Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Landsat dense stacking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17901 KiB  
Article
Evaluating ICESat-2 and GEDI with Integrated Landsat-8 and PALSAR-2 for Mapping Tropical Forest Canopy Height
by Aobo Liu, Yating Chen and Xiao Cheng
Remote Sens. 2024, 16(20), 3798; https://doi.org/10.3390/rs16203798 - 12 Oct 2024
Cited by 2 | Viewed by 3003
Abstract
Mapping forest canopy height is critical for climate modeling and forest management, and tropical forests present unique challenges for remote sensing due to their dense vegetation and complex structure. The advent of ICESat-2 and GEDI, two advanced lidar datasets, offers new opportunities for [...] Read more.
Mapping forest canopy height is critical for climate modeling and forest management, and tropical forests present unique challenges for remote sensing due to their dense vegetation and complex structure. The advent of ICESat-2 and GEDI, two advanced lidar datasets, offers new opportunities for improving canopy height estimation. In this study, we used footprint-level canopy height products from ICESat-2 and GEDI, combined with features extracted from Landsat-8, PALSAR-2, and FABDEM products. The AutoGluon stacking ensemble learning algorithm was employed to construct inversion models, generating 30 m resolution continuous canopy height maps for the tropical forests of Puerto Rico. Accuracy validation was performed using the high-resolution G-LiHT airborne lidar products. Results show that tropical forest canopy height inversion remains challenging, with all models yielding relative root mean square errors (rRMSE) exceeding 0.30. The stacking ensemble model outperformed all base learners, and the GEDI-based map had slightly higher accuracy than the ICESat-2-based map, with RMSE values of 4.81 and 4.99 m, respectively. Both models showed systematic biases, but the GEDI-based model exhibited less underestimation for taller canopies, making it more suitable for biomass estimation. The proposed approach can be applied to other forest ecosystems, enabling fine-resolution canopy height mapping and enhancing forest conservation efforts. Full article
(This article belongs to the Special Issue Machine Learning in Global Change Ecology: Methods and Applications)
Show Figures

Figure 1

14 pages, 5135 KiB  
Article
Evaluation of Synthetic-Temporal Imagery as an Environmental Covariate for Digital Soil Mapping: A Case Study in Soils under Tropical Pastures
by Fabio Arnaldo Pomar Avalos, Michele Duarte de Menezes, Fausto Weimar Acerbi Júnior, Nilton Curi, Junior Cesar Avanzi and Marx Leandro Naves Silva
Resources 2024, 13(2), 32; https://doi.org/10.3390/resources13020032 - 14 Feb 2024
Cited by 1 | Viewed by 2100
Abstract
Digital soil maps are paramount for supporting environmental process analysis, planning for the conservation of ecosystems, and sustainable agriculture. The availability of dense time series of surface reflectance data provides valuable information for digital soil mapping (DSM). A detailed soil survey, along with [...] Read more.
Digital soil maps are paramount for supporting environmental process analysis, planning for the conservation of ecosystems, and sustainable agriculture. The availability of dense time series of surface reflectance data provides valuable information for digital soil mapping (DSM). A detailed soil survey, along with a stack of Landsat 8 SR data and a rainfall time series, were analyzed to evaluate the influence of soil on the temporal patterns of vegetation greenness, assessed using the normalized difference vegetation index (NDVI). Based on these relationships, imagery depicting land surface phenology (LSP) metrics and other soil-forming factors proxies were evaluated as environmental covariates for DSM. The random forest algorithm was applied as a predictive model to relate soils and environmental covariates. The study focused on four soils typical of tropical conditions under pasture cover. Soil parent material and topography covariates were found to be similarly important to LSP metrics, especially those LSP images related to the seasonal availability of water to plants, registering significant contributions to the random forest model. Stronger effects of rainfall seasonality on LSP were observed for the Red Latosol (Ferralsol). The results of this study demonstrate that the addition of temporal variability of vegetation greenness can be used to assess soil subsurface processes and assist in DSM. Full article
Show Figures

