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Abstract: Revealing the spatio-temporal change of the supply, demand and balance of ecosystem
services (ESs) associated with human activities and land-use changes is of great significance for
watershed ecosystem management. Taking the Lancang river valley as a case, we explicitly studied
the ES spatial characteristics, using the land use/land cover (LULC) matrix model, Optimized
Hot Spot Analysis and landscape pattern analysis. Furthermore, we screened out the dominant
explanatory variables that had significant influence on the ES supply, demand and balance by means
of the Geographical Weighted Regression (GWR) method at pixel scale. The results showed that
the ES demand intensity varied little throughout the watershed, while the downstream ES supply
capacity and balance values were greater than upstream ones. Meanwhile, the hotspots of ES supply
and demand were mainly distributed in the south part with coldspots in the north part. Human
activity factors integrating landscape pattern variables were verified to have a negative impact on the
ES balance in general. Among them, the Largest Patch Index (LPI) had a negative influence on the
majority of pixels, while the Gross Domestic Product (GDP), cultivated land ratio and Area Weighted
Average Patch Fractal Dimension (AWAPFD) had positive effects on a few pixels. This study will
provide scientific support for regional ecosystem service trade-off and regulation at multiple scales.

Keywords: ecosystem service; Geographical Weighted Regression; human activity; supply and
demand; landscape pattern; Lancang river valley

1. Introduction

With the research development of ecosystem services (ESs), the relationship between
ESs and human well-being have gradually become the focus of ES research [1–3]. James
et al. (2007) defined ESs as components of nature, direct enjoyment, consumption or human
well-being realization from the perspective of economic accounting [4]. However, the
human well-being realization relying on the consumption of ESs will result in changes in
the state of the ecosystem and ESs, thus affecting the continuous ES supply [5]. Therefore,
regional ES consumption should be constrained within their supply range [6]. ES supply
is the natural resource and service provided by natural components that can be directly
utilized by humans [7]. Thus, some studies have emphasized that human beings are the
direct beneficiaries [7,8]. In this context, quantitative assessment and scientific management
of ES supply and demand have become the current research hotspots [9].
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The evaluation methods of ES supply include the value-equivalent method [10,11],
the energy method [12] and the value evaluation method [13]. The demand for ESs is
generally assessed by the indicator assessment method [14]. Effectiveness, efficiency and
simplicity should be considered during the quantification process, especially due to the
lack of supporting data. In recent years, the relationship between land use and ESs have
been explored, as land use change represents a complex impact on ecosystems structure
and function [15]. Burkhard et al. (2009, 2012) constructed two correlation matrixes to
identify the supply capacity and demand intensity between 44 land cover types and 22 ES
types through the expert scoring method, which analyzed the spatial pattern of ES supply,
demand and balance [7,16]. In recent years, the land use matrix method has been widely
applied to assess and quantify the spatial distribution of ES supply, demand and balance in
many regions, especially in areas with a lack of basic data [2,8,17]. Through enriching and
adjusting the above correlation matrixes according to regional ecosystem characteristics,
the evaluation of the ES supply and demand corresponding to different land use types can
be conveniently obtained [18].

Studies at different scales have indicated that human activities, including population
growth, policy regulation and economic development [17,19,20] were the main reasons
for land-use changes, which contained the change rate, transfer direction and utilization
intensity [21]. As one of the most important factors affecting ESs, many studies analyzed
the response of ESs to land use changes, including the ES vulnerability [22], the supply
and demand change [17,23], and spatio-temporal trade-off [24] of ESs. Therefore, it was
necessary to explore the impact of human activities on ES demand and supply from the
perspective of land use changes. Nicholson et al. (2017) explored the impact of agricultural
intensity on the supply of pollination services from the perspectives of landscape patterns
and agricultural management [25]. Rong et al. (2017) analyzed the human activity intensity
changes during the process of ES changes by constructing the human activity intensity
index [26]. Current research has focused more on constructing comprehensive indexes
to quantify the influences of human activities, while less attention has been paid on the
spatial heterogeneity of ESs’ responses to different impacting factors [3,27].

