Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = LEO-based navigation augmentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1922 KB  
Article
Real-Time Detection of LEO Satellite Orbit Maneuvers Based on Geometric Distance Difference
by Aoran Peng, Bobin Cui, Guanwen Huang, Le Wang, Haonan She, Dandan Song and Shi Du
Aerospace 2025, 12(10), 925; https://doi.org/10.3390/aerospace12100925 - 14 Oct 2025
Viewed by 249
Abstract
Low Earth orbit (LEO) satellites, characterized by low altitudes, high velocities, and strong ground signal reception, have become an essential and dynamic component of modern global navigation satellite systems (GNSS). However, orbit decay induced by atmospheric drag poses persistent challenges to maintaining stable [...] Read more.
Low Earth orbit (LEO) satellites, characterized by low altitudes, high velocities, and strong ground signal reception, have become an essential and dynamic component of modern global navigation satellite systems (GNSS). However, orbit decay induced by atmospheric drag poses persistent challenges to maintaining stable trajectories. Frequent orbit maneuvers, though necessary to sustain nominal orbits, introduce significant difficulties for precise orbit determination (POD) and navigation augmentation, especially under complex operational conditions. Unlike most existing methods that rely on Two-Line Element (TLE) data—often affected by noise and limited accuracy—this study directly utilizes onboard GNSS observations in combination with real-time precise ephemerides. A novel time-series indicator is proposed, defined as the geometric root-mean-square (RMS) distance between reduced-dynamic and kinematic orbit solutions, which is highly responsive to orbit disturbances. To further enhance robustness, a sliding window-based adaptive thresholding mechanism is developed to dynamically adjust detection thresholds, maintaining sensitivity to maneuvers while suppressing false alarms. The proposed method was validated using eight representative maneuver events from the GRACE-FO satellites (May 2018–June 2022), successfully detecting seven of them. One extremely short-duration maneuver was missed due to the limited number of usable GNSS observations after quality-control filtering. To examine altitude-related applicability, two Sentinel-3A maneuvers were also analyzed, both successfully detected, confirming the method’s effectiveness at higher LEO altitudes. Since the thrust magnitudes and durations of the Sentinel-3A maneuvers are not publicly available, these cases primarily serve to verify applicability rather than to quantify sensitivity. Experimental results show that for GRACE-FO maneuvers, the proposed method achieves near-real-time responsiveness under long-duration, high-thrust conditions, with an average detection delay below 90 s. For Sentinel-3A, detections occurred approximately 7 s earlier than the reported maneuver epochs, a discrepancy attributed to the 30 s observation sampling interval rather than methodological bias. Comparative analysis with representative existing methods, presented in the discussion section, further demonstrates the advantages of the proposed approach in terms of sensitivity, timeliness, and adaptability. Overall, this study presents a practical, efficient, and scalable solution for real-time maneuver detection in LEO satellite missions, contributing to improved GNSS augmentation, space situational awareness, and autonomous orbit control. Full article
(This article belongs to the Special Issue Precise Orbit Determination of the Spacecraft)
Show Figures

Figure 1

23 pages, 26514 KB  
Article
LEO Navigation Augmentation Signal-Based Passive Radar: System Model and Performance Analysis
by Mingxu Zhang, Bin Sun and Qilei Zhang
Remote Sens. 2025, 17(17), 3021; https://doi.org/10.3390/rs17173021 - 31 Aug 2025
Viewed by 1214
Abstract
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator [...] Read more.
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator to build more powerful passive radar (PR). This paper proposes and investigates a new and promising PR system, LEO-NA signal-based PR (LNAS-PR), which utilizes LEO-NA signals as the illuminator and utilizes an unmanned aerial vehicle (UAV) to carry the receiver. Taking advantage of higher landing power and global coverage, LNAS-PR can be used to detect maritime targets with benefits of low cost and high efficiency. However, new technical challenges of information capture and processing need to be dealt with. Therefore, this paper presents the system model, signal model, and performance analyses within a maritime monitoring scenario, providing a foundation for future in-depth research. Full article
Show Figures

