Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Lactobacillus inners

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8803 KiB  
Article
Comparative Study on the Physical and Chemical Properties Influenced by Variations in Fermentation Bacteria Groups: Inoculating Different Fermented Mare’s Milk into Cow’s Milk
by Fanyu Kong, Qing Zhao, Shengyuan Wang, Guangqing Mu and Xiaomeng Wu
Foods 2025, 14(8), 1328; https://doi.org/10.3390/foods14081328 - 11 Apr 2025
Viewed by 625
Abstract
Fermented strains play a crucial role in shaping the physicochemical properties and functionality of fermented cow’s milk. The natural fermentation system demonstrates a certain degree of stability and safety after undergoing continuous domestication. Fermented mare’s milk has been consumed for its intestinal health [...] Read more.
Fermented strains play a crucial role in shaping the physicochemical properties and functionality of fermented cow’s milk. The natural fermentation system demonstrates a certain degree of stability and safety after undergoing continuous domestication. Fermented mare’s milk has been consumed for its intestinal health benefits in regions such as Xinjiang and Inner Mongolia in China. This consumption is closely related to the fermented strains present. Consequently, from the perspective of fermented strains, this study aimed to compare the microbiota diversity of naturally fermented mare’s milk with that of inoculated fermented cow’s milk, using it as a fermentation system to develop new functional fermented cow’s milk products. Water retention, rheology, texture, pH, and titration acidity were analyzed to evaluate the quality of fermented cow’s milk with the obtained transmission strain system. Importantly, the correlation between the property of fermented cow’s milk and the diversity of fermentation system has been thoroughly analyzed. The findings indicate that the gel property of fermented cow’s milk is not directly linked to the strain diversity or the core strain of fermentation. Instead, the abundance of Lactobacillus, Lactococcus, Hafnia-Obesumbacterium, Leuconostoc, Acetobacter, and Acinetobacter bacteria significantly influences the quality of fermented cow’s milk. Consequently, this study has successfully developed a new type of fermented cow’s milk and provided a reliable theoretical foundation for the functional enhancement of specialized fermented cow’s milk products. Full article
Show Figures

Figure 1

25 pages, 456 KiB  
Article
Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction
by Vyacheslav M. Abramov, Igor V. Kosarev, Andrey V. Machulin, Evgenia I. Deryusheva, Tatiana V. Priputnevich, Alexander N. Panin, Irina O. Chikileva, Tatiana N. Abashina, Ashot M. Manoyan, Olga E. Ivanova, Tigran T. Papazyan, Ilia N. Nikonov, Nataliya E. Suzina, Vyacheslav G. Melnikov, Valentin S. Khlebnikov, Vadim K. Sakulin, Vladimir A. Samoilenko, Alexey B. Gordeev, Gennady T. Sukhikh, Vladimir N. Uversky and Andrey V. Karlyshevadd Show full author list remove Hide full author list
Antibiotics 2024, 13(12), 1143; https://doi.org/10.3390/antibiotics13121143 - 28 Nov 2024
Cited by 2 | Viewed by 2145
Abstract
Background/Objectives: Campylobacter jejuni (CJ) is the etiological agent of the world’s most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and [...] Read more.
Background/Objectives: Campylobacter jejuni (CJ) is the etiological agent of the world’s most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans. Full article
11 pages, 2261 KiB  
Article
Exploring the Fermentation Products, Microbiology Communities, and Metabolites of Big-Bale Alfalfa Silage Prepared with/without Molasses and Lactobacillus rhamnosus
by Baiyila Wu, Tong Ren, Changqing Li, Songyan Wu, Xue Cao, Hua Mei, Tiemei Wu, Mei Yong, Manlin Wei and Chao Wang
Agriculture 2024, 14(9), 1560; https://doi.org/10.3390/agriculture14091560 - 9 Sep 2024
Cited by 1 | Viewed by 1258
Abstract
The influence of molasses (M) and Lactobacillus rhamnosus (LR) on fermentation products, microbial communities, and metabolites in big-bale alfalfa silage was investigated. Alfalfa (Medicago sativa L.) was harvested at the third growth stage during the flowering stage in the experimental field of [...] Read more.
The influence of molasses (M) and Lactobacillus rhamnosus (LR) on fermentation products, microbial communities, and metabolites in big-bale alfalfa silage was investigated. Alfalfa (Medicago sativa L.) was harvested at the third growth stage during the flowering stage in the experimental field of Linhui Grass Company from Tongliao City, Inner Mongolia. An alfalfa sample without additives was used as a control (C). M (20 g/kg) and LR (106 cfu/g) were added either alone or in combination. Alfalfa was fermented for 7, 14, and 56 d. Lactic acid content in the M, LR, and MLR groups increased, whereas the pH value and butyric acid, 2,3-butanediol, and ethanol contents decreased compared to those of C group after 7, 14, and 56 d of fermentation. A two-way analysis of variance (ANOVA) was performed to estimate the results. The LR group exhibited increased Lactobacillus abundance, whereas the M and MLR groups showed increased Weissella abundance compared to the C group. The relative contents of amino acids (tyrosine, isoleucine, threonine, arginine, valine, and citrulline) in the M and MLR groups were higher than those in the C group. During fermentation, the M, LR, and MLR groups showed decreased phenylalanine, isoleucine, and ferulic acid contents. Amino acids such as isoleucine and L-aspartic acid were positively correlated with Lactobacillus but negatively correlated with Weissella. In conclusion, combining high-throughput sequencing and liquid chromatography–mass spectrometry during anaerobic alfalfa fermentation can reveal new microbial community compositions and metabolite profiles, supporting the application of M, LR, and MLR as feed fermentation agents. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

