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Abstract: Detailed knowledge of landscape dynamics is crucial for many applications, from resource
management to ecosystem service assessments. However, identifying the spatial distribution of the
landscape using optical remote sensing techniques is difficult in mountainous areas, primarily due to
cloud cover and topographic relief. Our study uses stable classification samples from mountainous
areas to investigate an integrated approach that addresses large volumes of cloud-cover data (with
associated data gaps) and extracts landscape time series (LTS) with a high time–frequency resolution.
We applied this approach to map LTS in a typical cloudy mountainous area (Erhai watershed in
northwestern Yunnan, China) using dense Landsat stacks, and then we also used the classified
results to investigate the spatial–temporal landscape changes in the study area at biennial intervals.
The overall accuracy of the landscape classification ranged from 81.75% to 88.18%. The results
showed highly dynamic processes in the landscape throughout the study period. Forest was the main
land cover type, covering approximately 39.19% to 41.68% of the total study area. Alpine meadow
showed fluctuating trends, with a net loss of 11.22% and an annual reduction rate of −0.4%. Shrub
cover increased by 1.26%, and water bodies showed a small decrease in area, resulting in an overall
net change of −0.03%. Built-up land and farmland areas continued to expand, and their annual
growth rates were 1.52% and 1.06%, respectively. Bare land showed the highest loss, with a net
change of 228.97 km2. In the Erhai watershed, all the landscape classes changed or transitioned into
other classes, and a substantial decrease in bare land occurred. The biennial LTS maps allow us to
fully understand the spatially and temporally complex change processes occurring in landscape
classes; these changes would not be observable at coarse temporal intervals (e.g., 5–10 years). Our
study highlights the importance of increasing the temporal resolution in landscape change studies
to support sustainable land resource management strategies and integrate landscape planning for
environmental conservation.

Keywords: cloudy mountainous area; dense Landsat stacks; landscape composition; landscape
time-series maps

1. Introduction

A landscape is a complex system comprising a geographic and/or an ecological
space in which organisms live. Landscapes are affected by external disturbances (such
as earthquakes, erosion, climate change, fire, human disturbances, etc.) and internal per-
turbations (such as physical flow of matter and energy, community turnover, etc.) with
change processes that evolve over time. Landscape dynamics are very important for envi-
ronmental management and conservation; they are a vital field of sustainable development
research [1]. Mountain ecosystems around the world are particularly vulnerable, especially
in the plateau mountainous regions of Southwest China, due to climate change and human
disturbances [2]. Therefore, a detailed and precise characterization of landscape dynamics
is essential for understanding the impacts on the mountainous environment and ecological
systems.
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As a typical cloudy mountainous region in China, the Erhai watershed (EHW) in
northwestern Yunnan is located in a low-latitude, high-altitude belt [3,4]. In this area, com-
plex topography forms steep environmental gradients that generate climatic differences
and landscape diversity. The EHW is a typical hybrid zone, with a composition of lakes,
mountains, cities, and numerous types of vegetation, and the landscapes in this region have
a vertical zonal distribution. The EHW is recognized as a global biodiversity hot spot and
supports rich wild fauna and flora [4–6]. Due to its unique geographical environment, the
EHW is especially vulnerable to climate change and anthropogenic disturbances; climate
factors exert strong control on mountain landscapes, and anthropogenic behavior impacts
the landscape dynamics of intermontane watershed areas. Hence, terrestrial and aquatic
ecosystems in the EHW are threatened by climate change and anthropogenic-induced
changes in landscape dynamics [5,7], which lead to the alteration of ecological processes
and ecosystem services [4], habitat degradation or loss, and landscape fragmentation [7].
Knowing when and where changes in the landscape of the EHW have occurred is funda-
mental to assessing land management impacts and to better understanding how the region’s
ecosystem responds to climatic variability and anthropogenic pressures; this knowledge
can answer scientific and ecological questions. Therefore, the high temporal resolution
landscape time-series (LTS) maps over a long-term period are urgently needed to analyze
how the landscape evolves in the EHW.