Figure 1

10 pages, 4421 KB  
Proceeding Paper
Geometric Analysis of LEO-Based Monitoring of GNSS Constellations
by Can Oezmaden, Omar García Crespillo, Michael Niestroj, Marius Brachvogel and Michael Meurer
Eng. Proc. 2025, 88(1), 57; https://doi.org/10.3390/engproc2025088057 - 19 May 2025
Viewed by 1119
Abstract
The last decade has seen a surge in the development and deployment of low Earth orbit (LEO) constellations primarily serving broadband communication applications. These developments have also influenced the interest providing positioning, navigation, and timing (PNT) services from LEO. Potential services include new [...] Read more.
The last decade has seen a surge in the development and deployment of low Earth orbit (LEO) constellations primarily serving broadband communication applications. These developments have also influenced the interest providing positioning, navigation, and timing (PNT) services from LEO. Potential services include new ranging signals from LEO, augmentation of global navigation satellite systems (GNSS), and monitoring of GNSS. The latter promises an advantage over existing ground-based monitoring due to the reception of observables with reduced atmospheric error contributions and the potential for lower costs. In this paper, we investigate the influence of LEO constellation design on the line-of-sight visibility conditions for GNSS monitoring. We simulate a series of Walker constellations in LEO with a varying number of total satellites, orbital planes, and orbital heights. From the simulated data, we gather statistics on the number of visible GNSS and LEO satellites, durations of visibility periods, and the quality of this visibility quantified by the dilution of precision (DOP) metric. Our findings indicate that increasing the total number of LEO satellites results in diminishing returns. We find that constellations with relatively few total satellites equally yield an adequate monitoring capability. We also identify orbital geometric constraints resulting in suboptimal performance and discuss optimization strategies. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

11 pages, 1633 KB  
Proceeding Paper
Signal Design and Compatibility Assessment for LEO Navigation Augmentation System
by Tao Yan, Ying Wang, Lang Bian and Yansong Meng
Eng. Proc. 2025, 88(1), 17; https://doi.org/10.3390/engproc2025088017 - 25 Mar 2025
Viewed by 977
Abstract
With the booming development of low earth orbit (LEO) satellite constellations, improving the global navigation satellite system (GNSS) performance based on LEO satellites is attracting more and more research attention. To shorten the convergence time of precise point positioning (PPP) with the help [...] Read more.
With the booming development of low earth orbit (LEO) satellite constellations, improving the global navigation satellite system (GNSS) performance based on LEO satellites is attracting more and more research attention. To shorten the convergence time of precise point positioning (PPP) with the help of the LEO navigation augmentation system, the dedicated LEO navigation augmentation signals need to be broadcasted, and the signals need to meet some special design requirements. This paper takes the GNSS L1 and L5 frequency bands as examples to design the LEO navigation augmentation signals. From the perspective of reducing interference to GNSS signals, the carrier frequency of the LEO navigation augmentation signal is selected, and the modulation type is designed. In order to support both high-precision measurement and high data rate, it is proposed that the LEO navigation signal consists of a measurement component and a data component with a high data rate. These two signal components are combined into one composite signal using the multiplexing code shift keying (MCSK) method. On this basis, compatibility between LEO navigation augmentation signals and GNSS signals is evaluated. The impact of LEO navigation augmentation signals on GNSS signals is further analyzed. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