13 pages, 2621 KiB  
Article
The Volatile Flavor Substances, Microbial Diversity, and Their Potential Correlations of Inner and Surface Areas within Chinese Qingcheng Mountain Traditional Bacon
by Hongfan Chen, Yulin Zhang, Xinyi Wang, Xin Nie, Dayu Liu and Zhiping Zhao
Foods 2023, 12(20), 3729; https://doi.org/10.3390/foods12203729 - 11 Oct 2023
Cited by 6 | Viewed by 1841
Abstract
The objective of this study was to explore the microbial diversity, volatile flavor substances, and their potential correlations in inner and surface Chinese Qingcheng Mountain traditional bacon (CQTB). The results showed that there were 39 volatile flavor substances in inner and surface CQTB [...] Read more.
The objective of this study was to explore the microbial diversity, volatile flavor substances, and their potential correlations in inner and surface Chinese Qingcheng Mountain traditional bacon (CQTB). The results showed that there were 39 volatile flavor substances in inner and surface CQTB detected by headspace solid-phase microextraction and gas chromatography–mass spectrometry (HS-SPME-GC-MS). Moreover, significant differences in volatile flavor substances between the inner and surface CQTB were observed. Sixteen key volatile flavor substances were screened (OAV > 1), including guaiacol, nonanal, ethyl isovalerate, and others. High-throughput sequencing (HTS) result indicated that Firmicutes, Proteobacteria, and Actinobacteria were the predominant bacterial phyla, and Ascomycota and Mucoromycota were the predominant fungal phyla. Staphylococcus, Psychrobacter, and Brochothrix were the predominant bacteria, and Debaryomyces, Penicillium, and Mucor were the predominant fungal genera. Spearman correlation coefficient analysis suggested that Apiotrichum and Lactobacillus were closely and positively correlated with the formation of key phenol compounds. The present work demonstrates the microbial diversity and related volatile flavor substances and their potential correlations in CQTB and provides a theoretical basis for the development of microbial starter culture and green processing of CQTB. Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products Volume II)
Show Figures

