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Abstract: Background: It is known that the features of the cervicovaginal microbiome can depend on
ethnicity, which might be caused by genetic factors, as well as differences in diet and lifestyle. There
is no research on the cervicovaginal microbiome of Eastern European women during early pregnancy.
Methods: We evaluated the cervical and cervicovaginal microbiome of women with first-trimester
pregnancy (n = 22), further delivered at term, using the 16S rRNA sequencing method. Results:
The predominant bacterial species in both groups was Lactobacillus iners, followed by Prevotella
copri, Ileibacterium valens, Gardnerella vaginalis and Muribaculum intestinale in the cervical samples,
and Gardnerella vaginalis, Prevotella copri, Bifidobacterium longum, Ileibacterium valens and Muribaculum
intestinale in the cervicovaginal samples. The cervical microbiome had higher alpha diversity; a higher
abundance of Muribaculum intestinale, Aquabacterium parvum and Methyloversatilis universalis; and a
lower abundance of Psychrobacillus psychrodurans. Conclusions: The Lactobacillus iners-dominated
microbiome (CST III) was the predominant type of cervical and cervicovaginal microbiome in early
pregnancy in the majority of the women. The presence of soil and animal bacteria in the cervicovaginal
microbiome can be explained by the rural origin of patients.

Keywords: cervical microbiome; vaginal microbiome; early pregnancy; first trimester; sequencing;
female genital tract; 16S rRNA; Lactobacillus inners; NGS

1. Introduction

The microbiome of the lower genital tract in early pregnancy is not well understood,
despite its critical role in the course and outcome of pregnancy.

It is known that the structure of the cervicovaginal microbiome can depend on eth-
nicity [1–4]. In a review by Gupta et al. (2017), who summarized these data, it was shown
that lactobacillus-dominated microbiome predominates in Caucasian and Asian women,
while anaerobic microorganisms associated with bacterial vaginosis predominate in African
and Hispanic women [5]. These ethnic differences are observed regardless of the region
of residence of the patients [6]. As it is known that microbiome shaping can be under
the influence of local immunity [7], including Toll-like and NOD-like receptors [8–10],
and antimicrobial peptides [11], it was suggested that they occur due to genetic factors,
including the characteristics of the genes responsible for the systems of innate and acquired
immunity, and not sexual behaviour, diet, or preferred methods of contraception [5].

Ethnic differences in the vaginal microbiome also were described in the first trimester
of pregnancy [12–14]. But, to our knowledge, there is no research on the normal cervicov-
aginal microbiome of Eastern European women during early pregnancy. Therefore, this
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study aims to evaluate the cervicovaginal microbiome of Eastern European women during
early pregnancy in healthy patients, who later have labour at term.

2. Materials and Methods
2.1. Ethics and Patient Consent Guidelines

All patients gave written agreement to the use of their biomaterial, as well as anonymized
anamnesis data for this study of the microbiome landscape of the female genital tract. The
study was approved by the Ethical Committee of Voronezh State University (protocol No.
42-05 of 27 December 2021).

2.2. Study Design

In a prospective longitudinal cohort study, healthy women (n = 24) with singleton
pregnancies were recruited at the beginning of their antenatal care (8–11 weeks of gestation)
after obtaining their written informed consent. Among them, only patients with normal
pregnancy, delivered at term (37 to 42 weeks of gestation) (n = 22), were included in the
study. See Supplementary Table S1 for complete patient information. Antenatal care was
provided in the outpatient clinic of the Yakovlevo central district hospital in the rural area
(Belgorod region, Russia). The ethnicity of all patients was Russian.

Exclusion criteria included the usage of any prebiotics, probiotics, antibiotics or syn-
biotics during the previous month; vaginal intercourse during the last 3 days; multiple
pregnancies; vaginal bleeding; presence of severe non-obstetrical conditions, including
primary and secondary immune deficiency; and refusal to sign the informed consent form
or refusal to be followed up. Basic clinical characteristics are shown in Table 1.

Table 1. Clinical characteristics of patients enrolled in the study (n = 22).