18 pages, 6204 KB  
Article
An Integrity Monitoring Method for Navigation Satellites Based on Multi-Source Observation Links
by Jie Xin, Dongxia Wang and Kai Li
Remote Sens. 2024, 16(23), 4574; https://doi.org/10.3390/rs16234574 - 6 Dec 2024
Cited by 3 | Viewed by 1020
Abstract
The BeiDou-3 navigation satellite system (BDS-3) has officially provided positioning, navigation, and timing (PNT) services to global users since 31 July 2020. With the application of inter-satellite link technology, global integrity monitoring becomes possible. Nevertheless, the content of integrity monitoring is still limited [...] Read more.
The BeiDou-3 navigation satellite system (BDS-3) has officially provided positioning, navigation, and timing (PNT) services to global users since 31 July 2020. With the application of inter-satellite link technology, global integrity monitoring becomes possible. Nevertheless, the content of integrity monitoring is still limited by the communication capacity of inter-satellite links and the layout of ground monitoring stations. Low earth orbit (LEO) satellites have advantages in information-carrying rate and kinematic velocity and can be used as satellite-based monitoring stations for navigation satellites. Large numbers of LEO satellites can provide more monitoring data than ground monitoring stations and make it easier to obtain full-arc observation data. A new challenge of redundant data also arises. This study constructs multi-source observation links with satellite-to-ground, inter-satellite, and satellite-based observation data, proposes an integrity monitoring method with optimization of observation links, and verifies the performance of integrity monitoring with different observation links. The experimental results show four findings. (1) Based on the integrity status of BDS-3, the proposed system-level integrity mode can realize full-arc anomaly diagnosis in information and signals according to the observation conditions of the target satellite. Apart from basic navigation messages and satellite-based augmentation messages, autonomous messages and inter-satellite ranging data can be used to evaluate the state of the target satellite. (2) For a giant LEO constellation, only a small number of LEO satellites need to be selected to construct a minimum satellite-based observation unit that can realize multiple returns of navigation messages and reduce the redundancy of observation data. With the support of 12 and 30 LEO satellites, the minimum number of satellite-based observation links is 1 and 4, respectively, verifying that a small amount of LEO satellites could be used to construct a minimum satellite-based observation unit. (3) A small number of LEO satellites can effectively improve the observation geometry of the target satellite. An orbit determination observation unit, which consists of chosen satellite-to-ground and/or satellite-based observation links based on observation geometry, is proposed to carry out fast calculations of satellite orbit. If the orbit determination observation unit contains 6 satellite-to-ground monitoring links and 6/12/60 LEO satellites, the value of satellite position dilution of precision (SPDOP) is 38.37, 24.60, and 15.71, respectively, with a 92.95%, 95.49%, and 97.12% improvement than the results using 6 satellite-to-ground monitoring links only. (4) LEO satellites could not only expand the resolution of integrity parameters in real time but also augment the service accuracy of the navigation satellite system. As the number of LEO satellites increases, the area where UDRE parameters can be solved in real time is constantly expanding to a global area. The service accuracy is 0.93 m, 0.88 m, and 0.65 m, respectively, with augmentation of 6, 12, and 60 LEO satellites, which is an 8.9%, 13.7%, and 36.3% improvement compared with the results of regional service. LEO satellites have practical application values by improving the integrity monitoring of navigation satellites. Full article
Show Figures

Figure 1

25 pages, 5692 KB  
Article
Initial Design for Next-Generation BeiDou Integrity Subsystem: Space–Ground Integrated Integrity Monitoring
by Weiguang Gao, Lei Chen, Feiren Lv, Xingqun Zhan, Lin Chen, Yuqi Liu, Yongshan Dai and Yundi Jin
Remote Sens. 2024, 16(22), 4333; https://doi.org/10.3390/rs16224333 - 20 Nov 2024
Cited by 4 | Viewed by 2182
Abstract
It is essential to provide high-integrity navigation information for safety-critical applications. Global navigation satellite systems (GNSSs) play an important role in these applications because they can provide global, high-accuracy, all-weather navigation services. Therefore, it has been a hot topic to improve GNSS integrity [...] Read more.
It is essential to provide high-integrity navigation information for safety-critical applications. Global navigation satellite systems (GNSSs) play an important role in these applications because they can provide global, high-accuracy, all-weather navigation services. Therefore, it has been a hot topic to improve GNSS integrity performance. This paper focuses on an initial proposal of the next-generation BeiDou Navigation Satellite System (BDS) integrity subsystem, with the aim of providing high-quality and global integrity services for the BDS. This paper first reviews the current status of the third-generation BDS integrity service. Following this, this paper proposes a space–ground integrated integrity monitoring design for the BDS that integrates the traditional ground-based integrity monitoring method, the advanced satellite autonomous integrity monitoring (A-SAIM) method, and the augmentation from low-earth-orbit (LEO) satellites. Specifically, this work offers an initial design of the A-SAIM method, which considers both single-satellite autonomous integrity monitoring and multi-satellite joint integrity monitoring. In addition, this work describes two different ways to augment BDS integrity with LEO satellites, i.e., (a) LEO satellites act as space monitoring stations and (b) LEO satellites act as navigation satellites. Simulations are carried out to validate the proposed design using CAT-I operation in civil aviation as an example. Simulation results indicate the effectiveness of the proposed design. In addition, simulation results suggest that if the fault probability of LEO satellites is worse than 1 × 10−4, LEO satellites can contribute more to BDS integrity performance improvement by acting as space monitoring stations; otherwise, it would be better to employ LEO satellites to broadcast navigation signals. The results also suggest that after taking LEO satellites into account, the global coverage of CAT-I can be potentially improved from 67% to 99%. This work is beneficial to the design of the next-generation BDS integrity subsystem. Full article
Show Figures