Due to the complex topographical and climatic characteristics, the Lancang river
valley (upper stream of Mekong River) has abundant water and biological resources, rich
vegetation types and 33 nature reserves, which have extremely high ecological protection
value [28]. Thus, the valley is a hotspot region in the water resources and biodiversity
conversation, and has great ES importance [29]. Some studies have been carried out to
investigate the spatial characteristics and land management of specific ESs in the Lancang
river valley [30–32]. At the same time, its geographic location is very important for con-
necting Southwest China and other countries in Southeast Asia. With the implementation
of national strategies, such as “West development” and cascade hydroelectric development
projects, the intensity of human activities has been greatly enhanced, which has driven
regional socio-economic development but brought about great ecological risks as well [33].
Therefore, it has a great significance for constructing a “natural-economic-social” system to
evaluate the current ecosystem status comprehensively and evaluate the impacts of human
activities on ESs.

In this study, we focused on the spatial distribution of ES supply, demand and balance,
and the influences of human activities and landscape patterns on ES balance in the Lancang
river valley. The objectives of our study included the following: (1) spatially quantifying
ES supply, demand and balance through the land use/land cover (LULC) matrix model; (2)
analyzing the spatial pattern of ES supply and demand; (3) screening the drivers for the
ES balance through Geographical Weighted Regression model (GWR); and (4) identifying
the dominant explanatory variables at pixel scale. Our results enriched the understanding
of ES heterogeneity in the Lancang river valley and provided a scientific basis for ES
management for the realization of regional sustainable development.
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2. Materials and Methods
2.1. Study Area

The Lancang river valley is located in Southwest China (93◦48′–101◦48′ E, 21◦07′–
33◦48′ N) with a total area of 165,383 km2 flowing through Qinghai, Tibet, Sichuan and
Yunnan Province [34]. The valley is in the shape of a narrow strip in the north–south
direction, wide upstream and downstream, and narrow midstream. The landform types
are complex and diverse, and the upstream originates from the Qinghai–Tibet Plateau
(QTP) with many alpine valleys. The midstream is hilly with a rugged terrain and multiple
terraces, and the downstream is of alluvial plains with a flat terrain and frequent floods.
The terrain is undulant with great spatial heterogeneity. The elevation in the upstream
exceeds 4500 m and the relative vertical distance in the midstream is about 2000 m with a
deep valley, while the terrain in the downstream is gentle and the minimum elevation is
only 486 m.

The vertical difference in climate is remarkable. The upstream belongs to the alpine
climate zone of the QTP with low temperature and low rainfall [35]. The mean annual
temperature varies between −3 ◦C and 3 ◦C, and the mean annual precipitation ranges
from 400 to 800 mm [35]. The midstream belongs to the subtropical climate of northwestern
Yunnan, and the vertical change in temperature is obvious, which increases from north
to south [36]. The mean annual temperature ranges between 12 ◦C and 15 ◦C, and the
annual precipitation varies between 1000 and 2500 mm [36]. The downstream belongs
to the tropical and subtropical climate of the southwestern Yunnan with temperatures
increasing from north to south [37]. The mean annual temperature ranges between 15 ◦C
and 22 ◦C, and the annual precipitation varies between 1000 and 3000 mm [37]. Overall,
the whole basin belongs to the southwest monsoon climate with distinct dry and wet
seasons [38]. The valley is very rich in water resources, and the mean annual runoff is
approximately 4750 × 108 m3, which is about 9-fold greater than the annual runoff of the
Yellow River [39]. The complex terrain and climate features form rich vegetation types
with obvious latitude zonality and vertical zonality (Figure 1). Vegetation types mainly
include alpine vegetation, meadows, shrubs, coniferous forests, broad-leaf and mixed
forests, broad-leaf forests, cultivated vegetation and swamps, while meadows and shrubs
are the main vegetation types of upstream [40]. The main land use types in the valley
include agricultural land, forest land, grassland, urban land, water body, bare land and
wetland. The proportion of cultivated land is relatively low, accounting for only 8.43%
of the total area of the valley distributed in the downstream (Figure 1). Apart from that,
there are large areas of bare rock and bare soil in the north part of the valley, accounting for
7.04% of the total area.

2.2. Data Sources and Processing

(1) Land use and land cover.