Parameters Mean ± SEM

Age (years) 31.68 ± 1.15
Gravidity 1.18 ± 0.37

Parity 1.18 ± 0.24
Number of miscarriages in anamnesis 0.27 ± 0.10

Number of artificial abortions in anamnesis 0.41 ± 0.14
Weight 67.38 ± 2.68
Height 165.68 ± 1.24

BMI 24.42 ± 0.76

To study the microbiome of the female genital tract, the material was collected using a
cytobrush (cervical canal) and a vaginal swab (vagina). The biomaterial was collected in
two Eppendorf tubes (the 1st—from the cervical canal by cytobrush; the 2nd—from the
cervical canal by cytobrush and the vagina by vaginal swab) and mixed with RNAlater™
stabilization solution (Thermo Fisher Scientific, Madison, WI, USA) and then delivered to
the laboratory at−4 to−8 ◦C. In the laboratory, the biomaterial was stored at a temperature
of −80 ◦C before the start of the investigation.

2.3. DNA Extraction and 16S rRNA Amplification

For DNA extraction, we used the ZymoBIOMICS DNA Miniprep Kit by the manufac-
turing protocol (Zymo Research, Los Angeles, CA, USA). In this step of the experiment, we
added an extra sample that contained Milli-Q water used in the laboratory and a cropped
sterile cytobrush lowered into it. This sample went through all the same stages of sample
preparation as the samples under study. This was necessary to eliminate contaminants
from the test samples at the data processing stage. For quality control, we performed in
the 1.5% agarose gel; and for Quantity control, we used a Qubit 2.0 fluorometer with a
dsDNA HS Assay Kit (Thermo Fisher Scientific, Madison, WI, USA). All DNA samples
were applicable for further analysis.
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We chose hypervariable region V3 of the 16S rRNA gene for performing the mi-
crobiome study. For targeting amplification, this region universal primers set of 337F
(5′-GACTCCTACGGGAGGCWGCAG-3′) and 518R (5′-GTATTACCGCGGCTGCTGG-3′)
and a 5X ScreenMix-HS Master Mix Kit (Evrogen, Moscow, Russia) were used. Amplifica-
tion was performed with the Bio-Rad CFX96 Touch™ Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA) according to the next protocol: total denaturation—94 ◦C
for 4 min; 35 cycles of denaturation—94 ◦C for 30 s; primer annealing—53 ◦C for 30 s and
elongation—72 ◦C for 30 s; and the final elongation—72 ◦C for 5 min.

2.4. Library Preparation and Sequencing

The amplicons were purified with AMPureXP magnetic beads (Beckman Coulter,
Brea, CA, USA) following the protocol, before the preparation of libraries for sequencing
on Ion Torrent PGM. For the library preparation, we used the NEBNext Fast DNA kit
(New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s instructions.
Barcoding was performed with the NEXTflex kit (Ion Torrent; 64 adapters; PerkinElmer,
Inc., Waltham, MA, USA). After the adapters ligation, the purification was conducted
using AMPureXP magnetic beads (Beckman Coulter, Brea, CA, USA) again. The last step
of library preparation was completing the quantification of the libraries using the KAPA
Library Quantification Kit for Ion Torrent Platforms (F. Hoffmann-La Roche Ltd., Basel,
Switzerland). All libraries had high quality and were applicable for sequencing.

For conducting an emulsion PCR, preparing and downloading the chip, and adjusting
the Ion Torrent Sequencer, we used the Ion PGM Hi-Q View OT2 Kit and the Ion PGM
Hi-Q View Sequencing Kit according to protocols (ThermoFisher Scientific, Madison, WI,
USA). Libraries loading was performed on the Ion 318 Chip v2 BC chip.

2.5. Processing of the Sequencing Data

Preprocessing was performed with Torrent Suite Software for base calling and align-
ment. The reads in BAM format were converted into FASTQ format with the FileExporter
plugin for easy downstream analysis with R programming tools. Raw sequencing data
were available from the NCBI BioProject database (BioProjectID: PRJNA886610).

All of the next bioinformatics analysis was performed in RStudio (version 1.1.414
RStudio Inc., RStudio PBC, Boston, MA, USA).

Poor quality reads were filtered out from subsequent analysis using the maximum
expected error threshold of 1.0 (DADA2 package). At the next stage, the filtered reads of
suitable quality were unified in length and demultiplexed. Then, during the dereplication,
all identical reads were combined into unique sequences (ASV). To form operational
taxonomic units (OTUs), we used the UNOISE2 algorithm.

The general identification of the taxonomic composition of microorganisms was carried
out based on the SILVA database version 138 (https://www.arb-silva.de/, accessed on 26
August 2022). To assign taxonomic status, we used a relative match limit with sequence
variants of 97%. We excluded contamination agents from samples with the decontam
R package. Full information on all obtained reads for each test sample is contained in
Supplementary Table S2.