Graphical abstract

18 pages, 6209 KB  
Article
Impact of Latency and Continuity of GNSS Products on Filter-Based Real-Time LEO Satellite Clock Determination
by Meifang Wu, Kan Wang, Jinqian Wang, Wei Xie, Jiawei Liu, Beixi Chen, Yulong Ge, Ahmed El-Mowafy and Xuhai Yang
Remote Sens. 2024, 16(22), 4315; https://doi.org/10.3390/rs16224315 - 19 Nov 2024
Cited by 4 | Viewed by 1490
Abstract
High-precision Low Earth Orbit (LEO) satellite clocks are essential for LEO-augmented Positioning, Navigation, and Timing (PNT) services. Nowadays, high-precision LEO satellite clocks can be determined in real-time using a Kalman filter either onboard or on the ground, as long as the GNSS observations [...] Read more.
High-precision Low Earth Orbit (LEO) satellite clocks are essential for LEO-augmented Positioning, Navigation, and Timing (PNT) services. Nowadays, high-precision LEO satellite clocks can be determined in real-time using a Kalman filter either onboard or on the ground, as long as the GNSS observations collected onboard LEO satellites can be transmitted to the ground in real-time. While various real-time and high-precision GNSS products are available nowadays in the latter case, their continuity and latencies in engineering reality are not as perfect as expected and will lead to unignorable impacts on the precision of the real-time LEO satellite clocks. In this study, based on real observations of Sentinel-3B, the impacts of different latencies and continuity of the real-time GNSS products on LEO real-time clocks are determined and discussed for two scenarios, namely the “epoch estimation” and “arc estimation” scenarios. The former case refers to the traditional filter-based processing epoch-by-epoch, and the latter case connects LEO satellite clocks from different rounds of filter-based processing under a certain arc length. The two scenarios lead to the “end-loss” and “mid-gap” situations. Latencies of the real-time GNSS products are discussed for the cases of orbit-only latency, clock-only latency, and combined forms, and different handling methods for the missing GNSS satellite clocks are discussed and compared. Results show that the real-time LEO satellite clock precision is very sensitive to the precision of real-time GNSS satellite clocks, and prediction of the latter becomes essential in case of their latencies. For the “end-loss” situation, with a latency of 30 to 120 s for the GNSS real-time clocks, the LEO satellite clock precision is reduced from about 0.2 to 0.28–0.57 ns. Waiting for the GNSS products in case of their short latencies and predicting the LEO satellite clocks instead could be a better option. For “arc-estimation”, when the gap of GNSS real-time products increases from 5 to 60 min, the real-time LEO clock precision decreases from 0.26 to 0.32 ns. Full article
Show Figures