In this study, land cover data with a 100 m× 100 m resolution in 2015 were provided by
the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences
(RESDC, Beijing) (http://www.resdc.cn, 1 September 2020). Based on the land cover data
in 2015, we calculated the proportion of cultivated land and landscape pattern indexes,
including the Largest Patch Index (LPI), Area Weighted Fractal Dimension of Patches
(AWMPED) and Contagion Index (CONTAG) by Fragstats 4.2. Among them, LPI represents
shape, AWMPED represents area and CONTAG represents aggregation aspects.

(2) Gross Domestic Product (GDP) density.

In this study, GDP spatial distribution grid data with a 1 km × 1 km resolution in
2015 were provided by the Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (RESDC, Beijing) (http://www.resdc.cn, 5 September 2020).

http://www.resdc.cn
http://www.resdc.cn
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(3) Road and township data.

Township location point data were obtained from the GeoHey (https://geohey.com/,
10 September 2020). The road distribution data were obtained from the National Agricul-
ture Science Data Sharing Center (http://www.agridata.cn, 8 September 2020).
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Figure 1. Location and land use type distribution of study area.

2.3. Quantification and Spatial Patterns of ES Supply, Demand and Balance

According to the LULC matrix model constructed by Burkhard et al., (2015) [8], we
obtained the ES supply matrix and demand matrix by merging 44 land use types and
22 ES types of the original matrix into 25 land use types and 22 ES types (Figure 2). We
assigned different values to the supply capacity and demand intensity of various ES types,
including provisioning service (11 types), regulating service (9 types), and cultural service
(2 types) for each land use type. The ES supply matrix was used to define the supply
capacity of different land use types for various ESs (Figure 2a), while the ES demand
matrix was used to reflect the actual demand intensity of humans for ESs for each land use
type (Figure 2b). In these two matrixes, the evaluation levels of ES supply capacity and
demand intensity vary from 0 to 5. It was reported that this method is a propagable and
convenient method for ES quantification [3]. By subtracting the ES demand intensity by
the ES supply capacity, we calculated the ES balance to identify the surplus and deficit of
ES (Figure 2c). The evaluation scale ranges between −5 and 5. Negative values indicate
that the demand for ESs exceeds the supply in a deficit state, and positive values indicate
that ESs are in a surplus state. Based on the derived assessment matrixes of land use, the
spatial quantitative analysis of ES supply, demand and balance of various ESs was carried
out in the Lancang river valley. Then, the ES supply, demand, balance and total values
were calculated by multiplying the area of 22 land use types by the quantitative values of
ES supply, demand and balance to reflect the spatial variation of the ESs in the Lancang
river valley. The formulas used are as follows:

ESj =
22

∑
i=1

Si×VESi (i = 1, 2, 3 . . .. 22) (1)

https://geohey.com/
http://www.agridata.cn
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EStotal =
3

∑
i=1

ESj ( j = 1, 2, 3) (2)

where VESi is the quantitative value of the ES category for land cover types i (i = 1, 2, 3 . . . 22);
Si is the area of land cover i; ESj is the ES value for ES categories j.
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To verify the reliability of the method, the coefficient of sensitivity (CS) was further
introduced to evaluate the response of total ES value to the change of the quantitative
value. The formula used is as follows:

CS =

∣∣∣∣∣∣ (ESVj − ESVi)/ESVi(
VCjk −VCik

)
/VCik

∣∣∣∣∣∣ (3)

where i and j are the initial and adjusted values, respectively; adjustment quantity = ±50%;
k is the land use type; VC is the quantitative value; and ESV is the total ES value. If
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CS ≥ 1, then ESV is flexible to VC, and the assessment method has poor accuracy and low
credibility. If CS < 1, then ESV is inelastic to VC, and the method is credible.

In order to further explore the local performance of ES changes in space, Optimized
Hot Spot analysis/Getis-Ord G* index in ArcGIS 10.5 was used to analyze the local cor-
relation between coldspots and hotspots. The spatial pattern of the total ES supply and
demand for each pixel (3 km × 3 km) was recognized to identify spatial clusters at a 99%
significance level in the Lancang river valley in 2015. High-value clustered pixels were
counted as hotspots; low-value clustered pixels were counted as coldspots; the high-value
and low-value interval distributions were insignificant pixels. The formulas used are
as follows:

Gi
∗ =

∑n
j=1 WijXj − X ∑n

J=1 Wij

S×

√ [
n ∑n

j=1 Wij
2−∑n

j=1 Wij

]2

n−1

(4)

X =
∑n

j=1 Xj

n
(5)

S =

√
∑n

j=1 Xj
2

n− 1
−
(
X
)2 (6)

where Wij is the spatial weight; Xi and Xj are the observation values of the ith ESV
evaluation unit and the jth ESV evaluation unit, respectively; and n is the sample size.