Satellite remote sensing can monitor landscape dynamics and environmental con-
ditions at broad spatial scales and high temporal frequencies over long periods [8–10].
However, the use of optical satellite-based imagery (such as Landsat imagery) is onerous
in mountainous areas due to persistent heavy cloud cover, data gaps, and topographic
variations [10,11]. Thus, the development of LTS maps to analyze landscape dynamics
from optical satellite-based images faces numerous challenges: (1) consecutive cloud cover
may obscure information related to seasonal or inter-yearly landscape change [12]; (2) topo-
graphic influences are obvious in mountainous areas, and impose additional differences in
spectral radiance within any particular land cover due to changes in surface slope angle and
aspect, leading to errors that may impact landscape classification and pattern analysis [13];
and (3) little or no historical ground truth or other reference data for landscape classification
samples (training or validation samples) are available [14]. Consequently, determining LTS
changes across a long time span is a difficult task in cloudy mountainous areas. Various
approaches have been proposed to reconstruct satellite data to minimize the impact of cloud
cover and topographic relief, such as pixel-based compositing [15,16], spatial–temporal
gap filling [17,18], and temporally composited mosaicking [19]. These studies provide
many reference solutions to address data gaps. However, the lack of historical ground truth
or other reference data is still the main obstacle to mapping long-term LTS with a high
temporal resolution (annual or biennial interval).

In view of the urgent need for information on landscape change, this study mapped
high temporal resolution LTS as a starting point to analyze and understand the long-term
landscape dynamics that occurred in the EHW. For this purpose, two specific aims were
deployed to analyze the long-term spatiotemporal dynamics of the landscape in the study
area:

(1) To propose a composite approach to address large volumes of cloud-cover satellite
imagery and map high time–frequency LTS in mountainous areas.

(2) To characterize and estimate landscape dynamics using the LTS maps in the EHW.

2. Materials and Methods
2.1. Study Area

The EHW is located in northwestern Yunnan, China, between 25◦25′33.891′′–26◦25′50.961′′N
and 99◦50′5.854′′–100◦26′11.627′′ E (Figure 1). The EHW area is 2906.36 km2, with a maximum
altitude of 4050 m, a minimum altitude of 1524 m, and a mean altitude of 2776.36 m. The EHW
has a subtropical monsoon climate, with a dry season from December to April and a rainy season
from May to November.
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Figure 1. Location and geographic extent of the study area.

The study area includes the city of Dali and parts of the city Eryuan in Dali Bai
Autonomous Prefecture, Yunnan Province. The EHW is situated in the watershed belt of
the Jinsha River, Red River, and Lancang River [3] and is surrounded by mountain chains
(the Hengduan range). The natural landscape is the dominant background throughout the
EHW, and manual or semiartificial landscapes are embedded in the area [5]. More than
2000 km2 of the terrestrial surface is mountainous, and the lake area accounts for more
than 8.82% of its total area. Erhai Lake (one of the lakes inside this area), located in the
central part of the EHW, is the second-largest freshwater lake [20], and is known as a “pearl”
of the Yunnan–Guizhou Plateau. The western side of Erhai Lake is adjacent to the steep
Cang Mountains, which rise to more than 2000 m above the lake surface [21]. The EHW is
subjected to a subtropical plateau monsoon climate [3], and the climate and landscapes are
vertically distributed. The EHW is considered a special area with tremendous biodiversity
and landscape diversity.
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Dali and parts of Eryuan are situated inside the EHW, and the area surrounding Erhai
Lake is one of the most developed regions in Yunnan Province, with a high population
density [22]. Moreover, the EHW is well known for its ethnic customs and natural scenery
and has become one of most popular tourist destinations in China; it also contains part of
the Cangshan Global Geopark.

2.2. Data Used

Since the early 1970s, consecutive Landsat missions have provided remote sensing data
with fine spatial and spectral details that have captured long-term landscape characteristics
with high time–frequency [23]. However, the revisit period of Landsat satellites (16 days)
and the meteorological conditions of the study region (significant cloud cover on many
days) reduce the availability of Landsat images. We acquired the cloud-cover statistics
automatically calculated by the United States Geological Survey. Figure 2 shows the mean
cloud cover per month for the study area from 1986 to 2017. Between June and September,
the cloud cover is greatest, and cloud-free or less cloud cover occurs on very few occasions.
These states bring many challenges for mapping vegetation landscapes in the leaf-on season
because they increase the chance of obtaining numerous cloud-covered Landsat images.
Therefore, the images were collected between 1 March and 30 October to represent the
growing season. To minimize the influence of clouds and cloud shadows, the maximum
cloud coverage was set to 80% [24]. A total of 395 images acquired from 1986–2017 were
included in this study (Figure 3). All the imagery data were obtained from the EROS
Science Processing Architecture (ESPA) (https://espa.cr.usgs.gov (accessed on 1 July 2019)),
including surface reflectance (SR) data, top of atmosphere (TOA) reflectance data, and
brightness temperature (BT) data.
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Figure 2. The cloud-cover statistics for the study area from 1986 to 2017.
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Figure 3. Temporal distribution (day of year) of Landsat images used in this study.

