Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Overview
2.3. Satellite Data and Image Preprocessing
2.4. Surface Disturbed Processes and CCDC Algorithm
2.5. Identification of Damage and Reclamation Spatio-Temporal Processing
2.6. Validation
3. Results
3.1. Accuracy
3.2. Spatio-Temporal Characteristics of Surface Disturbance
3.3. Months and Times of Surface Disturbance
4. Discussion
4.1. Continuous Change Detection Using Landsat Time-Series Datasets
4.2. Multi-Segment Segmentation and Sensitivity Analysis
4.3. Adaptability Analysis of CCDC Algorithm in Mining Footprint
4.4. Comparison with Existing Methods
4.5. Comparison with Existing Products
4.6. Defects of the Method and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, K. Strategic thinking of high quality development of nonferrous metal industry in the new era. China Nonferrous Met. 2020, 12, 26–29. [Google Scholar]
- Xiao, W.; Deng, X.; He, T.; Chen, W. Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China. Remote Sens. 2020, 12, 1612. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Z.; Miao, H.; Liang, J.; Yang, Z.; Zhang, Y.; Ma, T. Identification of cultivated land change trajectory and analysis of its process characteristics using time-series Landsat images: A study in the overlapping areas of crop and mineral production in Yanzhou City, China. Sci. Total Environ. 2021, 806, 150318. [Google Scholar] [CrossRef]
- Li, N.; Yan, C.Z.; Xie, J.L. Remote sensing monitoring recent rapid increase of coal mining activity of an important energy base in northern China, a case study of Mu Us Sandy Land. Resour. Conserv. Recycl. 2015, 94, 129–135. [Google Scholar] [CrossRef]
- Bi, R.T.; Bai, Z.K.; Li, H.; Guo, Q.X. Spatiotemporal variation of land disturbance on Spatiotemporal variation of land disturbance on large opencast coal mine area. Chin. J. Appl. Ecol. 2007, 18, 1908–1912. [Google Scholar]
- Nugroho, G.; Chulafak, G.A.; Yulianto, F. Rapid detection of land cover change in tropical savanna environment using conditional change vector analysis on remote sensing data in Moyo watershed, Sumbawa Regency, West Nusa Tenggara Province, Indonesia. J. Degrad. Min. Lands Manag. 2021, 8, 2731. [Google Scholar] [CrossRef]
- Hua, W.; Qianpeng, Y.; Shanchuan, G.U.; Zeng, D.A.; Duoji, C. Monitoring on spatial-temporal vegetation dynamics based on Landsat time series. Bull. Surv. Mapping. 2020, 11, 7–12. [Google Scholar]
- Arabameri, A.; Karimi-Sangchini, E.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Lee, S.; Tien Bui, D. Novel credal decision tree-based ensemble approaches for predicting the landslide susceptibility. Remote Sens. 2020, 12, 3389. [Google Scholar] [CrossRef]
- Sarp, G. Determination of vegetation change using thematic mapper imagery in Afşin-Elbistan Lignite Basin; SE Turkey. Procedia Technol. 2012, 1, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Hou, H.P.; Zhang, S.L.; Yan, Y.; Guo, S.Y.; Dun, D.G.; Jin, Y.J. RS and GIS Based Ecological Landscape Restoration in Xuzhou Northern Coal Mining Area. J. China Univ. Min. Technol. 2010, 4, 504–510. [Google Scholar]
- Wu, C.; Du, P.; Tan, K. Analyzing land cover and landscape pattern change in coal mining area. J. China Coal Soc. 2012, 37, 1026–1033. [Google Scholar]
- Fu, X. Monitoring of Vegetation Coverage Variation Based on Multi-Temporal Remote Sensing Data in Shendong Centre. Environ. Monit. China 2014, 30, 186–190. [Google Scholar]
- Coops, N.C.; Hilker, T.; Bater, C.W.; Wulder, M.A.; Nielsen, S.E.; McDermid, G.; Stenhouse, G. Linking ground-based to satellite-derived phenological metrics in support of habitat assessment. Remote Sens. Lett. 2012, 3, 191–200. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Ll, F.; Wang, Y. ldentification of typical disturbance trajectory in coal mining subsidence area based on multi-temporal remote sensing images. Acta Geol. Sin. 2019, 93, 301–309. [Google Scholar]