Graphical abstract

17 pages, 5448 KB  
Article
Orbit Determination Method for BDS-3 MEO Satellites Based on Multi-Source Observation Links
by Jie Xin and Kai Li
Remote Sens. 2024, 16(19), 3702; https://doi.org/10.3390/rs16193702 - 4 Oct 2024
Cited by 1 | Viewed by 1553
Abstract
Research on augmentation and supplement systems for navigation systems has become a significant aspect in comprehensive positioning, navigation and timing (PNT) studies. The BeiDou-3 navigation satellite system (BDS-3) has constructed a dynamic inter-satellite network to gain more observation data than ground monitoring stations. [...] Read more.
Research on augmentation and supplement systems for navigation systems has become a significant aspect in comprehensive positioning, navigation and timing (PNT) studies. The BeiDou-3 navigation satellite system (BDS-3) has constructed a dynamic inter-satellite network to gain more observation data than ground monitoring stations. Low Earth orbit (LEO) satellites have advantages in their kinematic velocity and information carrying rate and can be used as satellite-based monitoring stations for navigation satellites to make up for the distribution limitation of ground monitoring stations. This study constructs multi-source observation links with satellite-to-ground, inter-satellite and satellite-based observation data, proposes an orbit synchronization method for navigation satellites and LEO satellites and verifies the influence thereof on orbit accuracy with different observation data. The experimental results under conditions of real and simulated observation data showed the following: (1) With the support of satellite-based observation links, the orbit accuracy of the BDS-3 MEO satellites could be improved significantly, with a 78% improvement with the simulation data and a 76% improvement with the real data. When the navigation satellites leave the monitoring area of the ground monitoring stations, the accuracy reduction tendency of the orbit prediction could also be slowed down with the support of the LEO satellites and the accuracy could be maintained within centimeters. (2) Comparing the orbit accuracy with the support of the satellite-to-ground observation links, the orbit accuracy of the MEO satellites could be improved by 65.5%, 73.7% and 79.4% with the support of the 6, 12 and 60 LEO satellites, respectively. When the observation geometry and the covering multiplicity meet the basic requirement of orbit determination, the improvements to the orbit accuracy decrease with the growth of LEO satellite numbers. (3) The accuracy of orbit determination with the support of the LEO satellites or the inter-satellite links was at the centimeter level for both, verifying that inter-satellite links and satellite-based links can be used as each other’s backups for navigation satellites. (4) The accuracy of orbit determination with the multi-source observation links was also at the centimeter level, which was not better than the results with the support of the satellite-to-ground and inter-satellite links or the satellite-to-ground and satellite-based links. Full article
Show Figures

Figure 1

17 pages, 2395 KB  
Article
Real-Time LEO Satellite Clocks Based on Near-Real-Time Clock Determination with Ultra-Short-Term Prediction
by Meifang Wu, Kan Wang, Jinqian Wang, Jiawei Liu, Beixi Chen, Wei Xie, Zhe Zhang and Xuhai Yang
Remote Sens. 2024, 16(8), 1326; https://doi.org/10.3390/rs16081326 - 10 Apr 2024
Cited by 7 | Viewed by 2115
Abstract
The utilization of Low Earth Orbit (LEO) satellites is anticipated to augment various aspects of traditional GNSS-based Positioning, Navigation, and Timing (PNT) services. While the LEO satellite orbital products can nowadays be produced with rather high accuracy in real-time of a few centimeters, [...] Read more.
The utilization of Low Earth Orbit (LEO) satellites is anticipated to augment various aspects of traditional GNSS-based Positioning, Navigation, and Timing (PNT) services. While the LEO satellite orbital products can nowadays be produced with rather high accuracy in real-time of a few centimeters, the precision of the LEO satellite clock products that can be achieved in real-time is less studied. The latter, however, plays an essential role in the LEO-augmented positioning and timing performances. In real-time, the users eventually use the predicted LEO satellite clocks, with their precision determined by both the near-real-time clock precision and the prediction time needed to match the time window for real-time applications, i.e., the precision loss during the prediction phase. In this study, a real-time LEO satellite clock determination method, consisting of near-real-time clock determination with ultra-short-term clock prediction is proposed and implemented. The principles and strategies of this method are discussed in detail. The proposed method utilized Kalman-filter-based processing, but supports restarts at pre-defined times, thus hampering continuous bias propagation and accumulation from ancient epochs. Based on the method, using Sentinel-3B GNSS observations and the real-time GNSS products from the National Center for Space Studies (CNES) in France, the near-real-time LEO satellite clocks can reach a precision of 0.2 to 0.3 ns, and the precision loss during the prediction phase is within 0.07 ns for a prediction time window from 30 to 90 s. This results in a total error budget in the real-time LEO satellite clocks of about 0.3 ns. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

