Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = Lasioderma serricorne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 220 KiB  
Article
Surface Application of Different Insecticides Against Two Coleopteran Pests of Stored Products
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Appl. Sci. 2025, 15(15), 8306; https://doi.org/10.3390/app15158306 - 25 Jul 2025
Viewed by 168
Abstract
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: [...] Read more.
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: the red flour beetle and the tobacco beetle. Alpha-cypermethrin and spinosad exhibited rapid and high efficacy, particularly on non-porous surfaces such as metal and ceramic, whereas pirimiphos-methyl was less effective initially and required extended exposure to achieve complete mortality, especially against Tribolium castaneum. In contrast, Lasioderma serricorne showed greater susceptibility across all insecticides and surfaces. Spinosad maintained high efficacy across all surface types, suggesting broader applicability under variable conditions. The reduced performance of insecticides on concrete surfaces underscores the influence of substrate porosity on insecticide bioavailability. Additionally, the observed delayed mortality effect in all treatments indicates that even brief exposure can result in lethal outcomes, emphasizing the long-term potential of these applications. These findings underscore the need for surface-specific application strategies and support the integration of surface treatments into comprehensive pest management programs. Further research is warranted under simulated field conditions to assess residual efficacy over time and in the presence of food, thereby enhancing the relevance of laboratory findings to real-world storage environments. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
20 pages, 251 KiB  
Article
Insecticidal and Residual Effects of Spinosad, Alpha-Cypermethrin, and Pirimiphos-Methyl on Surfaces Against Tribolium castaneum, Sitophilus granarius, and Lasioderma serricorne
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Agriculture 2025, 15(11), 1133; https://doi.org/10.3390/agriculture15111133 - 24 May 2025
Viewed by 504
Abstract
Contact insecticides are classified into two categories: as grain protectants, which are applied directly on grains, and as surface treatments, which are applied on cracks and crevices. The aim of this study was to evaluate the long-term residual efficacy of these insecticides across [...] Read more.
Contact insecticides are classified into two categories: as grain protectants, which are applied directly on grains, and as surface treatments, which are applied on cracks and crevices. The aim of this study was to evaluate the long-term residual efficacy of these insecticides across different surfaces and target species. Thus, we investigated the efficacy of three insecticidal formulations, spinosad, alpha-cypermethrin, and pirimiphos-methyl against stored product beetles on different surfaces (concrete, metallic, plastic, and ceramic). Adults of Tribolium castaneum, Sitophilus granarius, and Lasioderma serricorne were used in the experiments. Bioassays were carried out during a six-month period, with mortality measured after 3, 7, 14, and 21 days after exposure. Among the different insecticides tested, spinosad was the least effective against T. castaneum, especially on concrete, where mortality had decreased to zero by Month 2, whereas in most of the cases, close to 100% was recorded. Regarding S. granarius, pirimiphos-methyl and spinosad remained effective on ceramic and metallic surfaces for a six-month period, whereas alpha-cypermethrin had the lowest mortality rate. For L. serricorne, spinosad caused high mortality levels, whereas pirimiphos-methyl was the least effective after Month 4. Based on our finding, among the tested insecticides, spinosad had the long-term residual effect on stored product protection. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
12 pages, 5748 KiB  
Article
Roles of Vitellogenin and Its Receptor Genes in Female Reproduction of the Cigarette Beetle, Lasioderma serricorne
by Qian Guo, Mingxun Zu, Deqian Liu, Yi Yan, Wenjia Yang and Kangkang Xu
Insects 2025, 16(2), 175; https://doi.org/10.3390/insects16020175 - 6 Feb 2025
Cited by 1 | Viewed by 1138
Abstract
Vitellogenin (Vg) and the vitellogenin receptor (VgR) play essential roles in insect reproductive development. However, the functions of Vg and VgR genes in Lasioderma serricorne, an important insect pest of stored products, are unknown. We identified and characterized these two genes, designated [...] Read more.
Vitellogenin (Vg) and the vitellogenin receptor (VgR) play essential roles in insect reproductive development. However, the functions of Vg and VgR genes in Lasioderma serricorne, an important insect pest of stored products, are unknown. We identified and characterized these two genes, designated LsVg and LsVgR, in L. serricorne. The open reading frames of LsVg and LsVgR were 5232 and 5529 bp, encoding 1743 and 1842 amino acid residues, respectively. Both LsVg and LsVgR were predominantly expressed in female adults and exhibited the highest expression in ovaries. The RNAi-mediated silencing of LsVg or LsVgR significantly decreased the average length of ovarian tubes and oocytes and severely affected ovarian development. The Knockdown of LsVg or LsVgR significantly reduced the oviposition period, the number of eggs laid, and the egg hatching rate. Females injected with dsLsVg and dsLsVg + VgR were found to had decreased vitellogenin content. The co-silencing of LsVg and LsVgR had a more pronounced effect on reducing the oviposition period and female fecundity in L. serricorne. This study revealed the importance of LsVg and LsVgR in regulating female reproduction and shows their potential as targets for RNAi-based control of L. serricorne. Full article
(This article belongs to the Special Issue Arthropod Reproductive Biology)
Show Figures