To facilitate mapping land cover and to characterize landscape dynamics, a set of
auxiliary geospatial datasets were collected for this study, which included: (1) Google
Earth maps (2009 to 2017) for validating the accuracy of the stable samples and (2) digital
elevation model (DEM) from the Advanced Spaceborne Thermal Emission and Reflection
Radiometer.

2.3. Methods

In a mountainous area with cloudy and complex terrain, it is quite challenge to
map long-term LTS with a high temporal resolution (annual or biennial interval). This
is mainly because there is little ground truth or other reference data for classification
samples (training and validation samples). Therefore, a specific technological framework is
required to adequately map and monitor landscape dynamics in the EHW over a long-term
period (Figure 4). We propose a five-stage framework for mapping biennial interval LTS in
the EHW over the period from 1986 to 2017: (1) topographic radiometric correction was
conducted to minimize the effect of terrain variation; (2) clouds and shadows were masked
out to leave unobstructed areas; (3) feature indices (such as the normalized difference
built-up land index (NDBI), normalized difference vegetation index (NDVI), etc.) and
maximum value composite (MVC) methods were extracted to fill the missing data pixels;
(4) water bodies were masked out, and a set of stable samples were selected (for training
and validation) to eliminate the trouble of lacking historical classification samples; and
(5) landscape classification and dynamic analysis were conducted.
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2.3.1. Topographic Radiometric Correction

All required images from the ESPA were L1T and projected in the UTM coordinate
system (WGS 84 datum, Zone 47 North). However, in the study area with strong topo-
graphic variations, the classification results produced from the ESPA Landsat data may not
be reliable enough. Topographic radiometric correction is a necessary preprocessing step to
minimize the effect of topography on surface reflectance. Therefore, a preprocessing step of
topographic radiometric corrections was performed on the Landsat data using the SCS+C
model to eliminate or reduce the topographic impact on the SR data [13,25].

2.3.2. Cloud Mask

We downloaded images with less than 80% cloud cover for 1 March to 30 October
during the 1986–2017 period. Cloud masking is a key process to eliminate clouds and cloud
shadows; we employed an algorithm for mountainous areas called Mfmask (mountainous
Fmask) that can automatically detect clouds and cloud shadows. This algorithm is built
upon the Fmask algorithm and rectifies some limitations of the Fmask algorithm in moun-
tainous areas [26]. TOA reflectance, BT data, and DEM data were used as inputs to the
Mfmask algorithm. TOA and BT were directly obtained from the ESPA.

2.3.3. Feature Index Derivation and Image Composition

In this study, landscapes are classified into seven types, namely, forest, alpine meadow,
shrub, farmland, water body, built-up land, and bare land. A large number of remote
sensing indices for landscape classification and feature extraction have been described [14].
We calculated 12 remote sensing indices to quantify the land surface information. These
multispectral indices were chosen to reflect a difference in surface status, such as vegetation
features, bare land, built-up land, water bodies, etc. Among them, the vegetation indices
include the ratio vegetation index (RVI) [27], NDVI [28], woodiness index (WI) [29], and
spectral variability vegetation index (SVVI) [30]; the water indices include the modified
normalized difference water index (MNDWI) [31] and normalized difference moisture
index (NDMI) [32]; the built-up land indices include the enhanced built-up and bareness
index (EBBI) [33], NDBI [34], and urban index (UI) [14]; and the bare land indices include
the normalized difference bareness index (NDBAI) [35], normalized difference bare land
index (NBLI) [36], and normalized difference soil index (NDSI) [37].
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Then, we used the Mfmask layer to mask out all the nonvalid data (clouds and cloud
shadows) to calculate various feature index imagery. To minimize the influence of clouds
and cloud shadows, the feature index imagery that masked out nonvalid data between
1986 and 2017 was combined using the MVC method at two-year intervals. The biennial
filled images of various feature indices were finally obtained in the growth season (1 March
and 30 October).