- Li, J.; Jiao, L.P.; Shen, Y.Y.; Liu, Q.L. Land use and cover change in coal mining area by lFZ and NDVI. J. China Coal Soc. 2016, 41, 2822–2829. [Google Scholar]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Kong, Y.; Meng, Y.; Li, W.; Yue, A.; Yuan, Y. Satellite image time series decomposition based on EEMD. Remote Sens. 2015, 7, 15583–15604. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Liu, C.; Tian, Y. Detecting dynamics of vegetation disturbance in forest natural reserve using Landsat imagery and Landtrendr algorithm: The case of Chaisong and Taibaishan Natural Reserves in Shaanxi China. Acta Ecol. Sin. 2020, 40, 7343–7352. [Google Scholar]
- Brown, J.F.; Tollerud, H.J.; Barber, C.P.; Zhou, Q.; Dwyer, J.L.; Vogelmann, J.E.; Loveland, T.R.; Woodcock, C.E.; Stehman, S.V.; Zhu, Z. Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach. Remote Sens. Environ. 2020, 238, 111356. [Google Scholar] [CrossRef]
- Chai, B.; Seto, K.C. Conceptualizing and characterizing micro-urbanization: A new perspective applied to Africa. Landsc. Urban Plan. 2019, 190, 103595. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A.; Woodcock, C.E. Sources of bias and variability in long-term Landsat time series over Canadian boreal forests. Remote Sens. Environ. 2016, 177, 206–219. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr algorithm on google earth engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- He, T.; Xiao, W.; Zhao, Y.; Chen, W.; Deng, X.; Zhang, J. Continues monitoring of subsidence water in mining area from the eastern plain in China from 1986 to 2018 using Landsat imagery and Google Earth Engine. J. Clean. Prod. 2021, 279, 123610. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Luo, H.; Qi, S.; Tao, S.; Xu, H.; Yao, Y. An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks. Remote Sens. Environ. 2019, 229, 114–132. [Google Scholar] [CrossRef]
- He, T.; Xiao, W.; Zhao, Y.; Deng, X.; Hu, Z. Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sens. Environ. 2020, 242, 111742. [Google Scholar] [CrossRef]
- Wang, H.; Xie, M.; Li, H.; Feng, Q.; Zhang, C.; Bai, Z. Monitoring ecosystem restoration of multiple surface coal mine sites in China via LANDSAT images using the Google Earth Engine. Land Degrad. Dev. 2021, 32, 2936–2950. [Google Scholar] [CrossRef]
- Yu, Y.; Gan, F.; Zhou, P.; Han, Z. The dynamic monitoring of the exploitation environment based on CBERSE-02B satellite: A case study of the Dexing Copper Mine. Remote Sens. Land Resour. 2009, 01, 74–78. [Google Scholar]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Zhang, Z.; Feng, W. The Risk Analysis of Solid Waste of the Fujawu Copper Ore District Based on Geoeve-1 and DEM. Remote Sens. Land Resour. 2011, 02, 130–134. [Google Scholar]
- Liu, S.; Gan, F.; Wang, R. The application of hyperion data to extracting contamination information of vegetation in the dexing copper mine, Jiangxin Province, China. Remote Sens. Land Resour. 2004, 59, 7–10. [Google Scholar]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Chen, S.; Woodcock, C.E.; Bullock, E.L.; Arévalo, P.; Torchinava, P.; Peng, S.; Olofsson, P. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sens. Environ. 2021, 265, 112648. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Awty-Carroll, K.; Bunting, P.; Hardy, A.; Bell, G. Using Continuous Change Detection and Classification of Landsat Data to Investigate Long-Term Mangrove Dynamics in the Sundarbans Region. Remote Sens. 2019, 11, 2833. