempted to harness the benefits of the soft computing algorithm multivariate adaptive regression spline (MARS) for feature selection coupled with support vector regression (SVR) and artificial neural network (ANN) for efficiently mapping the relationship between the predictors and predictand variables using the MARS-ANN and MARS-SVR hybrid frameworks. The performances of the algorithms are com-pared on different fit statistics such as RMSE, MAD, MAPE, etc., using numeric agronomic traits of 518 lentil genotypes to predict grain yield. The proposed MARS-based hybrid models outperformed individual models such as MARS, SVR and ANN. This is largely due to the enhanced feature ex-traction capability of the MARS model coupled with the nonlinear adaptive learning ability of ANN and SVR. The superiority of the proposed hybrid models MARS-ANN and MARS-SVM in terms of model building and generalisation ability was demonstrated. Full article
(This article belongs to the Special Issue The Application of Machine Learning in Agriculture)
Show Figures

Figure 1

18 pages, 3229 KB  
Article
Assessing the Stability of Herbicide-Tolerant Lentil Accessions (Lens culinaris Medik.) under Diverse Environments
by Rind Balech, Fouad Maalouf, Somanagouda B. Patil, Karthika Rajendran, Lynn Abou Khater, Diego Rubiales and Shiv Kumar
Plants 2023, 12(4), 854; https://doi.org/10.3390/plants12040854 - 14 Feb 2023
Cited by 5 | Viewed by 3445
Abstract
Assessing the adaptability and stability of herbicide-tolerant lentil accessions to two broad-spectrum post-emergence herbicides in multi-environment trials has become a must in a breeding program to improve its selection. The adaptability and stability of 42 herbicide-tolerant lentil accessions were investigated using five stability [...] Read more.
Assessing the adaptability and stability of herbicide-tolerant lentil accessions to two broad-spectrum post-emergence herbicides in multi-environment trials has become a must in a breeding program to improve its selection. The adaptability and stability of 42 herbicide-tolerant lentil accessions were investigated using five stability parameters under eight different environments. Significant Genotype–Environment (GE) interaction was found for days to flowering (DFLR), days to maturity (DMAT), and seed yield per plant (SY). The analyzed stability parameters such as Cultivar superiority, Finlay–Wilkinson, Shukla, Static Stability, and Wricke’s Ecovalence ranked the tested accessions differently, confirming the importance of using a combination of stability parameters when evaluating the performance of a group of accessions. GGE biplot of the SY trait accounted for 60.79% of sums of squares of the GE interaction and showed that cool and high rainfall environments are ideal for testing the agronomic performance of tolerant accessions. The GGE biplot of SY showed that IG4605(19), IG195(6), and IG156635(12) were specifically adapted to one mega environment, whereas IG70056(38) was identified as a superior line having a high and stable yield. These lines should be included in lentil crossing programs to develop herbicide-tolerant cultivars adapted to diverse environments. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

23 pages, 2308 KB  
Article
Molecular Composition and Biological Activity of a Novel Acetonitrile–Water Extract of Lens Culinaris Medik in Murine Native Cells and Cell Lines Exposed to Different Chemotherapeutics Using Mass Spectrometry
by Annamaria Di Turi, Marina Antonacci, Jacopo Raffaele Dibenedetto, Fatima Maqoud, Francesco Leonetti, Gerardo Centoducati, Nicola Colonna and Domenico Tricarico
Cells 2023, 12(4), 575; https://doi.org/10.3390/cells12040575 - 10 Feb 2023
Cited by 4 | Viewed by 2344
Abstract
We evaluated the effects of a new extract (70% acetonitrile, 2E0217022196DIPFARMTDA) of Lens culinaris Medik (Terre di Altamura SRL, Altamura BA) to prevent cytotoxic damage from cisplatin, staurosporine, irinotecan, doxorubicin, and the glucocorticoid dexamethasone. The acetonitrile–water extract (range 0.1–5 mg/mL) was obtained by [...] Read more.
We evaluated the effects of a new extract (70% acetonitrile, 2E0217022196DIPFARMTDA) of Lens culinaris Medik (Terre di Altamura SRL, Altamura BA) to prevent cytotoxic damage from cisplatin, staurosporine, irinotecan, doxorubicin, and the glucocorticoid dexamethasone. The acetonitrile–water extract (range 0.1–5 mg/mL) was obtained by extracting 10 g of lentil flour with 50 milliliters of the acetonitrile–water extraction mixture in a 70:30 ratio, first for 3 h and then overnight in a shaker at room temperature. The next day, the extract was filtered and passed through a Rotavapor to obtain only the aqueous component and eliminate that with acetonitrile, and then freeze-dried to finally have the powdered extract. In vitro experiments showed that the extract prevented the cytotoxic damage induced by cisplatin, irinotecan, and doxorubicin on HEK293 and SHSY5Y cell lines after 24–96 h. In murine osteoblasts after 24–72 h of incubation time, the extract was cytoprotective against all chemicals. The extract was effective against dexamethasone, leading to synergic cell proliferation in all cell types. In bone marrow cells, the extract is cytoprotective after 72 h against doxorubicin, staurosporine, and dexamethasone. Instead, on muscle fibers, the extract has a synergic effect with chemotherapeutics, increasing cytotoxicity induced by doxorubicin and staurosporine. LC-MS attested to the existence of several phenolic structures in the extract. The most abundant families of compounds were flavonoids (25.7%) and mellitic acid (18%). Thus, the development of this extract could be implemented in the area of research related to the chemoprevention of damage to renal, neuronal, bone marrow cells, and osteoblasts by chemotherapeutics; moreover, it could be used as a reinforcer of cytotoxic action of chemotherapeutics on muscle fibers. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

Back to TopTop