To reduce redundant index information and improve the discrimination of indices
for landscape characteristics, samples of typical landscapes were selected from 12 index
images, and the capacity of these 12 indices was comparatively analyzed using these
samples (Figure 5). In the vegetation index category (RVI, NDVI, WI, and SVVI), vegetation
features are enhanced in both the NDVI and RVI images, and alpine meadow and bare land
have similar values in these two indices. The WI and SVVI indices can distinguish alpine
meadows from bare land, and both indices are differentiated for different landscape types.
Two water indices can enhance water information, while others are suppressed. Compared
to the NDMI images, the water bodies in the MNDWI images have higher values than the
other types. In the NDMI, various landscape types can be distinguished from each other
due to different surface humidities. In the MNDWI, water bodies are maximally delineated
from other classes. The EBBI, NDBI, and UI are better able to distinguish between built-up
land and bare land, especially the EBBI. However, built-up land is confused with alpine
meadows because they have similar values in the EBBI and NDBI. All bare land indices
(NBLI, NDBAI, and NDSI) are able to enhance the bare land features. However, the NBLI
enhances built-up land more than bare land, and the other landscape types are too close
together in this index to be separated from each other. In the NDBAI and NDSI, landscape
types overlap each other and cannot be separated except for water bodies and bare land.
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Figure 5. The response of typical landscapes to the 12 indices in the study area. Here, the marks
indicate the mean value of a landscape class.

Overall, water bodies are farthest from the rest of the landscape in the MNDWI,
and bare land is farthest from the rest of the landscape in the EBBI. Due to the close
proximity or even overlap of landscape response values to the NDBI, UI, NBLI, NDBAI,
and NDSI, landscape types probably mix with each other in these indices and are not easily
distinguished. Although bare land and alpine meadow can be confused in terms of the RVI
and NDVI, they can be effectively distinguished by the WI and SVVI. The enhancement
effect of the NDMI on water bodies is not as good as that of the MNDWI, but the NDMI
has different response values for different landscape types due to moisture differences



Sustainability 2022, 14, 13488 8 of 18

between landscapes. Finally, we selected seven feature indices for landscape classification:
RVI, NDVI, WI, SVVI, MNDWI, NDMI, and EBBI.

2.3.4. Masking Out of Water Bodies and Selection of Stable Samples

In the MNDWI, the distance between the water body and the remaining landscapes
becomes far enough to be easily separated from all others using the MNDWI. Based on
the MNDWI, water bodies can be effectively separated from other landscapes (Figure 5),
and the accuracy of water body extraction can reach more than 95% [31]. Thus, water
bodies were extracted using a threshold value (0.6), and the mask of the water bodies was
generated for each period. Then, the water bodies were masked out in the MVC of the RVI,
NDVI WI, SVVI, NDMI, and EBBI images. These six feature indices and the DEM data
(masked out water body area) were stacked together for each period.

Since there are little or no historical ground truth or other reference data, yet frequent
cloud cover, it is difficult to obtain training (or validation) samples for each study period in
this study region. To address these issues and to obtain consistent training (or validation)
samples, a special method was used to derive these data from stable regions, places
where the land cover does not change in the time series. Time-series SVVI images were
employed to extract these regions, because the SVVI index can effectively distinguish
various landscapes with water bodies removed (Figure 6). We used the linear trend (slope)
of the MVC SVVI image over the time series to select the stability region. For any pixel x
in the MVC SVVI image, the slope of that pixel on the time series is defined by Equation
(1), and the Slopesvvi is calculated. The smaller the absolute value of the slope is, the less
obvious the landscape change is. Therefore, we assume that pixel x is defined as a stable
pixel if the Slopesvvi absolute value of the pixel is less than 0.05. The stable places with
unchanged landscapes can be extracted in the time series [12].

Slopesvvi =
n×∑n

i=1 iXi −∑n
i=1 i ∑n

i=1 Xi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where i is the serial number of each research period from T1 to T16 (i = 1,2,3 . . . 16), Xi is
the SVVI pixel value of the ith period, and n is the total number of research periods (n = 16).
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Training (or validation) samples were extracted from the stable places. We created a
stratified random sample of pixels from all stable areas to select the training (or validation)
dataset, yielding approximately 3000 pixels for six landscapes (except water bodies) and
between 300 and 600 pixels for each landscape type (except water bodies). Due to the lack
of high-resolution images of the study area before 2009 in Google Earth, high-resolution
images from 2009–2017 at two-year intervals in Google Earth were used as a reference to
validate the precision of the extracted samples. The precision was more than 95%, and
incorrect samples were eliminated. Then, 70% of the samples of each type were randomly
selected as training pixels and the remaining 30% were selected as validation pixels for
subsequent accuracy evaluation.