2.6. Statistical Analysis

The statistical analyses were completed with GraphPad Prism 9 software (GraphPad,
San Diego, CA, USA). We checked the distribution of our data with the Kolmogorov–
Smirnov normality test and detected that it is not normal. Consequently, all of the following
test criteria were based on this fact about the distribution. A comparative analysis of
the microbiome composition from the two studied areas of the female genital tract was
performed using the Multiple Wilcoxon test. Correlation analysis was carried out using
Spearman’s correlation criteria. Correlations were considered very strong if R ≥ |0.8|
and p ≤ 0.05 [15]. Alpha diversity was determined using the Shannon index. Results are
presented as median (IQR, 25th–75th percentile).

https://www.arb-silva.de/
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3. Results

After processing the sequencing data, we obtained 130,842 unique reads from the
studied samples, which correspond to 82 bacterial species (Figure 1).
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Despite a large number of detected species, only six bacterial species were identified
in the cervical and cervicovaginal microbiome, which forms the basis of the microbiome in
the studied groups. All other bacteria were grouped under “Other” (Figure 2).

Thus, the predominant bacterial species in both groups was Lactobacillus iners: its
median abundance in the cervical microbiome group was 0.5987 (0.1359–0.9340), and in the
cervical canal and vagina group was 0.7898 (0.3201–0.9343). The next most abundant species
in the cervical canal group were Prevotella copri—0.0269 (0.0016–0.0635), Bifidobacterium
longum—0.0082 (0.0000–0.0843), Ileibacterium valens—0.0080 (0.0003–0.0551), Gardnerella
vaginalis—0.0050 (0.0001–0.0448) and Muribaculum intestinale—0.0050 (0.0009–0.0206). In
the group of the cervical canal and vagina, the distribution was different. The next af-
ter Lactobacillus iners in terms of abundance was the species Gardnerella vaginalis—0.0186
(0.0000–0.0449), then the species Prevotella copri—0.0145 (0.0006–0.0274), Bifidobacterium
longum—0.0021 (0.0000–0.0250), Ileibacterium valens—0.0020 (0.0000–0.0440) and Muribacu-
lum intestinale—0.0002 (0.0000–0.0130).
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We also evaluated the alpha diversity in both study groups using the Shannon index.
Wilkson’s nonparametric rank sum test was used to assess differences in alpha diversity
between groups (Figure 3).
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According to the results of the analysis, the Shannon index for the cervical canal group
was 0.9216, while for the cervical canal and vagina group this indicator was 0.8268. The
alpha microbiome diversity of the cervical microbiome was statistically significantly higher
than in the group where cervical and vaginal samples were mixed (p = 0.0181).

Differences in microbiome composition between the two study groups were assessed
for all detected bacterial species. Thus, according to the data obtained, statistically–
significant differences were observed for the species Muribaculum intestinale (p = 0.0029),
Aquabacterium parvum (p = 0.0156) and Methyloversatilis universalis (p = 0.0156), which pre-
vailed in the samples taken only from the cervical canal, while Psychrobacillus psychrodurans
(p = 0.0154) prevailed in the group where the samples were taken from the cervical canal
and vagina.

In total, we found 32 very strong correlations (R ≥ |0.8| and p ≤ 0.05) between
bacteria in the cervical canal and 22—in cervicovaginal samples (Figures 4 and 5). In the
text, we describe only Spearman’s correlations with R ≥ |0.9| and p ≤ 0.05.
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Spearman’s correlation analysis showed that in the cervical canal group, there is a com-
plete (R = 1) direct correlation between the following microorganisms: Nocardioides dilutus
and Deinococcus aerolatus, Porphyromonas bennonis and Erysipelotrichaceae UCG-003 bacterium,
Mucispirillum schaedleri and Caulobacter henricii (p = 0 in all cases). We also observed a
strong correlation in this group between Bacteroides graminisolvens and Bacteroides stercoris
(R = 0.9442; p = 4.20 × 10−11); Pseudomonas aeruginosa correlated with Dubosiella newyorken-
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sis (R = 0.9901; p = 1.58 × 10−18) and Alistipes putredinis (R = 0.9950; p = 1.57 × 10−21),
which also correlated with each other (R = 0.9802; p = 1.55 × 10−15) (Figure 4).
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At the same time, in the cervical and vaginal group, we observed a complete correla-
tion between Phascolarctobacterium succinatutens and Ruminococcus bromii, Turicibac-
ter sanguinis and Sutterella wadsworthensis, Rheinheimera aquimaris and Schlegelella
aquatica, and between Sphingobacterium spiritivorum and Bifidobacterium breve (p = 0
in all cases). We also observed a strong correlation between Dubosiella newyorkensis
and Curvibacter fontanus (R = 0.9141; p = 2.75 × 10−9), as well as Bacteroides uni-
formis (R = 0.9958; p = 2.95 × 10−22), which also correlated with each other (R = 0.9141;
p = 2.75 × 10−9) (Figure 5).