Figure 1

12 pages, 1376 KiB  
Article
Bioactivities and Synergistic Effect of Elsholtzia ciliata Essential Oil and Its Main Components against Lasioderma serricorne
by Shen Song, Yufei Tang, Rui Feng, Xiaohan Zhang, Yue An, Weibao Kong, Junlong Wang, Ji Zhang and Junyu Liang
Molecules 2024, 29(9), 1924; https://doi.org/10.3390/molecules29091924 - 23 Apr 2024
Cited by 4 | Viewed by 1494
Abstract
Investigations have shown that storage bugs seriously harm grains during storage. In the interim, essential oils (EOs) have been proven to be a good botanical pesticide. The anti-Lasioderma serricorne properties of Elsholtzia ciliata essential oil, which was obtained by steam distillation, were [...] Read more.
Investigations have shown that storage bugs seriously harm grains during storage. In the interim, essential oils (EOs) have been proven to be a good botanical pesticide. The anti-Lasioderma serricorne properties of Elsholtzia ciliata essential oil, which was obtained by steam distillation, were evaluated using DL-limonene, carvone, and their two optical isomer components using contact, repelling, and fumigation techniques. Simultaneously, the fumigation, contact, and repellent activities of carvone and its two optical isomers mixed with DL-limonene against L. serruricorne were evaluated. The results showed that E. ciliata, its main components (R-carvone, DL-limonene), and S-carvone exhibited both fumigations (LC50 = 14.47, 4.42, 20.9 and 3.78 mg/L) and contact (LD50 = 7.31, 4.03, 28.62 and 5.63 µg/adult) activity against L.serricorne. A binary mixture (1:1) of R-carvone and DL-limonene displayed an obvious synergistic effect. A binary mixture (1:1) of carvone and its two optical isomers exhibited an obvious synergistic effect, too. Furthermore, the repellent activity of the EO, carvone, and its two optical isomers, DL-limonene, and a combination of them varied. To stop insect damage during storage, E. ciliata and its components can be utilized as bio-insecticides. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 1803 KiB  
Article
Phytochemical Characterization of Callistemon lanceolatus Leaf Essential Oils and Their Application as Sustainable Stored Grain Protectants against Major Storage Insect Pests
by Thachappilly A. Ankitha, Naduvilthara U. Visakh, Berin Pathrose, Nicola Mori, Rowida S. Baeshen and Rady Shawer
Sustainability 2024, 16(3), 1055; https://doi.org/10.3390/su16031055 - 25 Jan 2024
Cited by 7 | Viewed by 3114
Abstract
Food storage has been important since the dawn of agriculture and human settlement. Insect pests cause major losses to food grains during storage and production. Essential oils are good alternatives for chemical insecticides for the management of storage pests. Red bottlebrush, Callistemon lanceolatus, [...] Read more.
Food storage has been important since the dawn of agriculture and human settlement. Insect pests cause major losses to food grains during storage and production. Essential oils are good alternatives for chemical insecticides for the management of storage pests. Red bottlebrush, Callistemon lanceolatus, is a flowering plant of the Myrtaceae family. This research work aimed to extract the oil from bottlebrush leaves, and chemically characterize and assess their repellent and insecticidal properties against the cowpea seed beetle, Callasobruchus maculatus (F.) (Coleoptera: Chrysomelidae), cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: Ptinidae), and red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae), for the first time. The essential oil yielded by hydro-distillation of bottlebrush leaves was 1.02 ± 0.01%. GC-MS analysis determined the chemical composition of the volatile oil comprised 1,8-cineole (19.17%), α-terpineol (11.51%), α-pinene (10.28%), and α-Phellandrene (9.55%). The C. lanceolatus leaf oil showed potent repellence, contact toxicity, and fumigation toxic effects. In the contact toxicity assay, at 24 h, the LC50 values were 1.35, 0.52, and 0.58 mg/cm2 for the red flour beetle, cigarette beetle, and cowpea seed beetle, respectively. Likewise, in the fumigation assay observed after 24 h, LC50 values of 22.60, 5.48, and 1.43 µL/L air were demonstrated for the red flour beetle, cigarette beetle, and cowpea seed beetle, respectively. Additionally, there was no significance found by a phytotoxicity assay when the paddy seeds were exposed to C. lanceolatus oil. The results show that the volatile oils from red bottlebrush leaves have the potential to be applied as a biopesticide. Therefore, C. lanceolatus leaf oil can be utilized as a bio-insecticide to control stored product insects. Full article
(This article belongs to the Special Issue Toward Sustainable Agriculture: Crop Protection and Pest Control)
Show Figures