Figure 1

18 pages, 4362 KiB  
Article
Characterizing the Long-Term Landscape Dynamics of a Typical Cloudy Mountainous Area in Northwest Yunnan, China
by Youjun Chen, Xiaokang Hu, Yanjie Zhang and Jianmeng Feng
Sustainability 2022, 14(20), 13488; https://doi.org/10.3390/su142013488 - 19 Oct 2022
Cited by 1 | Viewed by 1479
Abstract
Detailed knowledge of landscape dynamics is crucial for many applications, from resource management to ecosystem service assessments. However, identifying the spatial distribution of the landscape using optical remote sensing techniques is difficult in mountainous areas, primarily due to cloud cover and topographic relief. [...] Read more.
Detailed knowledge of landscape dynamics is crucial for many applications, from resource management to ecosystem service assessments. However, identifying the spatial distribution of the landscape using optical remote sensing techniques is difficult in mountainous areas, primarily due to cloud cover and topographic relief. Our study uses stable classification samples from mountainous areas to investigate an integrated approach that addresses large volumes of cloud-cover data (with associated data gaps) and extracts landscape time series (LTS) with a high time–frequency resolution. We applied this approach to map LTS in a typical cloudy mountainous area (Erhai watershed in northwestern Yunnan, China) using dense Landsat stacks, and then we also used the classified results to investigate the spatial–temporal landscape changes in the study area at biennial intervals. The overall accuracy of the landscape classification ranged from 81.75% to 88.18%. The results showed highly dynamic processes in the landscape throughout the study period. Forest was the main land cover type, covering approximately 39.19% to 41.68% of the total study area. Alpine meadow showed fluctuating trends, with a net loss of 11.22% and an annual reduction rate of −0.4%. Shrub cover increased by 1.26%, and water bodies showed a small decrease in area, resulting in an overall net change of −0.03%. Built-up land and farmland areas continued to expand, and their annual growth rates were 1.52% and 1.06%, respectively. Bare land showed the highest loss, with a net change of 228.97 km2. In the Erhai watershed, all the landscape classes changed or transitioned into other classes, and a substantial decrease in bare land occurred. The biennial LTS maps allow us to fully understand the spatially and temporally complex change processes occurring in landscape classes; these changes would not be observable at coarse temporal intervals (e.g., 5–10 years). Our study highlights the importance of increasing the temporal resolution in landscape change studies to support sustainable land resource management strategies and integrate landscape planning for environmental conservation. Full article
Show Figures

Figure 1

17 pages, 4678 KiB  
Article
Mapping Cropland Burned Area in Northeastern China by Integrating Landsat Time Series and Multi-Harmonic Model
by Jinxiu Liu, Du Wang, Eduardo Eiji Maeda, Petri K. E. Pellikka and Janne Heiskanen
Remote Sens. 2021, 13(24), 5131; https://doi.org/10.3390/rs13245131 - 17 Dec 2021
Cited by 7 | Viewed by 3968
Abstract
Accurate cropland burned area estimation is crucial for air quality modeling and cropland management. However, current global burned area products have been primarily derived from coarse spatial resolution images which cannot fulfill the spatial requirement for fire monitoring at local levels. In addition, [...] Read more.
Accurate cropland burned area estimation is crucial for air quality modeling and cropland management. However, current global burned area products have been primarily derived from coarse spatial resolution images which cannot fulfill the spatial requirement for fire monitoring at local levels. In addition, there is an overall lack of accurate cropland straw burning identification approaches at high temporal and spatial resolution. In this study, we propose a novel algorithm to capture burned area in croplands using dense Landsat time series image stacks. Cropland burning shows a short-term seasonal variation and a long-term dynamic trend, so a multi-harmonic model is applied to characterize fire dynamics in cropland areas. By assessing a time series of the Burned Area Index (BAI), our algorithm detects all potential burned areas in croplands. A land cover mask is used on the primary burned area map to remove false detections, and the spatial information with a moving window based on a majority vote is employed to further reduce salt-and-pepper noise and improve the mapping accuracy. Compared with the accuracy of 67.3% of MODIS products and that of 68.5% of Global Annual Burned Area Map (GABAM) products, a superior overall accuracy of 92.9% was obtained by our algorithm using Landsat time series and multi-harmonic model. Our approach represents a flexible and robust way of detecting straw burning in complex agriculture landscapes. In future studies, the effectiveness of combining different spectral indices and satellite images can be further investigated. Full article
(This article belongs to the Special Issue Vegetation Fires, Greenhouse Gas Emissions and Climate Change)
Show Figures