24 pages, 8658 KB  
Article
Effects of Topside Ionosphere Modeling Parameters on Differential Code Bias (DCB) Estimation Using LEO Satellite Observations
by Yifan Wang, Mingming Liu, Yunbin Yuan, Guofang Wang and Hao Geng
Remote Sens. 2023, 15(22), 5335; https://doi.org/10.3390/rs15225335 - 13 Nov 2023
Cited by 2 | Viewed by 1568
Abstract
Given the potential of low-earth orbit (LEO) satellites in terms of navigation enhancement, accurately estimating the differential code bias (DCB) of GNSS satellites and LEO satellites is an important research topic. In this study, to obtain accurate DCB estimates, the effects of vertical [...] Read more.
Given the potential of low-earth orbit (LEO) satellites in terms of navigation enhancement, accurately estimating the differential code bias (DCB) of GNSS satellites and LEO satellites is an important research topic. In this study, to obtain accurate DCB estimates, the effects of vertical total electron content (VTEC) modeling parameters of the topside ionosphere on DCB estimation were investigated using LEO observations for the first time. Different modeling parameters were set in the DCB estimations, encompassing modeling spacing in the dynamic temporal mode and degree and order (D&O) in spherical harmonic modeling. The DCB precisions were then evaluated, and the impacts were analyzed. Thus, a number of crucial and beneficial conclusions are drawn: (1) The maximum differences in the GPS DCB estimates after adopting different modeling spacings and different D&Os exhibit that the different modeling spacings or D&Os both affect the GPS DCB estimates and their root-mean square (RMS), and the effects of the two are at the same level. (2) The maximum differences in receiver DCBs using different modeling spacings indicate that the modeling spacing has a significant impact on the receiver DCBs, compared with GPS DCBs. Whereas, the maximum differences in receiver DCBs with different modeling D&Os are inferior to the differences in the GPS DCBs. That is, the modeling spacing has a greater impact on the LEO DCBs than those of the modeling D&O. (3) The experimental results indicate that the GPS DCB estimates using a modeling spacing of 12H have higher precisions than the others, whereas LEO receiver DCBs using a spacing of 4H or 6H obtain optimal STD. In terms of modeling D&O, adopting 8D&O in the LEO-based VTEC modeling can attain superior estimates and precisions for both GPS and LEO DCBs. The research conclusions can provide references for LEO-augmented DCB estimation. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
Show Figures

Figure 1

23 pages, 12283 KB  
Article
A CEI-Based Method for Precise Tracking and Measurement of LEO Satellites in Future Mega-Constellation Missions
by Entao Zhang, Tao Wu, Minchao Hu, Wenge Yang, Hong Ma, Yiwen Jiao, Xueshu Shi and Zefu Gao
Electronics 2023, 12(16), 3385; https://doi.org/10.3390/electronics12163385 - 8 Aug 2023
Cited by 1 | Viewed by 2071
Abstract
With the development of low-orbit mega-constellations, low-orbit navigation augmentation systems, and other emerging LEO projects, the tracking accuracy requirement for low-orbit satellites is constantly increasing. However, existing methods have obvious shortcomings, and a new tracking and measurement method for LEO satellites is thus [...] Read more.
With the development of low-orbit mega-constellations, low-orbit navigation augmentation systems, and other emerging LEO projects, the tracking accuracy requirement for low-orbit satellites is constantly increasing. However, existing methods have obvious shortcomings, and a new tracking and measurement method for LEO satellites is thus urgently needed. Given this, in this paper, a Connected Element Interferometry (CEI)-based “near-field” measurement model for low-orbit satellites is proposed. On this basis, the goniometric error formula of the model is derived, and the factors included in each error source are briefly discussed, followed by the simplification of the error formula. Furthermore, for the feasibility analysis of the proposed method, the common view time of CEI array on LEO satellites is analyzed in different regions and different baseline lengths. Finally, this paper simulates the effects of satellite–station distance, baseline length, and goniometric angle on the error coefficients in the goniometric error formula, and provides the theoretical goniometric accuracy of this model for different baseline lengths and goniometric angles. Under a baseline length of 240 km, the accuracy can reach 10 nrad. The research results of this paper could play the role of theoretical a priori in accuracy prediction in future low-orbit satellite tracking measurements. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 3152 KB  
Article
Performance Assessment of Multi-GNSS PPP Ambiguity Resolution with LEO-Augmentation
by Qin Li, Wanqiang Yao, Rui Tu, Yanjun Du and Mingyue Liu
Remote Sens. 2023, 15(12), 2958; https://doi.org/10.3390/rs15122958 - 6 Jun 2023
Cited by 9 | Viewed by 2786
Abstract
The fast motion of low Earth orbit (LEO) satellites provides rapid geometric changes in a short time, which can accelerate the initialization of precise point positioning (PPP). The rapid convergence of ambiguity parameters is conducive to the rapid success of ambiguity fixing. This [...] Read more.
The fast motion of low Earth orbit (LEO) satellites provides rapid geometric changes in a short time, which can accelerate the initialization of precise point positioning (PPP). The rapid convergence of ambiguity parameters is conducive to the rapid success of ambiguity fixing. This paper presents the performance of single- and four-system combined PPP Ambiguity Resolution (AR), enhanced with an ambiguity-float solution LEO. Two LEO constellations were designed: L was a typical polar orbit constellation, with a higher number of visible satellites at high latitudes than at low and middle latitudes; and M was designed to compensate for the lack of visible satellites at low and middle latitudes. The ground observation data of the LEO satellites at the MGEX stations were simulated. Because the global navigation satellite systems (GNSSs) were fully operational, the GNSS data were real observation data from the MGEX stations. Based on the daily observation datasets collected at 258 stations in the global MGEX observation network over three days (from 1 January to 3 January 2022), in addition to the LEO simulation data, we evaluated the positioning performance of LEO ambiguity-float solution-enhanced PPP ambiguity resolution and compared it with LEO-enhanced PPP. The L+M mixed constellation was able to reduce the time to first fix (TTFF) of the four-system combined PPP-AR to 5 min, and four LEO satellites were sufficient to achieve this. L+M mixed constellation was able to reduce the convergence time of the four-system combined PPP to 2 min. Unlike PPP-AR, PPP required more LEO satellites for augmentation to saturate. Full article
Show Figures