Graphical abstract

14 pages, 2036 KiB  
Article
Extraction, Chemical Composition and Insecticidal Activities of Lantana camara Linn. Leaf Essential Oils against Tribolium castaneum, Lasioderma serricorne and Callosobruchus chinensis
by Kolapparamban Aisha, Naduvilthara U. Visakh, Berin Pathrose, Nicola Mori, Rowida S. Baeshen and Rady Shawer
Molecules 2024, 29(2), 344; https://doi.org/10.3390/molecules29020344 - 10 Jan 2024
Cited by 22 | Viewed by 5327
Abstract
Storage pests and the food spoilage they cause are problems of great concern. Using essential oil obtained from different plants as an insecticide against these storage pests can be considered an environmentally friendly pest management option. Lantana camara Linn. (family Verbenaceae) is a [...] Read more.
Storage pests and the food spoilage they cause are problems of great concern. Using essential oil obtained from different plants as an insecticide against these storage pests can be considered an environmentally friendly pest management option. Lantana camara Linn. (family Verbenaceae) is a flowering species, and is also a noxious weed that can proliferate well in nearly all geographical habitats. A biopesticide derived from the essential oil extracted from this plant can offer an effective solution for controlling storage pests. The goal of this study is to extract and analyse the chemical composition of essential oil obtained from L. camara leaves, and assess its effectiveness as a bioactive substance against three storage pests: Tribolium castaneum, Lasioderma serricorne, and Callosobruchus chinensis. The yield of essential oil extracted from L. camara leaves was about 0.24 ± 0.014%. By employing the GC-MS technique, the major phytochemicals contained in L. camara leaf essential oil were identified as caryophyllene (69.96%), isoledene (12%), and ɑ-copaene (4.11%). The essential oil exhibited excellent fumigant toxicity (LC50 of 16.70 mg/L air for T. castaneum, 4.141 mg/L air for L. serricorne and 6.245 mg/L air for C. chinensis at 24 h), contact toxicity (LC50 of 8.93 mg/cm2 for T. castaneum, 4.82 mg/cm2 for L. serricorne and 6.24 mg/cm2 for C. chinensis after 24 h) along with effective repellent activity towards the test insects. In addition, the oil showed no significant phytotoxicity on the germination of paddy seeds. This presents the potential to utilize a weed in developing a biopesticide for effectively managing stored product insects because of its strong bioactivity. Full article
(This article belongs to the Special Issue Essential Oils: Extraction, Separation and Biological Activities)
Show Figures