Figure 1

20 pages, 11316 KiB  
Article
Proposing a GEE-Based Spatiotemporally Adjusted Value Transfer Method to Assess Land-Use Changes and Their Impacts on Ecosystem Service Values in the Shenyang Metropolitan Area
by Shuming Ma, Jie Huang and Yingying Chai
Sustainability 2021, 13(22), 12694; https://doi.org/10.3390/su132212694 - 17 Nov 2021
Cited by 6 | Viewed by 2513
Abstract
Understanding land-use dynamics and their impacts on ecosystem service values (ESVs) is critical to conservation and environmental decision-making. This work used the Google Earth Engine (GEE) platform and an adjusted value transfer method to investigate spatiotemporal ESV changes in the Shenyang Metropolitan Area [...] Read more.
Understanding land-use dynamics and their impacts on ecosystem service values (ESVs) is critical to conservation and environmental decision-making. This work used the Google Earth Engine (GEE) platform and an adjusted value transfer method to investigate spatiotemporal ESV changes in the Shenyang Metropolitan Area (SMA), a National Reform Pilot Zone in northeast China. First, we obtained land-use classification maps for 2000, 2005, 2010, 2015, and 2020 using a GEE-based Landsat dense stacking methodology. Then, we employed four spatiotemporal correction factors (net primary productivity, fractional vegetation cover, precipitation, and crop yield) in the value transfer method, and analyzed the ESV dynamics. The results showed that forest land and cropland were the two dominant land-use types, jointly occupying 75–89% of the total area. The built-up areas expanded rapidly from 2727 km2 in 2000 to 3597 km2 in 2020, while the cropland kept decreasing, and suffered the most area loss (−1305.09 km2). The ESV of the SMA rose substantially from 814.04 hundred million Chinese Yuan (hmCYN) in 2000 to 1546.82 hmCYN in 2005, then kept decreasing in 2005–2010 (−17.01%) and 2010–2015 (−10.75%), and finally increased to 1329.81 hmCYN in 2020. The ESVs of forest comprised most of the total ESVs, with the percentage ranging from 72.65% to 77.18%, followed by water bodies, ranging from 11.61% to 15.64%. The ESV changes for forest land and water bodies were the main drivers for the total ESV dynamics. Overall, this study illustrated the feasibility of combining the GEE platform and the spatiotemporal adjusted value transfer method into the ESV analysis. Additionally, the results could provide essential references to future environmental management policymaking in the SMA. Full article
Show Figures

Figure 1

19 pages, 4694 KiB  
Article
Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine
by Maoxin Zhang, Tingting He, Guangyu Li, Wu Xiao, Haipeng Song, Debin Lu and Cifang Wu
Remote Sens. 2021, 13(21), 4273; https://doi.org/10.3390/rs13214273 - 24 Oct 2021
Cited by 26 | Viewed by 5376
Abstract
Socioeconomic development is often dependent on the production of mining resources, but both opencast and underground mining harm vegetation and the eco-environment. Under the requirements of the construction for ecological civilization in China, more attention has been paid to the reclamation of mines [...] Read more.
Socioeconomic development is often dependent on the production of mining resources, but both opencast and underground mining harm vegetation and the eco-environment. Under the requirements of the construction for ecological civilization in China, more attention has been paid to the reclamation of mines and mining management. Thus, it is the basement of formulating policies related to mining management and implementing reclamation that detection of mining disturbance rapidly and accurately. This research carries on an empirical study in the Dexing copper mine, Jiangxi, China, aiming at exploring the process of distance and reclamation. Based on the dense time-series stack derived from the Landsat archive on Google Earth Engine (GEE), the disturbance of surface mining in the 1986–2020 period has been detected using the continuous change detection and classification (CCDC) algorithm. The results are that: (1) the overall accuracy of damage and recovery is 92% and 88%, respectively, and the Kappa coefficient is 85% and 84% respectively. This means that we obtained an ideal detection effect; (2) the surface-mining area was increasing from 1986–2020 in the Dexing copper mine, and the accumulation of mining damage is approximately 2865.96 ha with an annual area of 81.88 ha. We also found that the area was fluctuating with the increase. The detected natural restoration was appraised at a total of 544.95 ha in the 1988–2020 period with an average restoration of 16.03 ha. This means that it just restores less in general; (3) it has always been the case that the Dexing mine is damaged by mining and reclamation in the whole year (it is most frequently damaged month is July). All imageries in the mine are detected by the CCDC algorithm, and they are classified as four types by disturbing number in pixel scale (i.e., 0, 1, 2, more than 2 times). Based on that, we found that the only once disturbed pixels account for 64.75% of the whole disturbed pixels, which is the majority in the four classes; (4) this method provides an innovative perspective for obtaining the mining disturbed dynamic information timely and accurately and ensures that the time and number of surface mining disturbed areas are identified accurately. This method is also valuable in other applications including the detection of other similar regions. Full article
(This article belongs to the Special Issue Remote Sensing Solutions for Mapping Mining Environments)
Show Figures

