Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Lancang river valley

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 34699 KiB  
Article
The Study on Landslide Hazards Based on Multi-Source Data and GMLCM Approach
by Zhifang Zhao, Zhengyu Li, Penghui Lv, Fei Zhao and Lei Niu
Remote Sens. 2025, 17(9), 1634; https://doi.org/10.3390/rs17091634 - 5 May 2025
Viewed by 772
Abstract
The southwest region of China is characterized by numerous rugged mountains and valleys, which create favorable conditions for landslide disasters. The landslide-influencing factors show different sensitivities regionally, which induces the occurrence of disasters to different degrees, especially in small sample areas. This study [...] Read more.
The southwest region of China is characterized by numerous rugged mountains and valleys, which create favorable conditions for landslide disasters. The landslide-influencing factors show different sensitivities regionally, which induces the occurrence of disasters to different degrees, especially in small sample areas. This study constructs a framework for the identification, analysis, and evaluation of landslide hazards in complex mountainous regions within small sample areas. This study utilizes small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technology and high-resolution optical imagery for a comprehensive interpretation to identify landslide hazards. A geodetector is employed to analyze disaster-inducing factors, and machine-learning models such as random forest (RF), gradient boosting decision tree (GBDT), categorical boosting (CatBoost), logistic regression (LR), and stacking ensemble strategies (Stacking) are applied for landslide sensitivity evaluation. GMLCM stands for geodetector–machine-learning-coupled modeling. The results indicate the following: (1) 172 landslide hazards were identified, primarily concentrated along the banks of the Lancang River. (2) A geodetector analysis shows that the key disaster-inducing factors for landslides include a digital elevation model (DEM) (1321–1857 m), rainfall (1181–1290 mm/a), the distance from roads (0–1285 m), and geological rock formation (soft rock formation). (3) Based on the application of the K-means clustering algorithm and the Bayesian optimization algorithm, the GD-CatBoost model shows excellent performance. High-sensitivity zones were predominantly concentrated along the Lancang River, accounting for 24.2% in the study area. The method for identifying landslide hazards and small-sample sensitivity evaluation can provide guidance and insights for landslide monitoring and harnessing in similar geological environments. Full article
Show Figures

Figure 1

16 pages, 7133 KiB  
Article
Research of Runoff and Sediment Yields on Different Slopes of Lancang River Arid Valley Under Natural Rainfall Conditions
by Baoyang Sun, Jigen Liu, Jiangang Ma, Hao Li, Bojun Ma, Jianming Li, Changhao Li, Bingxu Li and Ying Liu
Water 2025, 17(7), 997; https://doi.org/10.3390/w17070997 - 28 Mar 2025
Viewed by 367
Abstract
Limited by water and heat conditions, the southwest alpine valley area has a dry climate, complex terrain, low vegetation coverage, and a very fragile ecological environment. The runoff plots of different slope gradients (10°, 15°, and 20°), slope lengths (2, 5, and 10 [...] Read more.
Limited by water and heat conditions, the southwest alpine valley area has a dry climate, complex terrain, low vegetation coverage, and a very fragile ecological environment. The runoff plots of different slope gradients (10°, 15°, and 20°), slope lengths (2, 5, and 10 m) and reverse slope terrace (RST) in the Lancang River arid valley were taken as the objects. Through in situ observation of the slope runoff and sediment yield of six natural erosive rainfalls, the contribution rate of different factors was quantified, and the effect mechanism was revealed. The main results were as follows: (1) Sediment yields of different rainfalls were closely correlated with rainfall type and duration. Under the conditions of heavy rain (rain II and III), there was a critical slope gradient, and the maximum sediment yield was achieved when the slope gradient was 15°. (2) The runoff and sediment reduction benefits of horizontal terraces were 24.88% and 46.25%, and these benefits were increased by 1.47 times and 1.30 times after setting the RST, and the sediment reduction benefits increased significantly with the increase in the number of RSTs (p < 0.05). (3) In this study, rainfall intensity contributed the most to the runoff yield rate (34.5%), followed by slope length (15.1%) and horizontal terrace (7.2%). Slope length, rain intensity, and horizontal terrace order contributed 25.9%, 18.0%, and 11.4% to the sediment yield rate, respectively. (4) There was a significant linear correlation between sediment yield and runoff yield on different slopes (p < 0.05). The critical runoff yield rate decreased with the increase in slope length, the RST significantly increased the critical runoff yield rate (2.91 times), and it increased with the increase in RST numbers. This study can provide a scientific basis and reference for the prevention and control of soil and water loss and ecological restoration on the slope of the arid valley in the southwest alpine and canyon area. Full article
(This article belongs to the Special Issue Impact of Climate Change on Water and Soil Erosion)
Show Figures