2.3.5. Landscape Classification and Landscape Dynamics Analysis

(1) Landscape classification and accuracy assessment

Support vector machine (SVM) was chosen for this study because it is an efficient
and robust supervised classifier that has been successfully applied to landscape classifi-
cation [38]. Using the training samples, SVM was trained and used to classify the index
stacking data into forest, alpine meadow, shrub, farmland, built-up land and bare land.
Then, the water bodies were combined with the classification results.

For annual or biennial LTS maps over the long term, validating the accuracy is chal-
lenging as historical reference data or imagery are rare. Thus, the evaluation of LTS maps
usually does not follow the model of standard accuracy evaluation and some compromise
solutions are needed. To validate the LTS maps produced in this study, a compromise
approach was adopted: we used a point-based accuracy assessment and assessed the
accuracy of LTS maps using 30% of the sample from the stable places [12]. Since the water
bodies are extracted through the MNDWI threshold with high accuracy [31], they are not
included in the accuracy evaluation of the SVM classification results.

(2) Analysis of landscape dynamics

To detect the landscape change information, we calculated the area and net changes
(gains and losses) for each landscape type over consecutive periods. Cross-tabulation
matrixes were generated to analyze the different landscape trajectories. We also estimated
annual changes for each landscape type using the computational approach proposed by
Puyravaud (2003) [39] (Equation (2)).

R = (
100

t2 − t1
)× ln (

A2

A1
) (2)

where A1 and A2 represent the area of each landscape type at the beginning t1 and the end
t2 of each period. R is the percentage for each period.

In addition to landscape composition, the changing characteristics of landscape con-
figuration were also identified. Four landscape pattern indices were calculated at the class
level using FRAGSTATS v4.2: mean patch size (MPS), largest patch index (LPI), total edge
length (TE), and mean Euclidean nearest-neighbor (MENN) distance. These four pattern
indices were chosen because they provide key information to characterize and analyze
the spatial configuration of landscapes [40,41]. A brief description of the four landscape
pattern indices is shown in Table 1.

Table 1. Descriptions of selected landscape pattern indices.

Name Unit Description

MPS km2 MPS is the average size of patch of a landscape type [41]. An increase in the MPS usually
indicates a decrease in fragmentation.

LPI % LPI is a simple dominance measure, which is the percentage of the total landscape area
constituting the largest patch [41].
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Table 1. Cont.

Name Unit Description

TE km TE is the total edge length of a particular patch type [41]. Increasing the TE typically indicates an
increase in the complexity of the patch shape.

MENN m MENN distance is the average shortest straight-line distance between nearest neighbor of the
same class [41]. MENN has been used extensively to quantify patch isolation.

3. Results
3.1. Landscape Classification

Using the proposed five-stage framework, the biennial interval LTS maps were gen-
erated in the EHW, and the resulting landscape maps are shown in Figure 7. The overall
accuracy of landscape classification was between 81.75% and 88.18% (Table 2), with the
lowest value for T3 and the highest value for T16. For the individual landscape types, alpine
meadow and bare land showed low values for both producer accuracy and user accuracy.
Farmland was the landscape type with the highest classification accuracy, with values from
93.24% to 99.32% (user’s accuracy) and 89.57% to 98.64% (producer’s accuracy). Built-up
land was also categorized as having good performance (user’s accuracy: 80.15–99.24% and
producer’s accuracy: 94.62–99.23%). The accuracy values of the forest and shrub classes
were intermediate, with values of 80.6–89.63% (producer’s accuracy) for the forest cover
and 76.83–91.70% (producer’s accuracy) for the shrub cover (high value in only T16).

Table 2. Performance indicators for each landscape type (Pr: producer’s accuracy, Us: user’s accuracy).