Graphical abstract

21 pages, 4498 KB  
Article
Real-Time LEO Satellite Orbits Based on Batch Least-Squares Orbit Determination with Short-Term Orbit Prediction
by Kan Wang, Jiawei Liu, Hang Su, Ahmed El-Mowafy and Xuhai Yang
Remote Sens. 2023, 15(1), 133; https://doi.org/10.3390/rs15010133 - 26 Dec 2022
Cited by 26 | Viewed by 5376
Abstract
The augmentation of the Global Navigation Satellite System (GNSS) by Low Earth Orbit (LEO) satellites is proposed as an effective method to improve the precision and shorten the convergence time of Precise Point Positioning (PPP). Serving as navigation satellites in the future, LEO [...] Read more.
The augmentation of the Global Navigation Satellite System (GNSS) by Low Earth Orbit (LEO) satellites is proposed as an effective method to improve the precision and shorten the convergence time of Precise Point Positioning (PPP). Serving as navigation satellites in the future, LEO satellites need to be provided with their high-accuracy orbits in real-time. This would potentially enable the high-accuracy real-time LEO satellite clock determination, and eventually facilitate the high-accuracy ground-based positioning. Studies have been performed to achieve such real-time orbits using a Kalman filter in both the kinematic and reduced-dynamic modes. Batch Least-Squares (BLS) adjustment delivers more stable orbits in near-real-time, as it performs better phase screening. However, it suffers from longer delays compared to the Kalman filter. With the LEO satellite orbit prediction strategies improved over time, this latency can be bridged by short-term orbit prediction. In this study, using real-time GNSS satellite products, the real-time LEO satellite orbits are obtained based on the batch least-squares adjustment and short-term prediction. LEO ephemeris parameters are generated within specific prediction time windows. Using real data from the 500 km GRACE C satellite and 810 km Sentinel-3B satellite, the near-real-time BLS Precise Orbit Determination (POD) results exhibit good accuracy with an Orbital User Range Error (OURE) of 2–4 cm using different real-time GNSS products. A range of delays of the BLS POD processes are assumed, based on tests performed on different processing machines, leading to various prediction windows, from 3–8 min to 12–17 min that correspond to the real-time usage. The orbital prediction errors are shown to be highly correlated with the orbital height and the prediction time. The computational efficiency thus becomes essential to reduce the prediction errors for a certain LEO satellite. For advanced processing units leading to a prediction window shorter or equal to 6–11 min, one can expect a total real-time orbital error budget of 3–5 cm, provided that an appropriate prediction strategy is applied and high-quality GNSS products are used. For a given fitting interval, the ephemeris fitting errors are generally related to the number of ephemeris parameters and the orbital height. Compared with the prediction errors, the ephemeris fitting errors do not play a significant role in the total error budget when using 22 ephemeris parameters. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
Show Figures