2.4. Driving Factor Analysis of ES Balance Based on Geographically Weighted Regression Model

The Geographical Weighted Regression (GWR) model is a kind of regression model
that can detect the changes in the variable structure and variable relationship caused by
geographical location changes, which is called spatial non-stationarity [41]. Compared with
the general linear regression model, the GWR model effectively improves the goodness-
of-fit, which has been widely used in spatial regression analysis [42–44]. The GWR model
was calculated according to Equation (7) in ArcGIS 10.5.

yi = β0(ui, vi) +
p

∑
i=1

βk(ui, vi)xik + εi (7)

where (ui, vi) is the spatial position of the ith sample; xik is the independent variable;
β0(ui, vi) is the constant term estimate; βk(ui, vi) is the weight in the regression equation
calculated according to the attenuation function, which is used to modify the parameter
xik; p is the number of samples and εi is the error correction term. The analysis process of
the driving factor based on the GWR model is described as follows.

(1) Driving factors screening.

In this study, 7 factors were initially selected to reflect human activity intensity as
explanatory variables, including 4 direct reflection factors (GDP, cultivated land ratio,
distance to road and distance to township point) and 3 indirect reflection factors describing
the degree of landscape fragmentation (LPI, AWMPED and CONTAG). The balance values
of four ES types were selected as the dependent variables, including regulating service
balance, provisioning service balance, cultural service balance and total ES balance. In the
GWR model, all variables were standardized, using the deviation standardization method.

(2) GWR analysis process.

We divided the Lancang river valley into 18,325 grids (3 km × 3 km) and extracted
the values of 4 dependent variables and 7 explanatory variables of each grid. Based on the
above data, GWR analysis was performed in the 3 following steps:

Significant explanatory variables screening: The Ordinary Least Squares (OLS) method
was used to carry out the regression analyses on 4 dependent variables and 7 explanatory
variables to eliminate the insignificant variables and redundant variables, respectively. The
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screening criteria were that p-value was less than 0.05 and the Variance Inflation Factor (VIF)
was less than 7.5. Then, OLS was performed again on the screened explanatory variables,
and the obtained R2 was the goodness-of-fit of the global regression model. According to
the OLS analysis, 4 corresponding explanatory variables were selected for provisioning
service balance, including LPI, GDP, cultivated land ratio and distance to township points.
For cultural services balance, 5 of the 7 corresponding explanatory variables (GDP, distance
to road, distance to township point, LPI and AWMPED) were selected, except the CONTAG
and cultivated land ratio. For regulating service balance and total ES balance, all of the
7 initial explanatory variables were screened out as corresponding explanatory variables.

GWR model performing: Using the Spatial Statistics/GWR tool in ArcGIS10.5, GWR
model was respectively performed on 4 dependent variables and their corresponding
explanatory variables. The weight function calibration method was adaptive, and the
bandwidth determination method was AICc.

Moran’s I verification: The Spatial Autocorrelation (Moran’s I) tool was used to
calculate the global Moran’s I of standardized residual in GWR model to test whether it
was in a random distribution state.

(1) Spatial stationarity analysis of GWR regression coefficients, and spatial differentiation
analysis of dominant explanatory variables.

The coefficient of variation (Cv) was calculated based on each regression coefficient in
the GWR model to describe the spatial stationarity as follows:

Cv =
σ

x
× 100% (8)

where Cv was the coefficient of variation; σ was the standard deviation; x was the
average value.

The influence degree of various explanatory variables on ES balance value can be re-
flected by the regression coefficients of the pixel. In this study, we screened the maximum re-
gression coefficients at pixel scale and performed the spatial differentiation analysis, which
reflected the dominant explanatory variables of each pixel and their influence directions.