Graphical abstract

18 pages, 7429 KiB  
Article
Land Use/Land Cover Changes and Their Driving Factors in the Northeastern Tibetan Plateau Based on Geographical Detectors and Google Earth Engine: A Case Study in Gannan Prefecture
by Chenli Liu, Wenlong Li, Gaofeng Zhu, Huakun Zhou, Hepiao Yan and Pengfei Xue
Remote Sens. 2020, 12(19), 3139; https://doi.org/10.3390/rs12193139 - 24 Sep 2020
Cited by 171 | Viewed by 11077
Abstract
As an important production base for livestock and a unique ecological zone in China, the northeast Tibetan Plateau has experienced dramatic land use/land cover (LULC) changes with increasing human activities and continuous climate change. However, extensive cloud cover limits the ability of optical [...] Read more.
As an important production base for livestock and a unique ecological zone in China, the northeast Tibetan Plateau has experienced dramatic land use/land cover (LULC) changes with increasing human activities and continuous climate change. However, extensive cloud cover limits the ability of optical remote sensing satellites to monitor accurately LULC changes in this area. To overcome this problem in LULC mapping in the Ganan Prefecture, 2000–2018, we used the dense time stacking of multi-temporal Landsat images and random forest algorithm based on the Google Earth Engine (GEE) platform. The dynamic trends of LULC changes were analyzed, and geographical detectors quantitatively evaluated the key driving factors of these changes. The results showed that (1) the overall classification accuracy varied between 89.14% and 91.41%, and the kappa values were greater than 86.55%, indicating that the classification results were reliably accurate. (2) The major LULC types in the study area were grassland and forest, and their area accounted for 50% and 25%, respectively. During the study period, the grassland area decreased, while the area of forest land and construction land increased to varying degrees. The land-use intensity presents multi-level intensity, and it was higher in the northeast than that in the southwest. (3) Elevation and population density were the major driving factors of LULC changes, and economic development has also significantly affected LULC. These findings revealed the main factors driving LULC changes in Gannan Prefecture and provided a reference for assisting in the development of sustainable land management and ecological protection policy decisions. Full article
(This article belongs to the Collection Google Earth Engine Applications)
Show Figures