Graphical abstract

9 pages, 1219 KiB  
Article
Impact of the Parasitoids Anisopteromalus calandrae (Howard) and Lariophagus distinguendus (Förster) on Three Pests of Stored Rice
by Jordi Riudavets, Consuelo Belda and Cristina Castañé
Insects 2023, 14(4), 355; https://doi.org/10.3390/insects14040355 - 3 Apr 2023
Cited by 3 | Viewed by 1930
Abstract
This study evaluated the ability of pteromalid parasitoids Anisopteromalus calandrae and Lariophagus distinguendus reared on Sitophilus zeamais to control stored product coleopteran pests Sitophilus oryzae, Rhyzopertha dominica and Lasioderma serricorne. In trials of parasitoid treatment with A. calandrae, fewer pests [...] Read more.
This study evaluated the ability of pteromalid parasitoids Anisopteromalus calandrae and Lariophagus distinguendus reared on Sitophilus zeamais to control stored product coleopteran pests Sitophilus oryzae, Rhyzopertha dominica and Lasioderma serricorne. In trials of parasitoid treatment with A. calandrae, fewer pests (S. oryzae and R. dominica) emerged than in the control. Parasitoid reproduction was highest with S. oryzae as a host, followed by R. dominica and L. serricorne. In trials of parasitoid treatment with L. distinguendus, fewer pests (S. oryzae, R. dominica and L. serricorne) emerged than in the control treatment. Sitophilus oryzae was the host with the highest rate of parasitoid reproduction, although the greatest level of reduction was seen in R. dominica (i.e., host feeding levels were higher for this host species). For L. serricorne, no L. distinguendus progeny was produced. For both species, parasitoids with significantly longer bodies and tibiae emerged from S. oryzae. These results suggest that both parasitoids have potential for use as biocontrol agents for different coleopteran species that attack stored rice. Full article
Show Figures