The research framework and corresponding methods were shown in Figure 3.
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3. Results
3.1. Spatial Distributions of ES Supply, Demand and Balance

As shown in Figure 4, the supply capacity of the provisioning service in the study area
was low in the upstream and high in the downstream, similar to the spatial differentiation



Land 2021, 10, 522 8 of 17

of elevation and climate [13,45]. The demand intensity of the provisioning service was
generally low, and the high-value areas were scattered in the downstream, mainly in
the Dali and Xishuangbanna cities. The deficit areas of provisioning service showed a
continuous distribution in the upstream and a scattered distribution in the downstream.
For regulating service, the supply capacity was overall high, and the low-value areas
were mainly distributed in the Yushu, Puer and Lincang cities. The demand intensity
of the regulating service was overall low with higher values in the downstream than
in the upstream. Dali was the region where the high value of demand intensity was
relatively concentrated. For cultural service, the supply capacity was high, especially
in the southeastern part of the downstream, including Xishuangbanna and Puer. The
demand of cultural service was low scattered in the whole study area. For total ES, the
spatial characteristics of supply capacity was high in the downstream and low in the
upstream. Although the demand intensity of total ES was also high in the downstream, the
surplus of the downstream was much higher than that of the upstream, with only a small
number of deficit areas scattered. In the upstream, deficit areas of total ES had a continuous
distribution, but the degree of deficit was relatively low.

3.2. Spatial Patterns of Total ES Supply and Demand

The supply and demand of total ES in the study area were in a local, spatial aggregation
pattern, as shown in Figure 5. For the total ES supply, the area of hotspots accounted for
35.87% of the Lancang river valley, concentrated in the eastern part of the downstream
and scattered in the west. The area of coldspots accounted for 34.79% of the study area,
concentrated in the upstream and scattered in the downstream. Compared with the total
ES supply, the hotspots and coldspots of total ES demand represented a more dispersed
distribution, being mainly distributed in Dali city and Nujiang Lisu Autonomous Prefecture
with a small amount distributed in the western part of the downstream. The area of demand
hotspots accounted for 18.84% of the total area. The number of coldspots was small,
accounting for 13.71% of the study area, scattered in the Yushu and Changdu cities located
in the upstream. When comparing the spatial pattern of the total ES supply with that of
demand, the distribution of supply coldspots was more concentrated and northerly than that
of demand coldspots. Both supply hotspots and demand hotspots were distributed in the
downstream, representing mosaic distribution in the east–west direction, which explained
the large spatial differences of total ES balance in the southern part of the study area.

3.3. Driving Factors Analysis of ES Balance Based on the OLS and GWR Models
3.3.1. OLS Analysis and Corresponding Explanatory Variable Selection

Comparing the OLS results of four dependent variables revealed that LPI was the
major impact factor of all dependent variables (Table 1). The correlation coefficients were
all greater than 0.7 and all were negatively impacted.

Table 1. Parameters and test results of OLS and GWR.

Balance Type
Provisioning Services Regulating Services Cultural Services Total ES Balance

OLS GWR OLS GWR OLS GWR OLS GWR

1 Largest Patch Index (LPI) −0.781 ** 0.191 −6.350 ** 0.184 −0.719 ** 0.11 −0.767 ** 0.185

2 Area Weighted Fractal Dimension
of Patches (AWMPED) — — −0.024 ** 1.856 — — −0.012 ** 1.932

3 Contagion Index (CONTAG) — — −0.066 ** 0.835 0.034 ** 0.843 0.041 ** 1.281
4 GDP −0.098 ** 13.786 −0.086 ** 2.312 −0.074 ** 0.593 −0.098 ** 2.271
5 The ratio of cultivated land 0.077 ** 2.031 −0.709 ** 0.167 — — −0.454 ** 0.311
6 Distance to road — — −0.041 ** 1.219 −0.082 ** 1.488 −0.032 ** 1.335
7 Distance to township points 0.024 ** 1.156 −0.027 ** 0.927 −0.085 ** 1.129 −0.018 ** 0.99
8 Adjusted R2 of OLS 0.631 0.610 0.379 0.570
9 Adjusted R2 GWR 0.708 0.660 0.399 0.634
10 Moran’s I-z-score 0.409 −1.324 −1.561 −0.814
11 Moran’s I-p-value 0.683 0.185 0.118 0.416