Graphical abstract

20 pages, 64224 KiB  
Article
Land Cover Change in the Central Region of the Lower Yangtze River Based on Landsat Imagery and the Google Earth Engine: A Case Study in Nanjing, China
by Dong-Dong Zhang and Lei Zhang
Sensors 2020, 20(7), 2091; https://doi.org/10.3390/s20072091 - 8 Apr 2020
Cited by 37 | Viewed by 4996
Abstract
Urbanization in China is progressing rapidly and continuously, especially in the newly developed metropolitan areas. The Google Earth Engine (GEE) is a powerful tool that can be used to efficiently investigate these changes using a large repository of available optical imagery. This work [...] Read more.
Urbanization in China is progressing rapidly and continuously, especially in the newly developed metropolitan areas. The Google Earth Engine (GEE) is a powerful tool that can be used to efficiently investigate these changes using a large repository of available optical imagery. This work examined land-cover changes in the central region of the lower Yangtze River and exemplifies the application of GEE using the random forest classification algorithm on Landsat dense stacks spanning the 30 years from 1987 to 2017. Based on the obtained time-series land-cover classification results, the spatiotemporal land-use/cover changes were analyzed, as well as the main factors driving the changes in different land-cover categories. The results show that: (1) The obtained land datasets were reliable and highly accurate, with an overall accuracy ranging from 88% to 92%. (2) Over the past 30 years, built-up areas have continued to expand, increasing from 537.9 km2 to 1500.5 km2, and the total area occupied by built-up regions has expanded by 178.9% to occupy an additional 962.7 km2. The surface water area first decreased, then increased, and generally showed an increasing trend, expanding by 17.9%, with an area increase of approximately 131 km2. Barren areas accounted for 6.6% of the total area in the period 2015–2017, which was an increase of 94.8% relative to the period 1987–1989. The expansion of the built-up area was accompanied by an overall 25.6% (1305.7 km2) reduction in vegetation. (3) The complexity of the key factors driving the changes in the regional surface water extent was made apparent, mainly including the changes in runoff of the Yangtze River and the construction of various water conservancy projects. The effects of increasing the urban population and expanding industrial development were the main factors driving the expansion of urban built-up areas and the significant reduction in vegetation. The advantages and limitations arising from land-cover mapping by using the Google Earth Engine are also discussed. Full article
Show Figures

Figure 1

24 pages, 5780 KiB  
Article
Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data
by Robert Milewski, Sabine Chabrillat and Bodo Bookhagen
Remote Sens. 2020, 12(3), 474; https://doi.org/10.3390/rs12030474 - 3 Feb 2020
Cited by 12 | Viewed by 4986
Abstract
Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and [...] Read more.
Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne multitemporal multispectral optical data combined with spectral endmembers to document spatial distribution of surface crust types over time on the Omongwa pan located in the Namibian Kalahari. For this purpose, 49 surface samples were collected for spectral and mineralogical characterization during three field campaigns (2014–2016) reflecting different seasons and surface conditions of the salt pan. An approach was developed to allow the spatiotemporal analysis of the salt pan crust dynamics in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 2014 and 2017, covering at least three major wet–dry cycles. The established spectral analysis technique Sequential Maximum Angle Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data allowed the differentiation of four endmembers associated with mineralogical mixtures of the crust’s composition in dry conditions and three endmembers associated with flooded or muddy pan conditions. The dry crust endmember spectra have been identified in relation to visible, near infrared, and short-wave infrared (VNIR–SWIR) spectroscopy and X-ray diffraction (XRD) analyses of the collected surface samples. According these results, the spectral endmembers are interpreted as efflorescent halite crust, mixed halite–gypsum crust, mixed calcite quartz sepiolite crust, and gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with the Spectral Angle Mapper (SAM) method and significant spatiotemporal dynamics of the major surface crust types were observed. Further, the surface crust dynamics were analyzed in comparison with the pan’s moisture regime and other climatic parameters. The results show that the crust dynamics are mainly driven by flooding events in the wet season, but are also influenced by temperature and aeolian activity in the dry season. The approach utilized in this study combines the advantages of multitemporal satellite data for temporal event characterization with advantages from hyperspectral methods for the image and ground data analyses that allow improved mineralogical differentiation and characterization. Full article
(This article belongs to the Special Issue Remote Sensing in Dryland Assessment and Monitoring)
Show Figures