Figure 1

12 pages, 277 KiB  
Article
Efficacy of Nets Coated with Different Concentrations of Alpha-Cypermethrin against Two Major Pests of Stored Tobacco
by Christos G. Athanassiou, Maria K. Sakka, Christos I. Rumbos, Stefan Schaffert, Thorsten Sterz, Constantinos Bozoglou, Panos Klitsinaris and James W. Austin
Agronomy 2023, 13(1), 40; https://doi.org/10.3390/agronomy13010040 - 22 Dec 2022
Cited by 6 | Viewed by 2218
Abstract
In the present study, we examined the insecticidal effect of Carifend® (BASF AG, Ludwigshafen, Germany; 163.2 mg m−2), an alpha-cypermethrin-coated polyester net, as well as Carifend-like nets containing different rates of alpha-cypermethrin, specifically 10, 30, 80, and 325 mg m [...] Read more.
In the present study, we examined the insecticidal effect of Carifend® (BASF AG, Ludwigshafen, Germany; 163.2 mg m−2), an alpha-cypermethrin-coated polyester net, as well as Carifend-like nets containing different rates of alpha-cypermethrin, specifically 10, 30, 80, and 325 mg m−2, against two major stored tobacco insect pests, i.e., Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae) and Ephestia elutella (Hübner) (Lepidoptera: Pyralidae). The nets were glued at the bottom of plastic Petri dishes, and adults of L. serricorne and E. elutella were exposed to the nets for different exposure times (e.g., 1, 5, 15, 30, 60, 90, and 120 min, as well as 12 and 24 h). After each exposure interval, insect mortality was recorded, whereas after the final evaluation, alive individuals were transferred to untreated dishes, and delayed mortality was recorded after an additional period of 1, 3, 5, and 7 d. Based on our results, efficient control of both insect species was achieved with all nets, even the one containing a lower concentration of alpha-cypermethrin (10 mg m−2). High mortality rates were recorded for all treatments, indicating that even short exposure of adults of both tested species to the alpha-cypermethrin-coated nets tested can lead to mortality. For instance, at 30 mg m−2, mortality of E. elutella reached 40% 1 d after exposure for 30 min. Moreover, at the highest concentration (325 mg m−2), mortality reached 70% and 99% 7 d post exposure for 24 h of L. serricorne and E. elutella, respectively. Based on these data, Carifend®, as well as the rest of the Carifend-like nets tested, can be used as an alternative insecticide method for the control of two major stored tobacco insect species, i.e., L. serricorne and E. elutella. Insecticide treated nets can be used in areas in which fumigants and contact insecticides are not accessible. Full article
10 pages, 2080 KiB  
Article
RNAi Suppression of Hormone Receptor HR3 Blocks Larval Molting and Metamorphosis in the Cigarette Beetle, Lasioderma serricorne
by Li-Xin Ma, Rong-Tao He, Shu-Yan Yan and Wen-Jia Yang
Agriculture 2022, 12(8), 1257; https://doi.org/10.3390/agriculture12081257 - 18 Aug 2022
Cited by 8 | Viewed by 2539
Abstract
Hormone receptor 3 (HR3), an early-late gene of the 20-hydroxyecdysone (20E) signaling pathway, plays a critical role in insect metamorphosis and development. In this study, we identified and characterized an HR3 gene (LsHR3) from the cigarette beetle, Lasioderma serricorne. The open [...] Read more.
Hormone receptor 3 (HR3), an early-late gene of the 20-hydroxyecdysone (20E) signaling pathway, plays a critical role in insect metamorphosis and development. In this study, we identified and characterized an HR3 gene (LsHR3) from the cigarette beetle, Lasioderma serricorne. The open reading frame of LsHR3 is 1581 bp encoding a 527 amino acid protein that contains a conserved DNA binding domain and a ligand binding domain. LsHR3 was mainly expressed in the fourth-instar larvae, prepupae, and pupae and showed high expression in the fat body. The expression of LsHR3 was induced by 20E, while it was significantly suppressed by silencing of six 20E synthesis and signaling pathway genes. RNA interference (RNAi)-aided knockdown of LsHR3 in the fourth-instar larvae disrupted the larval–pupal molting and caused 100% mortality. The 20E titer of LsHR3-depletion larvae was decreased, and expressions of five 20E synthesis genes were dramatically decreased. Silencing LsHR3 reduced chitin content and downregulated the expression of genes involved in chitin synthesis and degradation. Hematoxylin and eosin staining of abdominal cuticle showed that no apolysis occurred after silencing LsHR3. These results suggest that LsHR3-mediated 20E signaling is involved in the regulation of chitin metabolism during the molting process of L. serricorne, and targeting this gene by RNAi has potential in controlling this pest. Full article
(This article belongs to the Special Issue Insect Ecology and Pest Management in Agriculture)
Show Figures

Figure 1

12 pages, 3345 KiB  
Article
Chemical Composition and Evaluation of Insecticidal Activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum Essential Oils against Stored Products Pests
by Sara Basile, Natale Badalamenti, Ornella Riccobono, Salvatore Guarino, Vincenzo Ilardi, Maurizio Bruno and Ezio Peri
Molecules 2022, 27(3), 588; https://doi.org/10.3390/molecules27030588 - 18 Jan 2022
Cited by 44 | Viewed by 4146
Abstract
The problems of the environment and human health related to the use of synthetic and broad-spectrum insecticides have increasingly motivated scientific research on different alternatives and among these, the use of green systems, such as essential oils, have been explored. Several species of [...] Read more.
The problems of the environment and human health related to the use of synthetic and broad-spectrum insecticides have increasingly motivated scientific research on different alternatives and among these, the use of green systems, such as essential oils, have been explored. Several species of the Apiaceae and Asteraceae families, aromatic herbs rich in secondary bioactive metabolites, are used in the industrial field for pharmaceutical, cosmetic, and food purposes. Different essential oils extracted from some species of these families have shown acute toxicity and attractive and/or repellent effects towards different insects. In our work, we investigated the toxic potential of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum essential oils against four insect species, Sitophilus oryzae, Lasioderma serricorne, Necrobia rufipes, and Rhyzoperta dominica, which are common pests of stored products. The composition of both oils, extracted by hydrodistillation from the aerial parts of the two plants, was evaluated by GC×GC-MS. Calendula incana subsp. maritima essential oil was rich in oxygenated sesquiterpenoids, such as cubebol (35.39%), 4-epi-cubebol (22.99%), and cubenol (12.77%), while the Laserpitium siler subsp. siculum essential oil was composed mainly of monoterpene hydrocarbons, such as β-phellandrene (42.16%), limonene (23.87%), and β-terpinene (11.80%). The toxicity Petri dish bioassays indicated that C. maritima oil killed a mean of 65.50% of S. oryzae and 44.00% of R. dominica adults, indicating a higher biocidal activity in comparison with L. siculum oil, while toward the other species, no significant differences in mortality were recorded. Calendula maritima oil could be, then, considered a promising candidate for further tests as an alternative biocide toward S. oryzae and R. dominica. The possibility that the relatively high content of oxygenated sesquiterpenoids in C. maritima essential oil determines its higher biocidal activity is discussed. Full article
Show Figures