Figure 1

17 pages, 5137 KiB  
Article
Ultrasensitive Nonenzymatic Real-Time Hydrogen Peroxide Monitoring Using Gold Nanoparticle-Decorated Titanium Dioxide Nanotube Electrodes
by Md. Ashraful Kader, Nina Suhaity Azmi, A. K. M. Kafi, Md. Sanower Hossain, Rajan Jose and Khang Wen Goh
Biosensors 2023, 13(7), 671; https://doi.org/10.3390/bios13070671 - 22 Jun 2023
Cited by 7 | Viewed by 2741
Abstract
An amperometric enzyme-free hydrogen peroxide (H2O2) sensor was developed by catalytically stabilizing active gold nanoparticles (Au NPs) of 4–5 nm on a porous titanium dioxide nanotube (TiO2 NTs) electrode. The Au NPs were homogeneously distributed on anatase TiO [...] Read more.
An amperometric enzyme-free hydrogen peroxide (H2O2) sensor was developed by catalytically stabilizing active gold nanoparticles (Au NPs) of 4–5 nm on a porous titanium dioxide nanotube (TiO2 NTs) electrode. The Au NPs were homogeneously distributed on anatase TiO2 NTs with an outer diameter of ~102 nm, an inner diameter of ~60 nm, and a wall of thickness of ~40 nm. The cyclic voltammogram of the composite electrode showed a pair of redox peaks characterizing the electrocatalytic reduction of H2O2. The entrapping of Au NPs on TiO2 NTs prevented aggregation and facilitated good electrical conductivity and electron transfer rate, thus generating a wide linear range, a low detection limit of ~104 nM, and high sensitivity of ~519 µA/mM, as well as excellent selectivity, reproducibility, repeatability, and stability over 60 days. Furthermore, excellent recovery and relative standard deviation (RSD) were achieved in real samples, which were tap water, milk, and Lactobacillus plantarum bacteria, thereby verifying the accuracy and potentiality of the developed nonenzymatic sensor. Full article
(This article belongs to the Special Issue New Biosensors and Nanosensors)
Show Figures

Figure 1

15 pages, 3323 KiB  
Article
Microbial Community and Fermentation Quality of Alfalfa Silage Stored in Farm Bunker Silos in Inner Mongolia, China
by Baiyila Wu, Humujile Sui, Weize Qin, Zongfu Hu, Manlin Wei, Mei Yong, Chao Wang and Huaxin Niu
Fermentation 2023, 9(5), 455; https://doi.org/10.3390/fermentation9050455 - 10 May 2023
Cited by 5 | Viewed by 2101
Abstract
Alfalfa is conserved in silo-type bunkers in the cold and humid regions of Inner Mongolia, China. Its quality is essential to ensure a healthy and sustainable dairy production. However, the impact of environmental factors on the microbiota and fermentation products of alfalfa silage [...] Read more.
Alfalfa is conserved in silo-type bunkers in the cold and humid regions of Inner Mongolia, China. Its quality is essential to ensure a healthy and sustainable dairy production. However, the impact of environmental factors on the microbiota and fermentation products of alfalfa silage remains unclear. The present research examined changes in the microbiota and fermentation products and their association with environmental parameters in 72 samples collected from 12 farms located at 4 different latitudes and longitudes across four regions. The samples were labeled with distinct codes, A, B, and C, from the cold–rainy region, D, E, and F, from the warm–rainy region, G, H, and I from the cold–dry region, and J, K, and L from the warm–dry region. The lactic acid levels ranged from 14.25 to 24.27 g/kg of DM across all samples. The pH and concentrations of NH3-N and butyric acid in samples A, B, and H were higher (p < 0.01) than in the other samples. Samples D and E had higher acetic acid concentrations and 1, 2-propanediol content (p < 0.01). The fresh material was dominated by Pantoea and Pseudomonas, whereas Lactobacillus was the most dominant genus in all silages, except for the B silage. The A, B, and H silages contained more Clostridium but less Lactobacillus than the other silages. The lactic acid levels were strongly associated with Lactobacillus plantarum, Weissella paramesenteroides, Lactobacillus acetotolerans, Pedobacter borvungensis, and Lactobacillus brevis (p < 0.01). In contrast, the pH and the NH3-N and butyric acid concentrations were strongly associated (p < 0.01) with the presence of Clostridium estertheticum. A correlation analysis revealed that precipitation, temperature, longitude, and latitude were the most critical factors influencing epiphytic microbes in the fresh material. After silage fermentation, low-temperature conditions significantly affected the fermentation products and microbial community composition. In conclusion, the microbial community of silages is distinctive in cold and humid regions, and climatic parameters ultimately affect the microbiota and fermentation products. Furthermore, the findings of this study demonstrate that Illumina MiSeq sequencing combined with environmental factor assessment might provide new information about the microbiota composition and fermentation quality of silages, facilitating the achievement of high-quality silage. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