** p < 0.01.
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3.3.2. Validation of GWR Model and Spatial Stationarity of Explanatory Variables

Comparing the adjusted R2 of GWR and OLS demonstrated that the goodness-of-fit
values of GWR models were higher than those of the corresponding OLS models in various
ESs, indicating that the regression effect of the GWR model was better than that of the
OLS model (Table 1). Meanwhile, based on the global Moran’s I, the z-scores of all four
dependent variables were less than 1.65 and p-values were greater than 0.1, indicating that
the standardized residuals showed random distribution and the GWR models passed the
validation of the global Moran’s I (Table 1).
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For the explanatory variables in the GWR model, the smaller the Cv of the regression
coefficient was, the larger the spatial stationarity and the more stable impact on ES balance
were. In contrast, the larger Cv was, the greater the fluctuation in space was and the more
unstable the impact was. For different dependent variables, the spatial stationarity of
different explanatory variables was as follows: (i) for the provisioning services balance,
the explanatory variable with the largest spatial variability was GDP and the most stable
explanatory variable was LPI; (ii) for the regulating services balance, the spatial stationarity
of different explanatory variables was not much different, but the ratio of cultivated
land showing the highest stability, and the explanatory variable with the largest spatial
variability was GDP; (iii) for the cultural services balance, the spatial variabilities of the
distance to road and distance to township points were the largest; and (iv) for the total
ES balance, the explanatory variables with the largest spatial variabilities were GDP and
AWMPED (Table 1).

3.3.3. Spatial Differentiation Analysis of Dominant Explanatory Variables

The screening results of dominant explanatory variables at pixel scale indicated that
four kinds of ES balance were affected by seven types dominant explanatory variables with
negative or positive directions (Figure 6). For provisioning service balance, 93.81% of the
pixels were negatively affected by LPI, and 4.95% of the pixels were positively affected
by GDP. The remaining 1.24% of the pixels were affected by the other three variables. For
regulating service balance, 74.70% of the pixels were negatively affected by the cultivated
land ratio and 21.52% of the pixels were negatively affected by LPI. In addition, 2.58% of
the pixels were negatively affected by GDP, concentrated in Yushu city. Cultural service
balance only had two dominant explanatory variables. Specifically, 92.07% of the pixels
were negatively affected by LPI, and the remaining pixels were negatively affected by GDP.
The dominant explanation variables of total ES balance included six types, and 92.88%
of the pixels were negatively affected by LPI. Overall, the impact of human activities on
all kinds of ES balance was basically negative. Only the GDP, cultivated land ratio and
AWMPED showed a positive influence on a few pixels.
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4. Discussion
4.1. Spatial Variability of the ESs in the Lancang River Valley

The spatial patterns of the ESs indicated that the supply, demand and balance of
various ESs presented low values in the upstream and high values in the downstream,
which showed similar trends to the topographic and climatic distribution characteristics in
study area [13,45]. The fundamental reason was that the spatial distribution of land use
types is restricted by both natural conditions and human activities [46]. The restriction of
natural conditions brought by the topographic and climatic features, and the contradictions
between human and land jointly affected the land use status, thereby influencing the ES
supply and demand [47].

Previous studies focusing on the values of ESs have proved that the ES values pre-
sented a regular distribution on the topographic and climatic gradients, which were affected
by both elevation, slope, temperature and precipitation [45,48]. Taking the upper stream
of the Min river as the study area, Zhu et al., (2017) analyzed the impact of the terrain
niche on the ES values from the perspective of the selectivity of various land use types on
topography [49]. Their results showed that, driven by the topography limitation and the
human–land contradiction, the woodland and cultivated land with better topographic con-
ditions were occupied by construction land, grassland and water, and the ES values varied
in an inverted “V” shape with the rising topography [49]. Fang et al., (2020) quantified ES
variations in elevation-associated vegetation types in a tropical region of China and found
that ESs showed spatial differences along with different elevation levels in the Xishuang-
banna area [47]. Furthermore, Jiang et al., (2016) assessed the ecosystem changes in the
Three-River Headwater Region, and found that the increasing precipitation-intensified
water erosion, and elevating temperature-induced glacier melting and permafrost degrada-
tion pose a threat to the ESs [50]. Lin et al., (2015) also concluded that climate, topography,
land-use patterns and vegetation cover, as well as the interactions among them were the
main factors that affected the spatial patterns of soil retention ESs in the Three Parallel
Rivers Region [30].