Figure 1

12 pages, 1609 KiB  
Article
Determining the Effect of Temperature on the Growth and Reproduction of Lasioderma serricorne Using Two-Sex Life Table Analysis
by Tao Wang, Yan-Ling Ren, Tai-An Tian, Zhi-Tao Li, Xing-Ning Wang, Zhi-Yi Wu, Jian Tang and Jian-Feng Liu
Insects 2021, 12(12), 1103; https://doi.org/10.3390/insects12121103 - 10 Dec 2021
Cited by 3 | Viewed by 3430
Abstract
The cigarette beetle Lasioderma serricorne (Fabricius) is a major pest of stored products worldwide, especially tobacco and foods, causing huge economic losses. This study aimed to experimentally investigate the population dynamics of this pest at different temperatures and provide theoretical input for its [...] Read more.
The cigarette beetle Lasioderma serricorne (Fabricius) is a major pest of stored products worldwide, especially tobacco and foods, causing huge economic losses. This study aimed to experimentally investigate the population dynamics of this pest at different temperatures and provide theoretical input for its control. Populations of L. serricorne were established under laboratory conditions at five temperatures (21 °C, 24 °C, 27 °C, 30 °C, and 33 °C). Results showed that an increasing temperature significantly affected the developmental time, longevity, oviposition period, and fecundity of L. serricorne. Both the longevity and fecundity of adult beetles were significantly reduced as the temperature increased. High temperatures significantly reduced the total duration of the preoviposition period but prolonged the oviposition period of L. serricorne. Increasing the temperatures from 21 °C to 33 °C significantly influenced the life table parameters of L. serricorne. The intrinsic increase rate (r), finite increase rate (λ), and gross reproductive rate (GRR) all increased with a greater rearing temperature, but mean generation time (T) was significantly shortened. To our best knowledge, this is the first report to detail the entire life history of the cigarette beetle in response to different temperatures when reared on tobacco dry leaves. This finding may provide basic information on the occurrence of L. serricorne in a warehouse setting and its mass rearing. Full article
(This article belongs to the Special Issue Insects Ecology and Biocontrol Applications)
Show Figures

Figure 1

15 pages, 4921 KiB  
Article
Study on Gas Chromatographic Fingerprint of Essential Oil from Stellera chamaejasme Flowers and Its Repellent Activities against Three Stored Product Insects
by Yuli Sang, Jingyu Liu, Lei Shi, Xiulan Wang, Yueqiang Xin, Yanjun Hao and Li Bai
Molecules 2021, 26(21), 6438; https://doi.org/10.3390/molecules26216438 - 25 Oct 2021
Cited by 9 | Viewed by 2247
Abstract
The objective of this study was to establish the chromatographic fingerprints of the essential oil (EO) from Stellera chamaejasme flowers collected from various natural sites by gas chromatography (GC) combined with chemometric methods. The EO was obtained by hydrodistillation, and its chemical composition [...] Read more.
The objective of this study was to establish the chromatographic fingerprints of the essential oil (EO) from Stellera chamaejasme flowers collected from various natural sites by gas chromatography (GC) combined with chemometric methods. The EO was obtained by hydrodistillation, and its chemical composition was analyzed by gas chromatography−mass spectrometry (GC−MS). Most components were identified as ketones and the relatively high-content components were fitone (38.973%), n-hentriacontane (5.807%), myristic acid (4.944%) and phytol (3.988%). In addition, the repellent activities of the EO from S. chamaejasme flowers and its four main chemical compounds were evaluated against three stored product pests (Tribolium castaneum, Lasioderma serricorne, Liposcelis bostrychophila) for the first time. In this work, the EO and the four chemical compounds showed a repellent effect against three storage pests after 2 and 4 h exposure. The experimental method and repellent activity of S. chamaejasme flower EO could provide a basis for the development of botanical pesticide and the utilization of the rich plant resources of S. chamaejasme in the future. Full article
Show Figures