Figure 1

19 pages, 5832 KB  
Article
A Novel Satellite PRN Code Assignment Method Based on Improved RLF Algorithm
by Weiwei Wang, Ye Tian, Lang Bian, Guoyong Wang, Yansong Meng and Lixin Zhang
Sensors 2022, 22(15), 5538; https://doi.org/10.3390/s22155538 - 25 Jul 2022
Cited by 3 | Viewed by 2417
Abstract
Low Earth Orbit (LEO) satellites have stronger received signals and more rapid geometry changes than Global Navigation Satellite System (GNSS) satellites, making them attractive for positioning, navigation, and timing (PNT) applications. Due to the low altitude, the LEO constellation requires more satellites to [...] Read more.
Low Earth Orbit (LEO) satellites have stronger received signals and more rapid geometry changes than Global Navigation Satellite System (GNSS) satellites, making them attractive for positioning, navigation, and timing (PNT) applications. Due to the low altitude, the LEO constellation requires more satellites to cover the entire globe and more Pseudo Random Noise (PRN) codes to realize Code Division Multiple Access (CDMA), which means greater receiver storage resources and receiver acquisition time. In this paper, different from the traditional methods that assign a unique PRN code to each satellite, we propose a novel method in which several satellites share the same PRN code, and simply demonstrate the feasibility and benefits of this method. To determine the minimum number of PRN codes needed for a constellation, we build a mathematical model. After the algorithm comparison, we improve the recursive largest first (RLF) algorithm so that it has a higher running speed and a smaller approximate optimal solution within a certain time period. By studying polar-orbiting and walker constellations, we find that if other satellite parameters remain the same, the higher the orbital altitude is, the more PRN codes are needed, and no matter what the orbital inclination is, the minimum number of PRN codes remains the same. Overall, it is feasible and meaningful for several satellites sharing the same PRN code to save storage resources and reduce the satellite acquisition time of the receiver. If this new technology is applied, the storage resources and the average satellite acquisition time of the receiver will be, at most, one-third of previous ones. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

22 pages, 7500 KB  
Article
Integrity Monitoring of PPP-RTK Positioning; Part II: LEO Augmentation
by Kan Wang, Ahmed El-Mowafy, Wei Wang, Long Yang and Xuhai Yang
Remote Sens. 2022, 14(7), 1599; https://doi.org/10.3390/rs14071599 - 26 Mar 2022
Cited by 22 | Viewed by 4691
Abstract
Low Earth orbit (LEO) satellites benefit future ground-based positioning with their high number, strong signal strength and high speed. The rapid geometry change with the LEO augmentation offers acceleration of the convergence of the precision point positioning (PPP) solution. This contribution discusses the [...] Read more.
Low Earth orbit (LEO) satellites benefit future ground-based positioning with their high number, strong signal strength and high speed. The rapid geometry change with the LEO augmentation offers acceleration of the convergence of the precision point positioning (PPP) solution. This contribution discusses the influences of the LEO augmentation on the precise point positioning—real-time kinematic (PPP-RTK) positioning and its integrity monitoring. Using 1 Hz simulated data around Beijing for global positioning system (GPS)/Galileo/Beidou navigation satellite system (BDS)-3 and the tested LEO constellation with 150 satellites on L1/L5, it was found that the convergence of the formal horizontal precision can be significantly shortened in the ambiguity-float case, especially for the single-constellation scenarios with low precision of the interpolated ionospheric delays. The LEO augmentation also improves the efficiency of the user ambiguity resolution and the formal horizontal precision with the ambiguities fixed. Using the integrity monitoring (IM) procedure introduced in the first part of this series of papers, the ambiguity-float horizontal protection levels (HPLs) are sharply reduced in various tested scenarios, with an improvement of more than 60% from 5 to 30 min after the processing start. The ambiguity-fixed HPLs can generally be improved by 10% to 60% with the LEO augmentation, depending on the global navigation satellite system (GNSS) constellations used and the precision of the ionospheric interpolation. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
Show Figures

Graphical abstract

Back to TopTop