Time
Overall

Accuracy
Forest Alpine

Meadow Shrub Farmland Built-Up
Land Bare Land

Pr Us Pr Us Pr Us Pr Us Pr Us Pr Us

T1: 1986–1987 82.72 81.87 85.49 76.66 78.57 82.00 79.46 92.00 93.24 98.20 83.21 74.78 78.18
T2: 1988–1989 81.99 83.01 80.13 78.08 81.43 76.83 77.13 95.33 96.62 97.22 80.15 70.54 82.73
T3: 1990–1991 81.75 81.35 83.91 72.82 77.50 85.15 75.58 89.57 98.65 96.52 84.73 73.21 74.55
T4: 1992–1993 82.80 81.82 82.33 73.38 76.79 83.75 77.91 96.67 97.97 99.19 93.13 72.27 78.18
T5: 1994–1995 82.40 81.42 82.97 77.27 78.93 78.63 75.58 92.31 97.3 100 93.13 73.39 72.73
T6: 1996–1997 83.12 83.97 82.65 72.35 80.36 84.28 74.81 96.05 98.65 98.39 93.13 74.14 78.18
T7: 1998–1999 82.32 80.6 85.17 73.00 78.21 83.7 73.64 95.92 95.27 96.77 91.60 75.68 76.36
T8: 2000–2001 86.17 84.33 84.86 80.63 81.79 81.99 82.95 96.67 97.97 99.23 98.47 86.00 78.18
T9: 2002–2003 85.29 86.08 83.91 78.05 80.00 79.70 82.17 96.00 97.30 99.22 96.95 84.62 80.00
T10: 2004–2005 84.00 81.87 85.49 73.67 73.93 82.79 78.29 98.64 97.97 99.23 98.47 81.98 82.73
T11: 2006–2007 83.92 83.44 82.65 74.59 80.71 82.55 75.19 98.00 99.32 99.22 97.71 76.99 79.09
T12: 2008–2009 84.08 87.50 81.70 78.28 81.07 78.36 81.40 89.94 96.62 95.97 90.84 82.24 80.00
T13: 2010–2011 87.30 89.63 84.54 78.38 82.86 87.11 86.43 95.97 96.62 98.48 99.24 80.36 81.82
T14: 2012–2013 85.61 87.5 83.91 78.69 81.79 83.97 85.27 95.3 95.95 94.62 93.89 78.70 77.27
T15: 2014–2015 86.98 87.03 86.75 77.74 83.57 88.46 80.23 97.33 98.65 99.23 98.47 80.53 82.73
T16: 2016–2017 88.18 85.85 88.01 80.34 83.21 91.70 85.66 96.05 98.65 97.73 98.47 85.58 80.91

3.2. Changes in Landscape Composition

Forest was the predominant landscape throughout the entire study period, covering
approximately 39.19% and 41.68% of the total study area at its beginning and the end,
respectively. The total area of forest fluctuated during these years, but the overall trend
increased (Figure 8). Forest cover increased moderately over the whole period, from
1138.82 km2 to 1211.22 km2, with an annual growth rate of 0.26%. Bare land decreased
continuously during the 1987–2017 period, with a 46.07% net loss and an annual decline
rate of 2.06%. The intermediate built-up area increased from 92.90 km2 to 146.62 km2, and
the farmland area increased from 12.08% to 16.62% of the total area over the whole period.
Built-up land and farmland continued to expand from T1, and the annual growth rates of
the built-up land and farmland for the whole period were 1.52% and 1.06%, respectively.
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Figure 8. Area change in different landscape types in the EHW from T1 to T16.

Shrub areas showed a fluctuating trend over time, with a net gain of 1.26% for the total
period. Water bodies decreased slightly over time from 8.96% to 8.88%, with a net change
of −0.03%. Alpine meadow also shows fluctuating trends, but in different magnitudes over
the whole study period from 9.3% to 8.26% (270.32 km2 to 239.98 km2), with an 11.22% net
loss and an annual reduction rate of −0.4% for the whole period.

Forest and shrub showed a very obvious state of mutual growth and decline in the
study period of T4, T5, T6, T12, T13, T14, T15, and T16, that is, an increase in forest and a
decrease in shrub or vice versa. Forest and shrub areas showed oscillating changes, mainly
driven by climate change, as the regrowth of shrubs is often accompanied by an arid climate
with little rainfall [42]. The areas most strongly affected by climate were located in valleys
and high-altitude ridges.

3.3. Landscape Transformation

The transformation of the landscape types was captured for each period; the landscape
response processes are shown in Figures 9 and 10. The net changes in each landscape class
over each research period are displayed in Figure 9. In particular, bare land showed the
highest loss, with a net change by 228.97 km2, followed by alpine meadow (net decrease by
30.33 km2) for the whole period (T1–T16). Farmland had the highest net gain (131.88 km2)
for the whole study period, followed by forest (net gain 72.40 km2) and built-up land
(net gain 53.72 km2). Shrubs and water bodies had the slightest net change within the
whole study period (T1–T16); shrubs gained 3.73 km2 and water declined by 2.42 km2,
respectively.