Figure 1

16 pages, 5711 KiB  
Article
Study on Valley Shrink Deformation of the High Arch Dam with Large Faults near Dam Area during Initial Impoundment
by Yaolai Liu, Haijiang Wang, Long Yan, Jiyuan Yu, Wei Zeng and Weiya Xu
Water 2024, 16(18), 2694; https://doi.org/10.3390/w16182694 - 22 Sep 2024
Cited by 1 | Viewed by 1186
Abstract
Valley shrink deformation is a common physical and mechanical phenomenon during the reservoir operation of high arch dams. This phenomenon is particularly significant in the initial stages of impoundment and can severely impact the operational safety of the arch dam. This study focuses [...] Read more.
Valley shrink deformation is a common physical and mechanical phenomenon during the reservoir operation of high arch dams. This phenomenon is particularly significant in the initial stages of impoundment and can severely impact the operational safety of the arch dam. This study focuses on the arch dam under construction in the upstream of the Lancang River. By considering the secondary structural planes F115 and F111 at the dam site, a numerical model of valley shrink deformation was established. The study investigates the characteristics of valley shrink deformation during the initial impoundment phase of the arch dam. The results show that during the impoundment process, the valley slopes on both sides of the reservoir shrink towards the center of the valley. The deformation on the right bank is greater than that on the left bank due to the influence of the F115 fault. When the elevation is lower than the exposure position of F115, the deformation on the right bank increases with elevation; when it is higher than this position, the deformation decreases. On the left bank, due to the influence of F111 and the seepage field, the deformation value increases first and then decreases with the increase in elevation. After the water level stabilizes, the deformation rate decreases and approaches zero. This research results provide a reference for addressing valley shrink deformation issues during the initial impoundment of the arch dam. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 17355 KiB  
Article
A Case Study for Stability Analysis of a Toppling Bank Slope with Fault Fracture Zones Developed under the Action of Bridge Loads and Reservoir Water
by Xiaokai Li, Xiaolong Zhang, Faming Zhang, Jian Huang, Shixiong Tang and Zhiqing Liu
Water 2024, 16(3), 494; https://doi.org/10.3390/w16030494 - 2 Feb 2024
Cited by 4 | Viewed by 2013
Abstract
The mountainous areas of Southwest China have the characteristics of valley deep-cutting, a large topographic gradient, complex geological structures, etc. With the development of infrastructure construction in the area, the construction of bridges across valleys has gradually increased, and the phenomenon of slope [...] Read more.
The mountainous areas of Southwest China have the characteristics of valley deep-cutting, a large topographic gradient, complex geological structures, etc. With the development of infrastructure construction in the area, the construction of bridges across valleys has gradually increased, and the phenomenon of slope failure occurs more and more frequently. As the weak interlayer, the fault fracture zones have a significant influence on the geological structure and stability of slopes, while the complexity of the mechanism of the deformation and failure of slopes increases with the combination of the development of the fracture zones and toppling deformation. This paper took the toppling bank slope of bridge foundations developed with fault fracture zones in Lancang River as the research object. Through an on-site field survey and geological survey technologies, it identified the distribution range of the fracture zones on the bank slope and determined the characteristics of the rock mass in the fracture zones. A stability evaluation model for the bank slope of the bridge foundations was established using the limit equilibrium method and discrete element method. Based on the two-dimensional limit equilibrium analysis, the potential failure modes of the bank slope were explored, and the stability of the bank slope under bridge loads was calculated. Through the three-dimensional geological model of the bank slope, including the fracture zones and toppling bodies, the three-dimensional discrete element numerical simulation method was adopted to simulate and calculate the deformation and failure process of the bank slope under different bridge loads and working conditions. According to the calculation results, the influence of bridge loads and reservoir water on the stability of the bank slope was analyzed from the perspectives of displacement, plastic zone, stability coefficient, and other factors. The formation process of the plastic zone and the development of the sliding surface were revealed, the incentive mechanism of bridge loads and reservoir water on the deformation and failure of the bank slope was analyzed, and the influence of fault fracture zones on the stability of the bank slope and the development of toppling deformation was determined. The results indicate that the fault fracture zones are important geological structures that affect the deformation and failure of the bank slope as a weak interlayer. Under the influence of bridge loads and reservoir water, the stability of the bank slope is affected by the quality of the rock mass and the development of the fault fracture zones, resulting in the unmet need for safety requirements and maybe leading to instability. Based on the calculation results of the stability evaluation prediction model for the bridge foundation bank slope and the engineering geological conditions, the bridge scheme has been selected. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