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Rover, J.; Brown, J.; Worstell, B.; Howard, D.; Wu, Z.; Gallant, A.L.; Rundquist, B.; Burke, M. Monitoring landscape dynamics in central us grasslands with harmonized Landsat-8 and Sentinel-2 time series data. Remote Sens. 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Fu, Y.; Woodcock, C.E.; Olofsson, P.; Vogelmann, J.E.; Holden, C.; Wang, M.; Dai, S.; Yu, Y. Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sens. Environ. 2016, 185, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Barenblitt, A.; Payton, A.; Lagomasino, D.; Fatoyinbo, L.; Asare, K.; Aidoo, K.; Pigott, H.; Som, C.K.; Smeets, L.; Seidu, O. The large footprint of small-scale artisanal gold mining in Ghana. Sci. Total Environ. 2021, 781, 146644. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and Applications of GlobeLand30: A Review. IJGI 2017, 6, 230. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Wen, Z.; Li, L.; Du, J.; Liu, G.; Wang, X.; Song, K. Agricultural development and implication for wetlands sustainability: A case from Baoqing County, Northeast China. Chin. Geogr. Sci. 2019, 29, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Ma, X.; Tong, X.; Liu, S.; Luo, X.; Xie, H.; Li, C. Optimized sample selection in SVM classification by combining with DMSP-OLS, Landsat NDVI and GlobeLand30 products for extracting urban built-up areas. Remote Sens. 2017, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Wang, K.; Lu, Q.; Liang, Y.; Li, H.; Wang, Z.; Wang, R.; Cao, L. Crops Fine Classification in Airborne Hyperspectral Imagery Based on Multi-Feature Fusion and Deep Learning. Remote Sens. 2021, 13, 2917. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, S.; He, T. Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using GEE Platform. Remote Sens. 2021, 13, 990. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Phalke, A.R.; Özdoğan, M.; Thenkabail, P.S.; Erickson, T.; Gorelick, N.; Yadav, K.; Congalton, R.G. Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat 30-m data, machine learning algorithms and Google Earth Engine. ISPRS J. Photogramm. Remote. Sens. 2020, 167, 104–122. [Google Scholar] [CrossRef]
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 | Total | RR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 = [1986, 1988] | 50 | 142 | 364 | 612 | 293 | 375 | 91 | 137 | 80 | 91 | 357 | 243 | 5075 | 0.558 |
T2 = [1989, 1991] | 3 | 105 | 153 | 42 | 112 | 17 | 52 | 22 | 38 | 45 | 189 | 2439 | 0.318 | |
T3 = [1992, 1994] | 4 | 7 | 107 | 91 | 72 | 21 | 62 | 86 | 127 | 186 | 129 | 3913 | 0.227 | |
T4 = [1995, 1997] | 2 | 2 | 5 | 14 | 7 | 17 | 9 | 18 | 57 | 67 | 1743 | 0.113 | ||
T5 = [1998, 2000] | 3 | 5 | 19 | 8 | 27 | 47 | 50 | 37 | 16 | 2637 | 0.080 | |||
T6 = [2001, 2003] | 1 | 1 | 1 | 1 | 3 | 17 | 117 | 68 | 26 | 29 | 1651 | 0.159 | ||
T7 = [2004, 2006] | 4 | 8 | 1 | 7 | 8 | 17 | 16 | 71 | 36 | 93 | 3129 | 0.083 | ||
T8 = [2007, 2009] | 2 | 1 | 2 | 40 | 28 | 78 | 98 | 3018 | 0.082 | |||||
T9 = [2010, 2012] | 8 | 6 | 6 | 65 | 67 | 74 | 2739 | 0.082 | ||||||
T10 = [2013, 2015] | 1 | 8 | 6 | 1 | 29 | 56 | 2931 | 0.034 | ||||||
T11 = [2016, 2018] | 5 | 1 | 1 | 3 | 17 | 1523 | 0.017 | |||||||
T12 = [2019, 2020] | 1 | 1 | 2 | 0 | 1046 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; He, T.; Li, G.; Xiao, W.; Song, H.; Lu, D.; Wu, C. Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine. Remote Sens. 2021, 13, 4273. https://doi.org/10.3390/rs13214273
Zhang M, He T, Li G, Xiao W, Song H, Lu D, Wu C. Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine. Remote Sensing. 2021; 13(21):4273. https://doi.org/10.3390/rs13214273
Chicago/Turabian StyleZhang, Maoxin, Tingting He, Guangyu Li, Wu Xiao, Haipeng Song, Debin Lu, and Cifang Wu. 2021. "Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine" Remote Sensing 13, no. 21: 4273. https://doi.org/10.3390/rs13214273