22 pages, 3184 KiB  
Article
A Two-Compartment Fermentation System to Quantify Strain-Specific Interactions in Microbial Co-Cultures
by Andreas Ulmer, Stefan Veit, Florian Erdemann, Andreas Freund, Maren Loesch, Attila Teleki, Ahmad A. Zeidan and Ralf Takors
Bioengineering 2023, 10(1), 103; https://doi.org/10.3390/bioengineering10010103 - 11 Jan 2023
Cited by 4 | Viewed by 3317
Abstract
To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel two-compartment bioreactor system was developed, characterised, and implemented. The system allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained biomass. Further system characterisation revealed [...] Read more.
To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel two-compartment bioreactor system was developed, characterised, and implemented. The system allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained biomass. Further system characterisation revealed a Bodenstein number of 18, which hints at backmixing. Together with other physical settings, the existence of unwanted inner-compartment substrate gradients could be ruled out. Furthermore, the study of Damkoehler numbers indicated that a proper metabolite supply between compartments was enabled. Implementing the two-compartment system (2cs) for growing Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which are microorganisms commonly used in yogurt starter cultures, revealed only a small variance between the one-compartment and two-compartment approaches. The 2cs enabled the quantification of the strain-specific production and consumption rates of amino acids in an interacting S. thermophilusL. bulgaricus co-culture. Therefore, comparisons between mono- and co-culture performance could be achieved. Both species produce and release amino acids. Only alanine was produced de novo from glucose through potential transaminase activity by L. bulgaricus and consumed by S. thermophilus. Arginine availability in peptides was limited to S. thermophilus’ growth, indicating active biosynthesis and dependency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only opens the door for the quantification of exchange fluxes between microbes but also enables continuous production modes, for example, for targeted evolution studies. Full article
(This article belongs to the Topic Bioreactors: Control, Optimization and Applications)
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

17 pages, 3208 KiB  
Article
Transcriptomic Analysis Revealed Antimicrobial Mechanisms of Lactobacillus rhamnosus SCB0119 against Escherichia coli and Staphylococcus aureus
by Huan Peng, Gang Zhou, Xi-Miao Yang, Guo-Jun Chen, Hai-Bin Chen, Zhen-Lin Liao, Qing-Ping Zhong, Li Wang, Xiang Fang and Jie Wang
Int. J. Mol. Sci. 2022, 23(23), 15159; https://doi.org/10.3390/ijms232315159 - 2 Dec 2022
Cited by 11 | Viewed by 3756
Abstract
Lactic acid bacteria were reported as a promising alternative to antibiotics against pathogens. Among them, Lactobacillus rhamnosus could be used as probiotics and inhibit several pathogens, but its antibacterial mechanisms are still less known. Here, L. rhamnosus SCB0119 isolated from fermented pickles could [...] Read more.
Lactic acid bacteria were reported as a promising alternative to antibiotics against pathogens. Among them, Lactobacillus rhamnosus could be used as probiotics and inhibit several pathogens, but its antibacterial mechanisms are still less known. Here, L. rhamnosus SCB0119 isolated from fermented pickles could inhibit bacterial growth or even cause cell death in Escherichia coli ATCC25922 and Staphylococcus aureus ATCC6538, which was mainly attributed to the cell-free culture supernatant (CFS). Moreover, CFS induced the accumulation of reactive oxygen species and destroyed the structure of the cell wall and membrane, including the deformation in cell shape and cell wall, the impairment of the integrity of the cell wall and inner membrane, and the increases in outer membrane permeability, the membrane potential, and pH gradient in E. coli and S. aureus. Furthermore, the transcriptomic analysis demonstrated that CFS altered the transcripts of several genes involved in fatty acid degradation, ion transport, and the biosynthesis of amino acids in E. coli, and fatty acid degradation, protein synthesis, DNA replication, and ATP hydrolysis in S. aureus, which are important for bacterial survival and growth. In conclusion, L. rhamnosus SCB0119 and its CFS could be used as a biocontrol agent against E. coli and S. aureus. Full article
Show Figures