The elevation is high in the upstream of the study area, and the midstream has a large
elevation drop and steep slope, and the elevation in the downstream is constant. Thus, due
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to the undulating terrains, the land use types vary greatly in different parts of the Lancang
river valley. Integrated with the driving effects of human activities, the study area forms
the following land use characteristics: the downstream is mainly covered by woodland,
construction land and cultivated land, and the upstream is mostly covered by grassland,
bare soil and bare rock. Our study revealed the spatial variability of ESs at the watershed
scale and found that the land use characteristics affect the spatial distribution of ES supply,
demand and balance, similar to the distribution of topographic features [47].

4.2. Links between Landscape Pattern Indices on ES Balance

Landscape patterns can quantify the landscape structural composition and spatial
configuration to reflect landscape dynamics and the ecological process [51]. Landscape
composition and configuration impact the ability of ecosystems to provide goods and
services, and the improvement or degradation in ESs can be detected by landscape pattern
changes [52,53]. Landscape pattern indexes may be a valid tool to explore the effects of
land-use changes and human activities on ESs [54,55]. The landscape pattern changes will
affect the variation in landscape indexes and, thus, affect the change in ES supply and
demand [56]. Therefore, combining landscape pattern indexes and ESs will contribute to
exploring how landscape patterns influence the ES balance.

The results of our study showed that the ES balance was significantly correlated with
the landscape pattern indexes, including LPI, AWMPED and CONTAG (Table 1). LPI was
the dominant explanatory variable of ES balance for the majority pixels, characterized by
strong influence and high spatial stability (Figure 6). Previous studies proved that the
changes of landscape patterns had a regional impact on ES values [57]. Wang et al. found
that there were significant positive correlations between ES values and landscape richness
and aggregation, which showed a strong negative correlation between ES values and the
complexity of patch shape [58]. The reliable links between landscape indexes and ESs
in terms of land pattern and their implications should still be determined. In addition,
the landscape patterns play a key role in the spatial variation of ES balance (Figure 6),
consistent with the results of previous studies [52,59]. Yushanjiang et al. also quantified
the spatial correlations between landscape patterns and ES values in Ebinur Lake Basin,
Xinjiang, and their results showed that landscape metrics had direct spatial correlations
with different ES types [52]. LPI had negative correlation with various ES balances, which
can influence landscape fragmentation and connectivity [60,61]. It has been proved that
social policies can effectively drive changes in landscape patterns, thus affecting the ES
supply and demand [62]. Results of this research may provide scientific support for the
formulation of regional ecosystem management policies from landscape perspectives.

4.3. Application and Advantages of GWR Model

Recently, several studies have proved that human activities and landscape patterns
are important factors influencing ES supply, demand and balance [51,55]. Our results
contributed to providing effective information and guidance for ES management. Previous
studies on the driving factors of ESs focused on traditional analyses, such as correlation
analysis, cluster analysis (CA) and principal component analysis (PCA) [63]. These methods
could infer a preliminary assessment result about which human activity factors will have
significant influence on ES balance. However, these studies lacked exploring the spatial
distribution features of human activity factors’ effects on ES balance on a pixel scale, so
they could not screen out the specific sites and types of human activity on spatial scale.

In this study, we used the OLS and GWR models to evaluate the driving influence of
different human activity factors and landscape pattern indexes on ES balance, which could
supply more detailed information for policy decision-making. The results of the OLS model
showed that LPI had the greatest negative influence on various service types of ES balance,
which has been proved by the front section. In agreement with the OLS model analysis, the
GWR model also revealed that LPI showed the strongest negative effect on ES balance for
the majority of the pixels (Figure 6). However, the difference between these two methods
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was that the GWR model could determine the weight of each sample point in the regression
equation by establishing the distance attenuation function, whereas the OLS analysis could
not. The constructed local regression equation conformed to the first law of geography
and showed a higher goodness-of-fit than that of the OLS model (Table 1), which was
consistent with the results of previous studies [42,44]. For example, Wu (2020) explored the
spatio-temporal variations of the ecological footprint and its influencing factors in China’s
provinces using the GWR model and concluded that the GWR model was superior to OLS
considering the regression analysis of the goodness-of-fit, variance comparisons and the
spatial auto-correlation of residual [42]. In addition, compared with global regression, the
GWR model can obtain the influence degree of different human activity factors on the ES
balance at pixel scale. All these findings imply the advantages of the GWR model over
the OLS model in exploring the spatial distribution and driving force of ES balance at
regional and spatial scales. By screening the dominant explanatory variables, the results
can provide more detailed and effective guidance for the regulation of regional ESs.