4. Discussion

In this study, we described for the first time the lower genital tract microbiome, includ-
ing the microbiome of the cervical canal, in Eastern European women in early pregnancy. In
the cervical microbiome, as well as in its mixture with the vaginal microbiome, the predom-
inant species was Lactobacillus iners. According to the classification of France et al. (2020),
this type of microbiome is called community state type III (CST III) [16]. To our knowl-
edge, there are only a few studies of the cervical microbiome during the first trimester of
pregnancy, and none of them used samples taken by the cytobrush to detect intracellular
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microorganisms. In the study of the cervicovaginal microbiome in women of Hispanic
ancestry, CST III (L. iners) was also found as the dominating community, followed by CST
IV. Samples were taken by vaginal swab from ecto– and endocervix in early pregnancy
and then mixed [17]. The limitation of the study was the small number of samples (n = 10).
Another study included separate cervical and vaginal samples taken by swab in women of
Chinese origin [18]. It was found that the dominating community during early pregnancy
was also CST III, followed by CST II and CST I. No differences were found between the
microbiomes of the cervix and the vagina and their alpha diversity. The limitation of the
study was the small number of samples (n = 6).

Unlike previous authors, we found differences in the abundance of a few microor-
ganisms between cervical and cervicovaginal samples. Muribaculum intestinale, Aquabac-
terium parvum and Methyloversatilis universalis prevailed in samples taken from the cervical
canal, while Psychrobacillus psychrodurans prevailed in the mixed cervicovaginal samples.
Muribaculum intestinale is a strictly anaerobic bacterium, mostly found in the intestine of
rodents [19,20]. But in our study, this microorganism was found in both cervical and cervi-
covaginal samples. To our knowledge, there is no previous data about the presence of this
microorganism in the genital tract of humans. Aquabacterium parvum is Gram–negative aer-
obic bacteria, previously found in the vaginal microbiome [21], with its higher abundance
in advanced maternal-age women (>35 years old) [22]. Methyloversatilis universalis was
found in head and neck squamous cell carcinoma of patients with poor prognosis [23,24].
No data about its presence in the genital tract was found in the literature. Psychrobacillus
psychrodurans is a soil bacteria. No data about its presence in the genital tract was found.
Its higher abundance in cervicovaginal samples compared to cervical can be explained
by external contamination, as all patients are residents of rural areas. In particular, these
patients live in private households and grow fruits and vegetables for their consumption.
None of them works on the farm. The patients have constant contact with domestic animals,
mainly dogs and cats. They also have cellars or basements, where they store vegetables and
fruits grown on their own or purchased in a store, where they might be contaminated by
the murine microbiome. Further research is needed to define the microbiome differences
between urban and rural residents, who have constant contact with soil, as well as wild
and domestic animals.

Our results also confirm the data previously received by Chen et al. (2017) for non-
pregnant women: the cervical microbiome has similarity to the vaginal one, but with higher
diversity and lower abundance of the Lactobacillus spp. [25].

The role of ethnicity in the shaping of the genital tract microbiome was discussed only
in the studies on the vaginal microbiome.

The predominance of L. iners in the vaginal microbiome was observed in the Chi-
nese population during the first trimester of pregnancy [12]. Two other abundant species
in both populations included Gardnerella vaginalis and Prevotella, while other species in
the microbiome composition were different compared to our research group. The limita-
tion of the study was the usage of the qPCR method with a limited number of detected
microorganisms.

In the African–American population, the predominant type of vaginal microbiome
during the first half of pregnancy was CST III (L. iners, 51.8%), while CST V was not
found [26].