Figure 1

11 pages, 9259 KiB  
Article
Lower Genital Tract Microbiome in Early Pregnancy in the Eastern European Population
by Mariya Gryaznova, Olga Lebedeva, Olesya Kozarenko, Yuliya Smirnova, Inna Burakova, Mikhail Syromyatnikov, Alexander Maslov and Vasily Popov
Microorganisms 2022, 10(12), 2368; https://doi.org/10.3390/microorganisms10122368 - 30 Nov 2022
Cited by 8 | Viewed by 2406
Abstract
Background: It is known that the features of the cervicovaginal microbiome can depend on ethnicity, which might be caused by genetic factors, as well as differences in diet and lifestyle. There is no research on the cervicovaginal microbiome of Eastern European women during [...] Read more.
Background: It is known that the features of the cervicovaginal microbiome can depend on ethnicity, which might be caused by genetic factors, as well as differences in diet and lifestyle. There is no research on the cervicovaginal microbiome of Eastern European women during early pregnancy. Methods: We evaluated the cervical and cervicovaginal microbiome of women with first-trimester pregnancy (n = 22), further delivered at term, using the 16S rRNA sequencing method. Results: The predominant bacterial species in both groups was Lactobacillus iners, followed by Prevotella copri, Ileibacterium valens, Gardnerella vaginalis and Muribaculum intestinale in the cervical samples, and Gardnerella vaginalis, Prevotella copri, Bifidobacterium longum, Ileibacterium valens and Muribaculum intestinale in the cervicovaginal samples. The cervical microbiome had higher alpha diversity; a higher abundance of Muribaculum intestinale, Aquabacterium parvum and Methyloversatilis universalis; and a lower abundance of Psychrobacillus psychrodurans. Conclusions: The Lactobacillus iners-dominated microbiome (CST III) was the predominant type of cervical and cervicovaginal microbiome in early pregnancy in the majority of the women. The presence of soil and animal bacteria in the cervicovaginal microbiome can be explained by the rural origin of patients. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 2852 KiB  
Article
Dominance of Fructose-Associated Fructobacillus in the Gut Microbiome of Bumblebees (Bombus terrestris) Inhabiting Natural Forest Meadows
by Ronalds Krams, Dita Gudra, Sergejs Popovs, Jonathan Willow, Tatjana Krama, Maris Munkevics, Kaspars Megnis, Priit Jõers, Davids Fridmanis, Jorge Contreras Garduño and Indrikis A. Krams
Insects 2022, 13(1), 98; https://doi.org/10.3390/insects13010098 - 15 Jan 2022
Cited by 16 | Viewed by 5390
Abstract
Bumblebees are key pollinators in agricultural landscapes. However, little is known about how gut microbial communities respond to anthropogenic changes. We used commercially produced colonies of buff-tailed bumblebees (Bombus terrestris) placed in three habitats. Whole guts (midgut, hindgut, and rectum) of [...] Read more.
Bumblebees are key pollinators in agricultural landscapes. However, little is known about how gut microbial communities respond to anthropogenic changes. We used commercially produced colonies of buff-tailed bumblebees (Bombus terrestris) placed in three habitats. Whole guts (midgut, hindgut, and rectum) of B. terrestris specimens were dissected from the body and analyzed using 16S phylogenetic community analysis. We observed significantly different bacterial community composition between the agricultural landscapes (apple orchards and oilseed rape (Brassica napus) fields) and forest meadows, whereas differences in gut communities between the orchards and oilseed rape fields were nonsignificant. Bee-specific bacterial genera such as Lactobacillus, Snodgrassella, and Gilliamella dominated gut communities of B. terrestris specimens. In contrast, the guts of B. terrestris from forest meadows were dominated by fructose-associated Fructobacillus spp. Bacterial communities of workers were the most diverse. At the same time, those of males and young queens were less diverse, possibly reflecting greater exposure to the colony’s inner environment compared to the environment outside the colony, as well as bumblebee age. Our results suggest that habitat quality, exposure to environmental microbes, nectar quality and accessibility, and land use significantly affect gut bacterial composition in B. terrestris. Full article
Show Figures