Figure 10 shows the transition process between one landscape class and the rest of
the landscape classes in each study period. Over the period of T1–T16, built-up land
was transferred in and out, and a large amount of new built-up land was developed
on what was previously bare land, farmland, forest, and shrub, with most converted
from bare land (19.11 km2), followed by farmland (17.76 km2), and 53.72 km2 of land
was converted to built-up land. Farmland area was gained from forest and bare land,
and its lost area was converted into built-up land (Figure 10). For all study periods, a
similar conversion phenomenon was observed, in which much bare land and forest were
continuously converted to farmland. In general, farmland mainly increased. Forest gains
occurred during T2–T3, T3–T4, T5–T6, T7–T8, T9–T10, T10–T11, T12–T13 and T14–T15,
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when the area was transformed to shrubland, alpine meadow, and bare land; the largest
forest loss occurred during T13–T14, with a loss of 167.33 km2, when the area was converted
to mainly farmland, shrubland, and bare land (Figure 10). Throughout the study period,
forest gained 142.63 km2 and lost 70.24 km2, for a net increase of 72.40 km2. Alpine
meadow mainly lost area to forest and gained area from two main landscape classes, shrub
and bare land (Figure 10), over the entire study period. The greatest net loss of alpine
meadow occurred in T13-T14, when it was largely converted into bare land (bare land
gained 29.36 km2). The shrubland gained area from bare land and lost area to built-up
land, farmland, forest, and alpine meadow (Figure 10). In the study period for T4–T5 and
T5–T6, shrubs had a large area of net increase (137.69 km2) and net loss (168.58 km2). Bare
land showed a loss (Figure 10). However, in T6–T7, T8–T9, and T13–T14, bare land was
converted from built-up land, farmland, forest, and alpine meadow. The area of transition
between water bodies and other landscape classes was very small (less than 5.50 km2) in
all the study periods (Figure 10).

3.4. Changes in Landscape Pattern Indices

The landscape pattern differed significantly among the seven landscape classes (Fig-
ure 11). The high values of MPS and MENN for water were caused by the presence of more
connected and compact water body patches (Figure 7). The LPI and TE index for water
bodies remained almost constant, with the exception of MPS and MENN, which slightly
decreased. The forest MPS index increased slightly in fluctuation, and its MENN index
remained almost constant. After T13, forest showed a rapid increase in the LPI, while the
LPI dropped to 10.82 at T16. Forests had higher LPI and TE values, indicating that forest
patches had a larger area and more complex edge shapes. Built-up land showed a constant
increase in the MPS index from 0.03 to 0.06. After T10 (LPI of 0.76), the LPI of built-up
land started to increase rapidly, reaching a maximum of 2.00 at T15 and then decreasing
to 1.80 at T16. The TE index of built-up land first increased and then decreased. In the
study periods T7 and T11, the built-up land LPI reached a peak during two growth periods,
which were 3209.31 and 3292.32, respectively. The MENN index for built-up land showed a
moderate change, ranging from 161.47 to 185.19.
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The LPI of farmland increased strongly from T13 to T16 and remained relatively
constant in other periods; the highest LPI value was 11.11 at T14. The TE length of farmland
increased from 3554.43 to 5516.76 with slight fluctuations. The MPS of farmland varied by
less than 0.07 throughout the study period, with a maximum value of 0.19 at T3 and 0.12 at
T9. The MENN of the farmland did not change drastically, and there was a very weak
decreasing trend in the fluctuating changes. Alpine meadow showed a declining trend in
the MPS between 1987 and 2017, with a change from 0.095 to 0.069. The alpine meadow
LPI fluctuated significantly, reaching 2.72 at T6, decreasing to 1.07 at T7, and increasing
to 2.01 at T9. The TE length of the alpine meadow exhibited a trend of first increasing
and then decreasing, with a maximum of 4834.20 at T10. The MENN of the meadow also
showed a trend of growth and then decline, reaching the maximum value (144.58) at T8.