Graphical abstract

16 pages, 8359 KiB  
Article
A Mapping Framework to Characterize Land Use in the Sudan-Sahel Region from Dense Stacks of Landsat Data
by Fernando Sedano, Vasco Molini and M. Abul Kalam Azad
Remote Sens. 2019, 11(6), 648; https://doi.org/10.3390/rs11060648 - 16 Mar 2019
Cited by 14 | Viewed by 4924
Abstract
We developed a land cover and land use mapping framework specifically designed for agricultural systems of the Sudan-Sahel region. The mapping approach extracts information from inter- and intra-annual vegetation dynamics from dense stacks of Landsat 8 images. We applied this framework to create [...] Read more.
We developed a land cover and land use mapping framework specifically designed for agricultural systems of the Sudan-Sahel region. The mapping approach extracts information from inter- and intra-annual vegetation dynamics from dense stacks of Landsat 8 images. We applied this framework to create a 30 m spatial resolution land use map with a focus on agricultural landscapes of northern Nigeria for 2015. This map provides up-to-date information with a higher level of spatial and thematic detail resulting in a more precise characterization of agriculture in the region. The map reveals that agriculture is the main land use in the region. Arable land represents on average 52.5% of the area, higher than the reported national average for Nigeria (38.4%). Irrigated agriculture covers nearly 2.2% of the total area, reaching nearly 20% of the cultivated land when traditional floodplain agriculture systems are included, above the reported national average (0.63%). There is significant variability in land use within the region. Cultivated land in the northern section can reach values higher than 75%, most land suitable for agriculture is already under cultivation and there is limited land for future agricultural expansion. Marginal lands, not suitable for permanent agriculture, can reach 30% of the land at lower altitudes in the northeast and northwest. In contrast, the southern section presents lower land use intensity that results in a complex landscape that intertwines areas farms and larger patches of natural vegetation. This map improves the spatial detail of existing sources of LCLU information for the region and provides updated information of the current status of its agricultural landscapes. This study demonstrates the feasibility of multi temporal medium resolution remote sensing data to provide detailed and up-to-date information about agricultural systems in arid and sub arid landscapes of the Sahel region. Full article
(This article belongs to the Special Issue Remote Sensing in Dryland Assessment and Monitoring)
Show Figures

Graphical abstract

20 pages, 3801 KiB  
Article
Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine
by Kelsey E. Nyland, Grant E. Gunn, Nikolay I. Shiklomanov, Ryan N. Engstrom and Dmitry A. Streletskiy
Remote Sens. 2018, 10(8), 1226; https://doi.org/10.3390/rs10081226 - 4 Aug 2018
Cited by 61 | Viewed by 9276
Abstract
Climate warming is occurring at an unprecedented rate in the Arctic due to regional amplification, potentially accelerating land cover change. Measuring and monitoring land cover change utilizing optical remote sensing in the Arctic has been challenging due to persistent cloud and snow cover [...] Read more.
Climate warming is occurring at an unprecedented rate in the Arctic due to regional amplification, potentially accelerating land cover change. Measuring and monitoring land cover change utilizing optical remote sensing in the Arctic has been challenging due to persistent cloud and snow cover issues and the spectrally similar land cover types. Google Earth Engine (GEE) represents a powerful tool to efficiently investigate these changes using a large repository of available optical imagery. This work examines land cover change in the Lower Yenisei River region of arctic central Siberia and exemplifies the application of GEE using the random forest classification algorithm for Landsat dense stacks spanning the 32-year period from 1985 to 2017, referencing 1641 images in total. The semiautomated methodology presented here classifies the study area on a per-pixel basis utilizing the complete Landsat record available for the region by only drawing from minimally cloud- and snow-affected pixels. Climatic changes observed within the study area’s natural environments show a statistically significant steady greening (~21,000 km2 transition from tundra to taiga) and a slight decrease (~700 km2) in the abundance of large lakes, indicative of substantial permafrost degradation. The results of this work provide an effective semiautomated classification strategy for remote sensing in permafrost regions and map products that can be applied to future regional environmental modeling of the Lower Yenisei River region. Full article
(This article belongs to the Special Issue Remote Sensing of Dynamic Permafrost Regions)
Show Figures