Figure 1

13 pages, 5897 KiB  
Article
The Bacterial Diversity of Spontaneously Fermented Dairy Products Collected in Northeast Asia
by Zhongjie Yu, Chuantao Peng, Lai-yu Kwok and Heping Zhang
Foods 2021, 10(10), 2321; https://doi.org/10.3390/foods10102321 - 29 Sep 2021
Cited by 25 | Viewed by 3088
Abstract
Spontaneously fermented dairy products have a long history, and present diverse microorganisms and unique flavors. To provide insight into the bacterial diversity, 80 different types of spontaneously fermented dairy product samples’ sequence data that were downloaded from MG-RAST and NCBI and 8 koumiss [...] Read more.
Spontaneously fermented dairy products have a long history, and present diverse microorganisms and unique flavors. To provide insight into the bacterial diversity, 80 different types of spontaneously fermented dairy product samples’ sequence data that were downloaded from MG-RAST and NCBI and 8 koumiss and 4 shubat were sequenced by the PacBio SMRT sequencing platform. All samples including butter, sour cream, cottage cheese, yogurt, koumiss, shubat, and cheese, were collected from various regions in Russia, Kazakhstan, Mongolia and Inner Mongolia (China). The results revealed that Firmicutes and Proteobacteria were the most dominant phyla (>99%), and 11 species were identified with a relative abundance exceeding 1%. Furthermore, Streptococcus salivarius, Lactobacillus helveticus, Lactobacillus delbrueckii, Enterobacter xiangfangensis, and Acinetobacter baumannii were the primary bacterial species in the fermented dairy product samples. Principal coordinates analysis showed that koumiss and shubat stood out from the other samples. Moreover, permutational ANOVA tests revealed that the types of fermented dairy products and geographical origin significantly affected microbial diversity. However, different processing techniques did not affect microbial diversity. In addition, results of hierarchical clustering and canonical analysis of the principal coordinates were consistent. In conclusion, geographical origin and types of fermented dairy products determined the bacterial diversity in spontaneously fermented dairy product samples. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