Another study of the United States population, which included 613 pregnant women,
showed the prevalence of L. iners in the vaginal microbiome in all ethnic groups [27], which
was even significantly higher in the African ancestry group. It was coupled with a lower
abundance of G. vaginalis vagitype and higher diversity in women of African ancestry
compared to European and Hispanic ancestry. The authors emphasized that the causes of
these differences remain unclear. African and Hispanic women in the research had signif-
icantly younger ages and lower household incomes compared to the European women,
but previously in the non–pregnant cohort, the same authors showed that ethnicity has a
stronger association with the diversity of the microbiome than socioeconomic status [6].
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In the Canadian population, the predominant vaginal communities in early pregnancy
were Lactobacillus–dominated CSTs: CST I (L. crispatus–dominated), followed by CST III
(L. iners–dominated), CST V (L. jensenii–dominated) and CST II (L. gasseri–dominated) [14].
CST IV included mostly Gardnerella vaginalis–dominated or Bifidobacterium–dominated
types of the microbiome. The study group included 64% of White (Caucasian) women,
21% of Asian women and 15% of women of other ethnicities. The authors did not find any
relationship between CSTs and ethnicity.

In the British population in early pregnancy, the most commonly observed vaginal
community was CST I (L. crispatus, 40%), followed by CST III (L. iners, 30%), CST V
(L. jensenii, 13%) and CST II (L. gasseri, 9%) [13]. The lowest diversity was observed in CST
I samples, where L. crispatus was the only species in the community in 85% of cases, with a
small amount of other Lactobacillus species and Prevotella in the rest of the samples. CSTs
I, III and IV were equally distributed among White, Asian and Black ethnicities. CST II
(L. gasseri) was not found, and CST V (L. jensenii) was rarely found in samples collected
from Black women. The authors concluded that ethnic and geographical differences may
play an important role in the structure of the vaginal microbiome during pregnancy.

Meanwhile, to our knowledge, there are no studies explaining the role of genetic
factors, such as gene polymorphisms, as well as features of the lifestyle, reproductive
behaviour, and diet in different ethnicities, which might explain differences in CSTs during
early pregnancy.

It is known that vaginal bacteria can have antagonistic or symbiotic relationships with
each other [28]. These relationships are based on the production of lactic acid, enzymes
and other substances, as well as biofilm formation and the phenomenon of quorum sensing
in bacterial communities [28–32]. Taken together, these interactions play a key role in
the shaping of the microbiome. Meanwhile, correlations between bacteria in the vaginal
communities during early pregnancy are not described. Here, we found 32 very strong
correlations (R ≥ |0.8| and p ≤ 0.05) between bacteria in the cervical canal and 22 in
cervicovaginal samples. The strongest correlations were found in non-abundant species. To
our knowledge, there is no research explaining these relationships in the cervical or vaginal
environment. Further in vitro and in vivo research are needed to determine the nature of
these relationships and their role in pathological conditions.

5. Conclusions

The data we obtained demonstrate that L. iners is a predominant microorganism in
Eastern European women’s cervical and cervicovaginal microbiome.

The data on the cervical microbiome from the samples, taken by the cytobrush and
therefore containing intracellular bacteria, were obtained for the first time. We found a
higher abundance of Muribaculum intestinale, Aquabacterium parvum and Methyloversatilis
universalis in the cervix compared to mixed cervicovaginal samples. The presence of
Muribaculum intestinale and Methyloversatilis universalis in the female genital tract has
never been described before. The soil bacteria Psychrobacillus psychrodurans has a higher
abundance in the cervicovaginal samples compared to cervical samples, which can be
explained by external contamination in the studied population from rural regions.

There is almost no data about correlations between the presence of different species
of bacteria in the female genital tract. Meanwhile, this might help to understand the
mechanisms of the antagonistic and synergistic relationships between bacteria and their
influence on microbiome formation. To our knowledge, we provided this analysis for the
first time. We found 32 very strong correlations between bacteria in the cervical canal
and 22 in cervicovaginal samples, including three complete direct correlations in the
cervical microbiome and four in the cervicovaginal microbiome. The mechanisms of these
relationships in the female genital tract and their contribution to pathological conditions
remain unknown.

In general, this study contributes to understanding cervical and vaginal microbiome
composition in early pregnancy in different populations. It has been shown that cervical
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and cervicovaginal microbiomes in Eastern European women with ongoing pregnancies
in the first trimester of pregnancy in all cases are L. iners-dominated and have very few
differences between each other. Differences in the normal pregnancy microbiomes in
different populations should be taken into account in multicentered microbiome research.
Lifestyle, diet, level of urbanization, genetic factors and other causes should be the future
subjects for the research to explain differences found in the genital tract microbiome in
different populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10122368/s1, Table S1: The patient’s anamnesis;
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