4.4. Limitations and Implications for Ecological Management at the Watershed Scale

In this study, we applied the LULC matrix model to quantify and map ES supply,
demand and balance in the Lancang river valley. According to the previous studies, due to
the simplicity, the LUCC matrix method has been widely applied to quantify ES supply,
demand and balance in many areas [2,8,64]. However, there are some uncertainties and
criticisms for this method. This method was an expert-based evaluation method with
high subjective limitations and lacked conformity [65]. Only land-use data were used
in the ES assessment, but other influencing factors, such as population and GDP, were
ignored, which may bring estimation mistakes. These above uncertainties would bring
uncertain results for ES balance estimation with great discrepancies [7]. Thus, we further
calculated the CS to verify the reliability of the LULC assessment method. The results
showed that the CS values for various land use types were less than 1, which indicated
the rationality and reliability of our method and results [2,17]. Therefore, in future studies,
all possible uncertainties should be further considered at watershed scale to provide more
valid assessment and support for ES management at the watershed scale.

In addition, many human activity factors and landscape indexes, namely GDP, culti-
vated land ratio, distance to road, distance to township point, LPI, AWMPED and CONTAG,
have been used to explore the driving forces of ES balance in the Lancang river valley.
These factors are some representative factors that we selected to better reflect the human
activity intensity in the study. In previous studies, Zhao et al., (2015) selected population
density, number of villages and road length to evaluate the human influence intensity on
the QTP [66]; Li et al., (2018) introduced the electricity infrastructure, population density,
land use intensity, road and railways, and grazing intensity to reflect human activity [27]
but these human activity factors are insufficient. In addition, GDP, cultivation activity and
landscape pattern indexes may be also important factors influencing human activity [3,52].
Therefore, compared to previous studies, we had a comprehensive consideration for the
influence of human activities on ESs, which provided more reliable results. However,
some other human activity and landscape factors may also influence the ES balance, such
as population density, traffic volume, night-time light and tourism belonging to human
activity factors, and patch density (PD), landscape division index (DIVISION) and land-
scape shape index (LSI) belonging to landscape pattern indexes [27,52,57]. The inadequate
consideration of these impact factors in the Lancang river valley may underestimate the
assessment results. Many studies showed that tourism and traffic volume would bring
a significant and negative influence on ESs [67,68], but these data are usually difficult to
obtain at watershed scale; thus, we excluded the data. Many potential human activity
factors may threaten the ecosystem, thus more attention should be paid to consider all the
possible factors of human activity intensity at the watershed scale in future studies.
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5. Conclusions

Regional land use status is an important factor driving the change in ES supply and
demand. In this study, based on the LULC matrix model, four kinds of ES supply, demand
and balance in the Lancang river valley were quantified, and the spatial distribution maps
of various ESs were obtained. On this basis, we analyzed the spatial pattern of total ES
supply and demand and obtained the quantity and spatial characteristics of the hotspots
and coldspots of total ES supply and demand, which performed as hotspots in the south
and coldspots in the north. Furthermore, using the OLS and GWR models, we conducted a
driving factor analysis on various ES balances, and screened human activity factors with
significant influence. According to the regression coefficients of each explanatory variable,
the dominant explanatory variables of each pixel were obtained. The results showed that
the provisioning service and cultural service of the ES balance were significantly affected
by four and five human activity factors, respectively, and regulating service of the ES
balance and total ES balance were significantly affected by seven human activity factors.
Among the factors, LPI was proved to be the dominant explanatory variable of the vast
majority pixels and its influence direction was negative. The research also indicated that
the impacts of human activities on various service types of ES balances were basically
negative, and only GDP, cultivated land ratio and AWMPED had a positive influence on
a small quantity of pixels. The research may provide scientific support for regional ES
management and regulation.
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