21 pages, 4680 KiB  
Article
Phylogeography of the Plateau Pika (Ochotona curzoniae) in Response to the Uplift of the Qinghai-Tibet Plateau
by Yinglian Qi, Xiaoyan Pu, Zhilian Li, Daoguang Song and Zhi Chen
Diversity 2023, 15(2), 307; https://doi.org/10.3390/d15020307 - 20 Feb 2023
Cited by 3 | Viewed by 2872
Abstract
The evolution and current distribution of species on the Qinghai-Tibet Plateau have been significantly impacted by historical occurrences, including the uplift of the plateau and the Quaternary climate upheaval. As a remnant species, the plateau pika (Ochotona curzoniae) is a great [...] Read more.
The evolution and current distribution of species on the Qinghai-Tibet Plateau have been significantly impacted by historical occurrences, including the uplift of the plateau and the Quaternary climate upheaval. As a remnant species, the plateau pika (Ochotona curzoniae) is a great model for researching historical events. In this study, 302 samples from 42 sample sites were utilized to analyze the impact of historical events on the evolution and distribution pattern of plateau pikas. The genetic diversity, patterns of differentiation, and historical dynamics of the plateau pika were investigated using molecular markers that included four mitochondrial genes (COI, D-loop, Cytb, and 12S rRNA) and three nuclear genes (GHR, IRBP, and RAG1). The results showed that: (1) The genetic diversity of the plateau pika was high in the Tibetan Plateau (Hd = 0.9997, π = 0.01205), and the plateau pika evolved into five lineages that occupied different geographical areas, with lineage 1 (Group 1) in the south of the Yarlung Zangbo River, lineage 2 (Group 2) in the hinterland of the plateau, lineage 3 (Group 3) in the northeastern part of the plateau, lineage 4 (Group 4) in the Hengduan Mountains, and lineage 5 (Group 5) in the eastern part of the plateau. (2) The gene flow among the five lineages was low, and the differentiation level was high (Nm < 0.25; Fst > 0.25), indicating that the geographical barriers between the five lineages, such as the Yarlung Zangbo River, the Qaidam-Ghuong-Guide Basin, and the Lancang River, effectively promoted the population differentiation of the plateau pika. (3) The plateau pika first spread from the Hengduan Mountains to the entire Qinghai-Tibet Plateau and then conducted small-scale migration and dispersal in several refuges across the plateau in response to climate changes during the glacial and interglacial periods. (4) Except for Group 1 and Group 4, all the other populations exhibited a rapid expansion between 0.06 and 0.01 Mya, but the expansion was considerably delayed or halted by the effects of climate change during the last glacial maximum (0.02 Mya). Overall, the plateau pika on the Qinghai-Tibet Plateau exhibits high genetic diversity, and topographic obstacles, including mountains, valleys, and basins, created by the uplift of the plateau and climatic changes since the Quaternary period have played an important role in the differentiation and historical dynamics of the plateau pika population. Full article
(This article belongs to the Special Issue Adaptive Evolution and Management in Small Mammals)
Show Figures