20 pages, 1868 KiB  
Article
Bacterial Succession Pattern during the Fermentation Process in Whole-Plant Corn Silage Processed in Different Geographical Areas of Northern China
by Chao Wang, Hongyan Han, Lin Sun, Na Na, Haiwen Xu, Shujuan Chang, Yun Jiang and Yanlin Xue
Processes 2021, 9(5), 900; https://doi.org/10.3390/pr9050900 - 20 May 2021
Cited by 16 | Viewed by 3233
Abstract
Whole-plant corn silage is a predominant forage for livestock that is processed in Heilongjiang province (Daqing city and Longjiang county), Inner Mongolia Autonomous Region (Helin county and Tumet Left Banner) and Shanxi province (Taigu and Shanyin counties) of North China; it was sampled [...] Read more.
Whole-plant corn silage is a predominant forage for livestock that is processed in Heilongjiang province (Daqing city and Longjiang county), Inner Mongolia Autonomous Region (Helin county and Tumet Left Banner) and Shanxi province (Taigu and Shanyin counties) of North China; it was sampled at 0, 5, 14, 45 and 90 days after ensiling. Bacterial community and fermentation quality were analysed. During fermentation, the pH was reduced to below 4.0, lactic acid increased to above 73 g/kg DM (p < 0.05) and Lactobacillus dominated the bacterial community and had a reducing abundance after 14 days. In the final silages, butyric acid was not detected, and the contents of acetic acid and ammonia nitrogen were below 35 g/kg DM and 100 g/kg total nitrogen, respectively. Compared with silages from Heilongjiang and Inner Mongolia, silages from Shanxi contained less Lactobacillus and more Leuconostoc (p < 0.05), and had a separating bacterial community from 14 to 90 days. Lactobacillus was negatively correlated with pH in all the silages (p < 0.05), and positively correlated with lactic and acetic acid in silages from Heilongjiang and Inner Mongolia (p < 0.05). The results show that the final silages had satisfactory fermentation quality. During the ensilage process, silages from Heilongjiang and Inner Mongolia had similar bacterial-succession patterns; the activity of Lactobacillus formed and maintained good fermentation quality in whole-plant corn silage. Full article
(This article belongs to the Special Issue Advances in Microbial Fermentation Processes)
Show Figures

Figure 1

12 pages, 1121 KiB  
Article
On the Variability of Microbial Populations and Bacterial Metabolites within the Canine Stool. An in-Depth Analysis
by Carlo Pinna, Carla Giuditta Vecchiato, Costanza Delsante, Monica Grandi and Giacomo Biagi
Animals 2021, 11(1), 225; https://doi.org/10.3390/ani11010225 - 18 Jan 2021
Cited by 5 | Viewed by 3098
Abstract
Canine faecal microbial populations and metabolome are being increasingly studied to understand the interplay between host and gut microbiome. However, the distribution of bacterial taxa and microbial metabolites throughout the canine stool is understudied and currently no guidelines for the collection, storage and [...] Read more.
Canine faecal microbial populations and metabolome are being increasingly studied to understand the interplay between host and gut microbiome. However, the distribution of bacterial taxa and microbial metabolites throughout the canine stool is understudied and currently no guidelines for the collection, storage and preparation of canine faecal samples have been proposed. Here, we assessed the effects that different sampling points have on the abundance of selected microbial populations and bacterial metabolites within the canine stool. Whole fresh faecal samples were obtained from five healthy adult dogs. Stool subsamples were collected from the surface to the inner part and from three equally sized areas (cranial, central, caudal) along the length axis of the stool log. All samples were finally homogenised and compared before and after homogenisation. Firmicutes, Bacteroidetes, Clostridium cluster I, Lactobacillus spp., Bifidobacterium spp. and Enterococcus spp. populations were analysed, as well as pH, ammonia and short-chain fatty acids (SCFA) concentrations. Compared to the surface of the stool, inner subsamples resulted in greater concentrations of SCFA and ammonia, and lower pH values. qPCR assay of microbial taxa did not show any differences between subsamples. Homogenisation of faeces does not affect the variability of microbial and metabolome data. Although the distribution patterns of bacterial populations and metabolites are still unclear, we found that stool subsampling yielded contradictory result and biases that can affect the final outcome when investigating the canine microbiome. Complete homogenisation of the whole stool is therefore recommended. Full article
Show Figures