The MPS of the shrubland consistently decreased, from 0.1 to 0.5, while the LPI
increased in a fluctuating manner (from 0.80 to 3.12). The shrub TE length showed strong
volatility, reaching a high value of 7311.57 at T9 and a low value of 2694.96 at T15. The
MENN also showed obvious fluctuation characteristics, with a low value of 127.21 at T9
and a high value of 208.21 at T15. Notably, the TE length and MENN changes in shrubs
showed opposite trends. Throughout the study period, landscape indices for bare land
continued to decrease, with the exception of TE length, which had obvious fluctuations.

4. Discussion

Precise and long-term landscape dynamics are highly demanded for many applications
of the EHW. However, the study area is located in a special geographical environment
with cloudy coverage and variable topography, and there is a lack of historical reference
data for obtaining classified samples. To address these challenges in extracting landscape
information, we proposed an approach for obtaining landscape distribution data. We
utilized this method to analyze the complex spatial and temporal changes in the landscape
of the EHW. The landscape classification overall accuracy ranged from 81.75% to 88.18%,
which met the accuracy requirements of most monographic studies. This result implied
that the proposed method was effective and reliable in generating LTS maps for the EHW.



Sustainability 2022, 14, 13488 16 of 18

Based on the landscape classification results, forest was the predominant landscape
throughout the analysis period, and forests dominated the eastern and western areas of the
EHW. Alpine meadow also showed fluctuating trends. Shrub areas increased by 1.26% for
the total period, and water bodies showed a small decrease with an overall net change of
−0.03%. Built-up land and farmland continued to expand. Although the extent of increase
in built-up areas was small (increased 53.72 km2), built-up areas can disproportionately
influence the environment compared with changes in other landscape types. Bare land
showed the highest loss, with a 228.97 km2 net change. In the EHW, human activities
and climate change have resulted in a gradual change in the landscape in the form of
gains and losses. A comparison of the landscape classification and transformation analysis
results indicated an increase in built-up land, farmland, and forest coupled with an obvious
decrease in bare land over the entire study period. In the EHW, all landscape classes have
changed or been converted into another class, and a substantially decreasing amount of
bare land has taken place in the landscape.

The results showed a highly dynamic process for the landscape of the EHW; the region
was under a continuous conversion between landscape types over the sixteen temporal
periods. Based on LTS maps at biennial intervals, our study has illustrated the complex
and varied landscape change processes that can occur in the EHW over a long period of
time. Magnitude and trajectory changes in different landscape types occur over time, and
such changes would hardly be detected by analyzing data obtained over coarse temporal
intervals (e.g., 5–10 years). The high temporal resolution allowed us to understand in detail
the linkage between the different change processes that occurred in the landscape; we want
to highlight the importance of expanding the temporal resolution in landscape dynamics
studies to effectively support sustainable environmental management.

5. Conclusions

To obtain information on landscape dynamics and to address the key issues encoun-
tered in extracting landscape maps (such as cloudy cover, lack of historical reference data),
this study proposed a composite approach to generate biennial LTS maps and analyze
landscape dynamics using Landsat time-series data in the EHW. We believe that the dense
Landsat stacks methodology provides a successful pathway for quantifying landscape
dynamics in a cloudy mountainous region by effectively minimizing the impacts of mas-
sive cloud cover [43]. Therefore, this study highlights the key role of Landsat data in the
sustainable observation of Earth’s surface over a long time span. In the framework of
our developed methodology, it should be emphasized that filling in missing data (cloud
coverage, etc.) using the feature index MVC can help generate reliable time-series images
for landscape extraction. Using of consistent stable samples can overcome the image differ-
ence problem. In particular, a set of stable samples used to train the classifier and validate
the classification results was applied repeatedly for multiple periods without the need for
reformulation [12,44]. This methodology proposed in this study is an important reference
for similar research to be executed in other regions.

This study found that the landscape types in the EHW are dominated by forest, and the
area of built-up land and farmland has expanded significantly; the area of water bodies did
not show significant changes, and the area of bare land showed the highest loss throughout
the study period. The landscape of the EHW has changed significantly, and the landscape
dynamics are influenced by both regional social and economic development and climate
change.

The analysis from the study revealed a detailed and complex landscape change pro-
cess in the EHW. The findings of this study are significant in understanding the landscape
dynamics in the cloudy mountainous regions, and provide scientific information for re-
source management, environmental protection, ecosystem service assessments, landscape
planning and sustainability [45]. Hence, the study can help policy planners and makers to
implement effective conservation and sustainable landscape management strategies in the
EHW.
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