Figure 1

14 pages, 7708 KiB  
Article
Evaluating the Influence of Climate Change on Sophora moorcroftiana (Benth.) Baker Habitat Distribution on the Tibetan Plateau Using Maximum Entropy Model
by Fumei Xin, Jiming Liu, Chen Chang, Yuting Wang and Liming Jia
Forests 2021, 12(9), 1230; https://doi.org/10.3390/f12091230 - 9 Sep 2021
Cited by 12 | Viewed by 2469
Abstract
The ecosystems across the Tibetan Plateau are changing rapidly in response to climate change, which poses unprecedented challenges for the control and mitigation of desertification on the Tibetan Plateau. Sophora moorcroftiana (Benth.) Baker is a drought-resistant plant species that has great potential to [...] Read more.
The ecosystems across the Tibetan Plateau are changing rapidly in response to climate change, which poses unprecedented challenges for the control and mitigation of desertification on the Tibetan Plateau. Sophora moorcroftiana (Benth.) Baker is a drought-resistant plant species that has great potential to be used for desertification and soil degradation control on the Tibetan Plateau. In this study, using a maximum entropy (MaxEnt) niche model, we characterized the habitat distribution of S. moorcroftiana on the Tibetan Plateau under both current and future climate scenarios. To construct a robust model, 242 population occurrence records, gathered from our field surveys, historical data records, and a literature review, were used to calibrate the MaxEnt model. Our results showed that, under current environmental conditions, the habitat of S. moorcroftiana was concentrated in regions along the Yarlung Tsangpo, Lancang, and Jinsha rivers on the Tibetan Plateau. Elevation, isothermality, and minimal air temperature of the coldest month played a dominant role in determining the habitat distribution of S. moorcroftiana. Under future climate scenarios, the increased air temperature was likely to benefit the expansion of S. moorcroftiana over the short term, but, in the long run, continued warming may restrict the growth of S. moorcroftiana and lead to a contraction in its habitat. Importantly, the Yarlung Tsangpo River valley was found to be the core habitat of S. moorcroftiana, and this habitat moved westwards along the Yarlung Tsangpo River under future climate scenarios, but did not detach from it. This finding suggests that, with the current pace of climate change, an increase in efforts to protect and cultivate S. moorcroftiana is necessary and critical to control desertification on the Tibetan Plateau. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 3452 KiB  
Article
Driving Factor Analysis of Ecosystem Service Balance for Watershed Management in the Lancang River Valley, Southwest China
by Shiliang Liu, Yongxiu Sun, Xue Wu, Weiqiang Li, Yixuan Liu and Lam-Son Phan Tran
Land 2021, 10(5), 522; https://doi.org/10.3390/land10050522 - 13 May 2021
Cited by 10 | Viewed by 2945
Abstract
Revealing the spatio-temporal change of the supply, demand and balance of ecosystem services (ESs) associated with human activities and land-use changes is of great significance for watershed ecosystem management. Taking the Lancang river valley as a case, we explicitly studied the ES spatial [...] Read more.
Revealing the spatio-temporal change of the supply, demand and balance of ecosystem services (ESs) associated with human activities and land-use changes is of great significance for watershed ecosystem management. Taking the Lancang river valley as a case, we explicitly studied the ES spatial characteristics, using the land use/land cover (LULC) matrix model, Optimized Hot Spot Analysis and landscape pattern analysis. Furthermore, we screened out the dominant explanatory variables that had significant influence on the ES supply, demand and balance by means of the Geographical Weighted Regression (GWR) method at pixel scale. The results showed that the ES demand intensity varied little throughout the watershed, while the downstream ES supply capacity and balance values were greater than upstream ones. Meanwhile, the hotspots of ES supply and demand were mainly distributed in the south part with coldspots in the north part. Human activity factors integrating landscape pattern variables were verified to have a negative impact on the ES balance in general. Among them, the Largest Patch Index (LPI) had a negative influence on the majority of pixels, while the Gross Domestic Product (GDP), cultivated land ratio and Area Weighted Average Patch Fractal Dimension (AWAPFD) had positive effects on a few pixels. This study will provide scientific support for regional ecosystem service trade-off and regulation at multiple scales. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