Figure 1

22 pages, 7237 KiB  
Article
Examining Land Cover and Greenness Dynamics in Hangzhou Bay in 1985–2016 Using Landsat Time-Series Data
by Dengqiu Li, Dengsheng Lu, Ming Wu, Xuexin Shao and Jinhong Wei
Remote Sens. 2018, 10(1), 32; https://doi.org/10.3390/rs10010032 - 25 Dec 2017
Cited by 36 | Viewed by 6505
Abstract
Land cover changes significantly influence vegetation greenness in different regions. Dense Landsat time series stacks provide unique opportunity to analyze land cover change and vegetation greenness trends at finer spatial scale. In the past three decades, large reclamation activities have greatly changed land [...] Read more.
Land cover changes significantly influence vegetation greenness in different regions. Dense Landsat time series stacks provide unique opportunity to analyze land cover change and vegetation greenness trends at finer spatial scale. In the past three decades, large reclamation activities have greatly changed land cover and vegetation growth of coastal areas. However, rarely has research investigated these frequently changed coastal areas. In this study, Landsat Normalized Difference Vegetation Index time series (1984–2016) data and the Breaks For Additive Seasonal and Trend algorithm were used to detect the intensity and dates of abrupt changes in a typical coastal area—Hangzhou Bay, China. The prior and posterior land cover categories of each change were classified using phenology information through a Random Forest model. The impacts of land cover change on vegetation greenness trends of the inland and reclaimed areas were analyzed through distinguishing gradual and abrupt changes. The results showed that the intensity and date of land cover change were detected successfully with overall accuracies of 88.7% and 86.1%, respectively. The continuous land cover dynamics were retrieved accurately with an overall accuracy of 91.0% for ten land cover classifications. Coastal reclamation did not alleviate local cropland occupation, but prompted the vegetation greenness of the reclaimed area. Most of the inland area showed a browning trend. The main contributors to the greenness and browning trends were also quantified. These findings will help the natural resource management community generate better understanding of coastal reclamation and make better management decisions. Full article
Show Figures

Graphical abstract

16 pages, 24659 KiB  
Article
Impacts of Urbanization on Vegetation Phenology over the Past Three Decades in Shanghai, China
by Tong Qiu, Conghe Song and Junxiang Li
Remote Sens. 2017, 9(9), 970; https://doi.org/10.3390/rs9090970 - 20 Sep 2017
Cited by 47 | Viewed by 8917
Abstract
Vegetation phenology manifests the rhythm of annual plant life activities. It has been extensively studied in natural ecosystems. However, major knowledge gaps still exist in understanding the impacts of urbanization on vegetation phenology. This study addresses two questions to fill the knowledge gaps: [...] Read more.
Vegetation phenology manifests the rhythm of annual plant life activities. It has been extensively studied in natural ecosystems. However, major knowledge gaps still exist in understanding the impacts of urbanization on vegetation phenology. This study addresses two questions to fill the knowledge gaps: (1) How does vegetation phenology vary spatially and temporally along a rural-to-urban transect in Shanghai, China, over the past three decades? (2) How do landscape composition and configuration affect those variations of vegetation phenology? To answer these questions, 30 m × 30 m mean vegetation phenology metrics, including the start of growing season (SOS), end of growing season (EOS), and length of growing season (LOS), were derived for urban vegetation using dense stacks of enhanced vegetation index (EVI) time series from images collected by Landsat 5–8 satellites from 1984 to 2015. Landscape pattern metrics were calculated using high spatial resolution aerial photos. We then used Pearson correlation analysis to quantify the associations between phenology patterns and landscape metrics. We found that vegetation in urban centers experienced advances of SOS for 5–10 days and delays of EOS for 5–11 days compared with those located in the surrounding rural areas. Additionally, we observed strong positive correlations between landscape composition (percentage of landscape area) of developed land and LOS of urban vegetation. We also found that the landscape configuration of local land cover types, especially patch density and edge density, was significantly correlated with the spatial patterns of vegetation phenology. These results demonstrate that vegetation phenology in the urban area is significantly different from its rural surroundings. These findings have implications for urban environmental management, ranging from biodiversity protection to public health risk reduction. Full article
(This article belongs to the Special Issue Remote Sensing of Urban Ecology)
Show Figures