Figure 1

15 pages, 1129 KiB  
Article
Chemical Constituents of the Essential Oil Extracted from Elsholtzia densa and Their Insecticidal Activity against Tribolium castaneum and Lasioderma serricorne
by Junyu Liang, Yazhou Shao, Haoshu Wu, Yue An, Junlong Wang, Ji Zhang and Weibao Kong
Foods 2021, 10(10), 2304; https://doi.org/10.3390/foods10102304 - 28 Sep 2021
Cited by 23 | Viewed by 3492
Abstract
Storage pests pose a great threat to global food security. Here, we found that the essential oil (EO) extracted from E. densa possesses obvious effects against the insects that threaten stored-products. In this work, we investigated the chemical constituents of the essential oil [...] Read more.
Storage pests pose a great threat to global food security. Here, we found that the essential oil (EO) extracted from E. densa possesses obvious effects against the insects that threaten stored-products. In this work, we investigated the chemical constituents of the essential oil extracted from Elsholtzia densa, and their insecticidal (contact and fumigant) toxicity against Tribolium castaneum and Lasioderma serricorne. A total of 45 compounds were identified by GC-MS, accounting for 98.74% of the total EO. Meanwhile, 11 compounds were isolated from the EO, including limonene, β-caryophyllene, ρ-cymene, trans-phytol, α-terpineol, linalool, acetophenone, 1,8-cineole, ρ-cymen-7-ol, 1-O-cerotoylgly-cerol, and palmitic acid. Furthermore, acetophenone, ρ-cymen-7-ol, and 1-O-cerotoylgly-cerol were isolated for the first time from Elsholtzia spp. The results of the bioassays indicated that the EO had the property of insecticidal toxicity against T. castaneum and L. serricorne. All of the compounds showed different levels of insecticidal toxicity against the two species of insects. Among them, 2-ethyl-1H-imidazole had no insecticidal toxicity against T. castaneum, but possessed fumigant and obvious contact toxicity against L. serricorne. ρ-Cymen-7-ol had beneficial insecticidal toxicity against the two species of insects, and fumigant toxicity against L. serricorne. ρ-Cymen-7-ol (LD50 = 13.30 μg/adult), 1-octen-3-ol (LD50 = 13.52 μg/adult), and 3-octanol (LD50 = 17.45 μg/adult) showed significant contact toxicity against T. castaneum. Acetophenone (LD50 = 7.07 μg/adult) and ρ-cymen-7-ol (LD50 = 8.42 μg/adult) showed strong contact toxicity against L. serricorne. ρ-Cymene (LC50 = 10.91 mg/L air) and ρ-cymen-7-ol (LC50 = 10.47 mg/L air) showed powerful fumigant toxicity to T. castaneum. Limonene (LC50 = 5.56 mg/L air), acetophenone (LC50 = 5.47 mg/L air), and 3-octanol (LC50 = 5.05 mg/L air) showed obvious fumigant toxicity against L. serricorne. In addition, the EO and its chemical compounds possessed different levels of repellent activity. This work provides some evidence of the value of exploring these materials for insecticidal activity, for human health purposes. We suggest that the EO extracted from E. densa may have the potential to be developed as an insecticidal agent against stored product insect pests. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