17 pages, 2151 KiB  
Article
Effects of Topographical and Edaphic Factors on Tree Community Structure and Diversity of Subtropical Mountain Forests in the Lower Lancang River Basin
by Changshun Zhang, Xiaoying Li, Long Chen, Gaodi Xie, Chunlan Liu and Sha Pei
Forests 2016, 7(10), 222; https://doi.org/10.3390/f7100222 - 1 Oct 2016
Cited by 43 | Viewed by 7172
Abstract
We investigated community structure and tree species diversity of six subtropical mountain forests in relation to 11 topographical and edaphic factors in Lower Lancang River Basin, Yunnan Province, China, based on a census of all trees with diameter at breast height ≥5 cm [...] Read more.
We investigated community structure and tree species diversity of six subtropical mountain forests in relation to 11 topographical and edaphic factors in Lower Lancang River Basin, Yunnan Province, China, based on a census of all trees with diameter at breast height ≥5 cm in 45 0.06-ha plots. The forests were as follows: a river valley monsoon forest, semi-humid evergreen broad-leaved forest, monsoon evergreen broad-leaved forest, mid-mountain humid evergreen broad-leaved forest, summit mossy dwarf forest, and warm needle-leaved forest. Owing to the variation in microenvironment, forest structure (tree density, mean height, mean diameter at breast height, mean basal area at breast height) and tree diversity indices (the number of species, Margalef richness, Shannon-Wiener diversity, Simpson’s index, and Pielou’s evenness) differed significantly among forest types but did not differ among sites. We recorded a total of 5155 canopy trees belonging to 204 tree species, 104 genera, and 50 families at three sites, and the co-occurrence of tree species between adjacent communities was higher. A clear forest community distribution along an altitudinal gradient suggested that elevation was important in tree species distribution. Ordination identified elevation, slope degree, slope position, soil pH, organic matter, total nitrogen, and available nitrogen as significant explanatory variables of tree species distribution and showed that elevation was more important than the rest of the environmental variables in affecting local woody plant distribution. Understanding relationships between tree species distribution and environmental factors in subtropical mountain forests of the Lower Lancang River Basin would enable us to apply these findings to forest management and vegetation restoration. Full article
Show Figures

Figure 1

13 pages, 1903 KiB  
Article
Vegetation Carbon Storage, Spatial Patterns and Response to Altitude in Lancang River Basin, Southwest China
by Long Chen, Changshun Zhang, Gaodi Xie, Chunlan Liu, Haihua Wang, Zheng Li, Sha Pei and Qing Qiao
Sustainability 2016, 8(2), 110; https://doi.org/10.3390/su8020110 - 25 Jan 2016
Cited by 6 | Viewed by 5045
Abstract
Vegetation plays a very important role of carbon (C) sinks in the global C cycle. With its complex terrain and diverse vegetation types, the Lancang River Basin (LRB) of southwest China has huge C storage capacity. Therefore, understanding the spatial variations and controlling [...] Read more.
Vegetation plays a very important role of carbon (C) sinks in the global C cycle. With its complex terrain and diverse vegetation types, the Lancang River Basin (LRB) of southwest China has huge C storage capacity. Therefore, understanding the spatial variations and controlling mechanisms of vegetation C storage is important to understand the regional C cycle. In this study, data from a forest inventory and field plots were used to estimate and map vegetation C storage distribution in the LRB, to qualify the quantitative relationships between vegetation C density and altitude at sublot and township scale, and a linear model or polynomial model was used to identify the relationship between C density and altitude at two spatial scales and two statistical scales. The results showed that a total of 300.32 Tg C was stored in the LRB, an important C sink in China. The majority of C storage was contributed by forests, notably oaks. The vegetation C storage exhibited nonlinear variation with latitudinal gradients. Altitude had tremendous influences on spatial patterns of vegetation C storage of three geomorphological types in the LRB. C storage decreased with increasing altitude at both town and sublot scales in the flat river valley (FRV) region and the mid-low mountains gorge (MMG) region, and first increased then decreased in the alpine gorge (AG) region. This revealed that, in southwest China, altitude changes the latitudinal patterns of vegetation C storage; especially in the AG area, C density in the mid-altitude (3100 m) area was higher than that of adjacent areas. Full article
Show Figures