Figure 1

15 pages, 4299 KiB  
Article
The Complete Genome of Probiotic Lactobacillus sakei Derived from Plateau Yak Feces
by Kun Li, Juanjuan Liu, Zhibo Zeng, Muhammad Fakhar-e-Alam Kulyar, Yaping Wang, Aoyun Li, Zeeshan Ahmad Bhutta, Amjad Islam Aqib, Muhammad Shahzad, Jiakui Li and Desheng Qi
Genes 2020, 11(12), 1527; https://doi.org/10.3390/genes11121527 - 21 Dec 2020
Cited by 9 | Viewed by 3480
Abstract
Probiotic bacteria are receiving increased attention due to the potential benefits to their hosts. Plateau yaks have resistance against diseases and stress, which is potentially related to their inner probiotics. To uncover the potential functional genes of yak probiotics, we sequenced the whole [...] Read more.
Probiotic bacteria are receiving increased attention due to the potential benefits to their hosts. Plateau yaks have resistance against diseases and stress, which is potentially related to their inner probiotics. To uncover the potential functional genes of yak probiotics, we sequenced the whole genome of Lactobacillus sakei (L. sakei). The results showed that the genome length of L. sakei was 1.99 Mbp, with 1943 protein coding genes (21 rRNA, 65 tRNA, and 1 tmRNA). There were three plasmids found in this bacteria, with 88 protein coding genes. EggNOG annotation uncovered that the L. sakei genes were found to belong to J (translation, ribosomal structure, and biogenesis), L (replication, recombination, and repair), G (carbohydrate transport and metabolism), and K (transcription). GO annotation showed that most of the L. sakei genes were related to cellular processes, metabolic processes, biological regulation, localization, response to stimulus, and organization or biogenesis of cellular components. CAZy annotation found that there were 123 CAZys in the L. sakei genome, with glycosyl transferases and glycoside hydrolases. Our results revealed the genome characteristics of L. sakei, which may give insight into the future employment of this probiotic bacterium for its functional benefits. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

11 pages, 2637 KiB  
Article
Characterization of the Anti-Cancer Activity of the Probiotic Bacterium Lactobacillus fermentum Using 2D vs. 3D Culture in Colorectal Cancer Cells
by Joo-Eun Lee, Jina Lee, Ji Hyun Kim, Namki Cho, Sung Hoon Lee, Sung Bum Park, Byumseok Koh, Dukjin Kang, Seil Kim and Hee Min Yoo
Biomolecules 2019, 9(10), 557; https://doi.org/10.3390/biom9100557 - 1 Oct 2019
Cited by 63 | Viewed by 6412
Abstract
The aim of this study was to investigate the potential anti-cancer effects of probiotic cell-free supernatant (CFS) treatment using Lactobacillus fermentum for colorectal cancer (CRC) in 3D culture systems. Cell viability was assessed using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assays, whereas apoptosis [...] Read more.
The aim of this study was to investigate the potential anti-cancer effects of probiotic cell-free supernatant (CFS) treatment using Lactobacillus fermentum for colorectal cancer (CRC) in 3D culture systems. Cell viability was assessed using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assays, whereas apoptosis was monitored through RT-qPCR analysis of Bax, Bak, Noxa, and Bid mRNA expressions in addition to flow cytometry analysis of Lactobacillus cell-free supernatant (LCFS) treatment. Our results showed that the anti-cancer effect of LCFS on cell viability was pronouncedly enhanced in 3D-cultured HCT-116 cells, which was linked to the increased level of cleaved caspase 3. Additionally, upregulation of apoptotic marker gene mRNA transcription was dramatically increased in 3D cultured cells compared to 2D systems. In conclusion, this study suggests that LCFS enhances the activation of intrinsic apoptosis in HCT-116 cells and the potential anti-cancer effects of Lactobacilli mixtures in 3D culture systems. All in all, our study highlights the benefits of 3D culture models over 2D culture modeling in studying the anti-cancer effects of probiotics. Full article
(This article belongs to the Special Issue Mechanisms of Cell Death in Disease: A New Therapeutic Opportunity)
Show Figures

Graphical abstract

Back to TopTop