Figure 1

26 pages, 24021 KiB  
Article
Mapping the Expansion of Boom Crops in Mainland Southeast Asia Using Dense Time Stacks of Landsat Data
by Kaspar Hurni, Annemarie Schneider, Andreas Heinimann, Duong H. Nong and Jefferson Fox
Remote Sens. 2017, 9(4), 320; https://doi.org/10.3390/rs9040320 - 29 Mar 2017
Cited by 51 | Viewed by 13174
Abstract
We performed a multi-date composite change detection technique using a dense-time stack of Landsat data to map land-use and land-cover change (LCLUC) in Mainland Southeast Asia (MSEA) with a focus on the expansion of boom crops, primarily tree crops. The supervised classification was [...] Read more.
We performed a multi-date composite change detection technique using a dense-time stack of Landsat data to map land-use and land-cover change (LCLUC) in Mainland Southeast Asia (MSEA) with a focus on the expansion of boom crops, primarily tree crops. The supervised classification was performed using Support Vector Machines (SVM), which are supervised non-parametric statistical learning techniques. To select the most suitable SMV classifier and the related parameter settings, we used the training data and performed a two-dimensional grid search with a three-fold internal cross-validation. We worked in seven Landsat footprints and found the linear kernel to be the most suitable for all footprints, but the most suitable regularization parameter C varied across the footprints. We distinguished a total of 41 LCLUCs (13 to 31 classes per footprint) in very dynamic and heterogeneous landscapes. The approach proved useful for distinguishing subtle changes over time and to map a variety of land covers, tree crops, and transformations as long as sufficient training points could be collected for each class. While to date, this approach has only been applied to mapping urban extent and expansion, this study shows that it is also useful for mapping change in rural settings, especially when images from phenologically relevant acquisition dates are included. Full article
Show Figures

Graphical abstract

30 pages, 4446 KiB  
Article
Evaluating an Automated Approach for Monitoring Forest Disturbances in the Pacific Northwest from Logging, Fire and Insect Outbreaks with Landsat Time Series Data
by Christopher S. R. Neigh, Douglas K. Bolton, Jennifer J. Williams and Mouhamad Diabate
Forests 2014, 5(12), 3169-3198; https://doi.org/10.3390/f5123169 - 12 Dec 2014
Cited by 17 | Viewed by 8231
Abstract
Forests are the largest aboveground sink for atmospheric carbon (C), and understanding how they change through time is critical to reduce our C-cycle uncertainties. We investigated a strong decline in Normalized Difference Vegetation Index (NDVI) from 1982 to 1991 in Pacific Northwest forests, [...] Read more.
Forests are the largest aboveground sink for atmospheric carbon (C), and understanding how they change through time is critical to reduce our C-cycle uncertainties. We investigated a strong decline in Normalized Difference Vegetation Index (NDVI) from 1982 to 1991 in Pacific Northwest forests, observed with the National Ocean and Atmospheric Administration’s (NOAA) series of Advanced Very High Resolution Radiometers (AVHRRs). To understand the causal factors of this decline, we evaluated an automated classification method developed for Landsat time series stacks (LTSS) to map forest change. This method included: (1) multiple disturbance index thresholds; and (2) a spectral trajectory-based image analysis with multiple confidence thresholds. We produced 48 maps and verified their accuracy with air photos, monitoring trends in burn severity data and insect aerial detection survey data. Area-based accuracy estimates for change in forest cover resulted in producer’s and user’s accuracies of 0.21 ± 0.06 to 0.38 ± 0.05 for insect disturbance, 0.23 ± 0.07 to 1 ± 0 for burned area and 0.74 ± 0.03 to 0.76 ± 0.03 for logging. We believe that accuracy was low for insect disturbance because air photo reference data were temporally sparse, hence missing some outbreaks, and the annual anniversary time step is not dense enough to track defoliation and progressive stand mortality. Producer’s and user’s accuracy for burned area was low due to the temporally abrupt nature of fire and harvest with a similar response of spectral indices between the disturbance index and normalized burn ratio. We conclude that the spectral trajectory approach also captures multi-year stress that could be caused by climate, acid deposition, pathogens, partial harvest, thinning, etc. Our study focused on understanding the transferability of previously successful methods to new ecosystems and found that this automated method does not perform with the same accuracy in Pacific Northwest forests. Using a robust accuracy assessment, we demonstrate the difficulty of transferring change attribution methods to other ecosystems, which has implications for the development of automated detection/attribution approaches. Widespread disturbance was found within AVHRR-negative anomalies, but identifying causal factors in LTSS with adequate mapping accuracy for fire and insects proved to be elusive. Our results provide a background framework for future studies to improve methods for the accuracy assessment of automated LTSS classifications. Full article
(This article belongs to the Special Issue Climate Change and Forest Fire)
Show Figures

Graphical abstract

Back to TopTop