9 pages, 843 KiB  
Article
Odorants of Capsicum spp. Dried Fruits as Candidate Attractants for Lasioderma serricorne F. (Coleoptera: Anobiidae)
by Salvatore Guarino, Sara Basile, Mokhtar Abdulsattar Arif, Barbara Manachini and Ezio Peri
Insects 2021, 12(1), 61; https://doi.org/10.3390/insects12010061 - 12 Jan 2021
Cited by 17 | Viewed by 3492
Abstract
The cigarette beetle, Lasioderma serricorne F. (Coleoptera: Anobiidae) is an important food storage pest affecting the tobacco industry and is increasingly impacting museums and herbaria. Monitoring methods make use of pheromone traps which can be implemented using chili fruit powder. The objective of [...] Read more.
The cigarette beetle, Lasioderma serricorne F. (Coleoptera: Anobiidae) is an important food storage pest affecting the tobacco industry and is increasingly impacting museums and herbaria. Monitoring methods make use of pheromone traps which can be implemented using chili fruit powder. The objective of this study was to assess the response of L. serricorne to the volatile organic compounds (VOCs) from different chili powders in order to identify the main semiochemicals involved in this attraction. Volatiles emitted by Capsicum annuum, C. frutescens, and C. chinense dried fruit powders were tested in an olfactometer and collected and analyzed using SPME and GC-MS. Results indicated that C. annuum and C. frutescens VOCs elicit attraction toward L. serricorne adults in olfactometer, while C. chinense VOCs elicit no attraction. Chemicals analysis showed a higher presence of polar compounds in the VOCs of C. annuum and C. frutescens compared to C. chinense, with α-ionone and β-ionone being more abundant in the attractive species. Further olfactometer bioassays indicated that both α-ionone and β-ionone elicit attraction, suggesting that these compounds are candidates as synergistic attractants in pheromone monitoring traps for L. serricorne. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 1516 KiB  
Article
Susceptibility of the Cigarette Beetle Lasioderma serricorne (Fabricius) to Phosphine, Ethyl Formate and Their Combination, and the Sorption and Desorption of Fumigants on Cured Tobacco Leaves
by Bong Su Kim, Eun-Mi Shin, Young Ju Park and Jeong Oh Yang
Insects 2020, 11(9), 599; https://doi.org/10.3390/insects11090599 - 4 Sep 2020
Cited by 13 | Viewed by 3461
Abstract
The susceptibility of Lasioderma serricorne to phosphine (PH3), ethyl formate (EF) and their combination (PH3 + EF) was evaluated in this study. Eggs, larvae, pupae and adults were subjected to treatment with fumigants to determine the 90% lethal concentration time [...] Read more.
The susceptibility of Lasioderma serricorne to phosphine (PH3), ethyl formate (EF) and their combination (PH3 + EF) was evaluated in this study. Eggs, larvae, pupae and adults were subjected to treatment with fumigants to determine the 90% lethal concentration time (LCt90) values. Treatment with PH3 for 20 h resulted in LCt90 values of 1.15, 1.39, 14.97 and 1.78 mg h/L while treatment with EF resulted in values of 157.96, 187.75, 126.06 and 83.10 mg h/L, respectively. By contrast, the combination of PH3 + EF resulted in LCt90 values of 36.05, 44.41, 187.17 and 35.12 mg h/L after 4 h. These results show that, through treatment with PH3 + EF, control can be achieved at lower concentrations than for treatment with EF alone and at lower exposure times than for treatment with PH3 alone. The sorption rates of the fumigants on cured tobacco leaves were determined for filling ratios of 2.5%, 5.0% and 10.0% (w/v). Cured tobacco leaves were treated with either 2 mg/L PH3, 114 mg/L EF or 0.5 mg/L PH3 + 109 mg/L EF. Treatment with PH3 showed sorption rates of 0.0%, 7.1% and 14.3%. EF, however, showed higher sorption rates of 64.9%, 68.5% and 75.5%, respectively, for the indicated filling ratios. When PH3 and EF were combined, the sorption rate of PH3 was 0.0%, while the sorption rates of EF were lower (9.1%, 12.0% and 23.2%) than treatment with only EF. EF required a ventilation time of longer than 22 h to desorb from cured tobacco leaves. Therefore, PH3 + EF can effectively control L. serricorne in cured tobacco leaves, with sufficient ventilation time required after treatment for the safety of workers. Full article
Show Figures

Figure 1

Back to TopTop