Figure 1

12 pages, 1329 KiB  
Article
Changing Patterns of Spatial Clustering of Schistosomiasis in Southwest China between 1999–2001 and 2007–2008: Assessing Progress toward Eradication after the World Bank Loan Project
by Yi Hu, Chenglong Xiong, Zhijie Zhang, Can Luo, Ted Cohen, Jie Gao, Lijuan Zhang and Qingwu Jiang
Int. J. Environ. Res. Public Health 2014, 11(1), 701-712; https://doi.org/10.3390/ijerph110100701 - 3 Jan 2014
Cited by 13 | Viewed by 6727
Abstract
We compared changes in the spatial clustering of schistosomiasis in Southwest China at the conclusion of and six years following the end of the World Bank Loan Project (WBLP), the control strategy of which was focused on the large-scale use of chemotherapy. Parasitological [...] Read more.
We compared changes in the spatial clustering of schistosomiasis in Southwest China at the conclusion of and six years following the end of the World Bank Loan Project (WBLP), the control strategy of which was focused on the large-scale use of chemotherapy. Parasitological data were obtained through standardized surveys conducted in 1999–2001 and again in 2007–2008. Two alternate spatial cluster methods were used to identify spatial clusters of cases: Anselin’s Local Moran’s I test and Kulldorff’s spatial scan statistic. Substantial reductions in the burden of schistosomiasis were found after the end of the WBLP, but the spatial extent of schistosomiasis was not reduced across the study area. Spatial clusters continued to occur in three regions: Chengdu Plain, Yangtze River Valley, and Lancang River Valley during the two periods, and regularly involved five counties. These findings suggest that despite impressive reductions in burden, the hilly and mountainous regions of Southwest China remain at risk of schistosome re-emergence. Our results help to highlight specific locations where integrated control programs can focus to speed the elimination of schistosomiasis in China. Full article
Show Figures

Graphical abstract

12 pages, 342 KiB  
Article
Genetic Diversity and Differentiation of Dendrocalamus membranaceus (Poaceae: Bambusoideae), a Declining Bamboo Species in Yunnan, China, as Based on Inter-Simple Sequence Repeat (ISSR) Analysis
by Han-Qi Yang, Man-Yun An, Zhi-Jia Gu and Bo Tian
Int. J. Mol. Sci. 2012, 13(4), 4446-4457; https://doi.org/10.3390/ijms13044446 - 10 Apr 2012
Cited by 57 | Viewed by 7902
Abstract
Dendrocalamus membranaceus Munro is a woody bamboo with a high economic and ecological value that often occurs as natural stands, such as in the large-scale forested areas of China’s Yunnan Province. Due to its overexploitation, the habitat of D. membranaceus in Yunnan [...] Read more.
Dendrocalamus membranaceus Munro is a woody bamboo with a high economic and ecological value that often occurs as natural stands, such as in the large-scale forested areas of China’s Yunnan Province. Due to its overexploitation, the habitat of D. membranaceus in Yunnan has been dramatically reduced, and the quality of the stands has declined. As a preliminary analysis in considering the effective protection for these germplasm resources, we assessed the genetic diversity of 12 natural populations in Yunnan, using inter-simple sequence repeat (ISSR) markers. From 10 ISSR primers, we generated 155 bands, of which 153 were polymorphic (98.71%). Compared with other species in the genus, this species demonstrated a greater genetic diversity (S = 0.349) and lower genetic differentiation (GST = 0.252). Our analysis of molecular variance revealed that the genetic differentiation among the populations is significant. A large proportion of the genetic variation (78.95%) resides among the individuals within populations, whereas only 21.05% are found among populations. Mantel tests indicated no significant correlation between genetic and geographic distances among the populations. Given the low sexual reproducibility and characteristics of monocarpic plants, we recommend implementing in situ conservation measures for all of the D. membranaceus populations in Yunnan and collecting sufficient samples for ex situ conservation. Furthermore, the conservation area should be extended to its main natural habitats, the Lancang-Mekong River Valley. Full article
Show Figures

Back to TopTop