Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = LDHs coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1110 KiB  
Article
Environmental Behavior of Novel “Smart” Anti-Corrosion Nanomaterials in a Global Change Scenario
by Mariana Bruni, Joana Figueiredo, Fernando C. Perina, Denis M. S. Abessa and Roberto Martins
Environments 2025, 12(8), 264; https://doi.org/10.3390/environments12080264 - 31 Jul 2025
Viewed by 502
Abstract
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of [...] Read more.
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of these nanomaterials remains largely unknown, particularly in the context of global changes. The present study aims to assess the environmental behavior of four anti-corrosion nanomaterials in an ocean acidification scenario (IPCC SSP3-7.0). Three different concentrations of the nanostructured CIs (1.23, 11.11, and 100 mg L−1) were prepared and maintained at 20 °C and 30 °C in artificial salt water (ASW) at two pH values, with and without the presence of organic matter. The nanomaterials’ particle size and the release profiles of Al3+, Zn2+, and anions were monitored over time. In all conditions, the hydrodynamic size of the dispersed nanomaterials confirmed that the high ionic strength favors their aggregation/agglomeration. In the presence of organic matter, dissolved Al3+ increased, while Zn2+ decreased, and increased in the ocean acidification scenario at both temperatures. CIs were more released in the presence of humic acid. These findings demonstrate the influence of the tested parameters in the nanomaterials’ environmental behavior, leading to the release of metals and CIs. Full article
Show Figures

Figure 1

37 pages, 14524 KiB  
Review
Recent Developments in Layered Double Hydroxides as Anticorrosion Coatings
by Alessandra Varone, Riccardo Narducci, Alessandra Palombi, Subhan Rasulzade, Roberto Montanari and Maria Richetta
Materials 2025, 18(15), 3488; https://doi.org/10.3390/ma18153488 - 25 Jul 2025
Viewed by 425
Abstract
To date, one of the main problems associated with the engineering application of metallic materials is corrosion protection. To increase their durability and reduce damage, a variety of protection methods have been studied and applied. In recent decades, coating techniques have become increasingly [...] Read more.
To date, one of the main problems associated with the engineering application of metallic materials is corrosion protection. To increase their durability and reduce damage, a variety of protection methods have been studied and applied. In recent decades, coating techniques have become increasingly important. Among these coatings, Layered Double Hydroxides (LDHs) have shown unique properties, such as ion exchange, high adhesion, and hydrophobicity, particularly useful for biomedical applications. In this review, after a detailed exposition of the LDHs’ synthesis processes, the most recent corrosion protection methods are illustrated. Intercalation of corrosion inhibitors and release kinetics of intercalates are presented. Although this work is mainly focused on laboratory-scale investigations and fundamental research, the problems inherent to large-scale industrial manufacturing and application are outlined and briefly discussed. Full article
(This article belongs to the Special Issue Advanced Coating Research for Metal Surface Protection)
Show Figures

Figure 1

12 pages, 3731 KiB  
Article
Research on Corrosion Protection of TETA-Modified Li–Al LDHs for AZ31 Magnesium Alloy in Simulated Seawater
by Sifan Tu, Liyan Wang, Sixu Wang, Haoran Chen, Qian Huang, Ning Hou, Zhiyuan Feng and Guozhe Meng
Metals 2025, 15(7), 724; https://doi.org/10.3390/met15070724 - 28 Jun 2025
Viewed by 849
Abstract
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. [...] Read more.
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. Electrochemical tests, SEM, FT-IR, XPS, and 3D depth-of-field microscopy were employed to evaluate TETA-modified Li–Al LDH coatings at varying concentrations. Among them, the Li–Al LDHs without the addition of a TETA corrosion inhibitor decreased significantly at |Z|0.01 Hz after immersion for 4 h. However, the Li–Al LDHs coating of 23.5 mM TETA experienced a sudden drop at |Z|0.01 Hz after holding for about 60 h, and the Li–Al LDHs coating of 70.5 mM TETA also experienced a sudden drop at |Z|0.01 Hz after holding for about 132 h. By contrast, at the optimal concentration (47 mM), after 24 h of immersion, the maximum |Z|0.01 Hz reached 7.56 × 105 Ω∙cm2—three orders of magnitude higher than pure Li–Al LDH coated AZ31 (2.55 × 102 Ω∙cm2). After 300 h of immersion, the low-frequency impedance remained above 105 Ω∙cm2, demonstrating superior long-term protection. TETA modification significantly improved the durability of Li–Al LDHs coatings, addressing the short-term protection limitation of standalone Li–Al LDHs. Li–Al LDHs themselves have a layered structure and effectively capture corrosive Cl ions in the environment through ion exchange capacity, reducing the corrosion of the interface. Furthermore, TETA exhibits strong adsorption on Li–Al LDHs layers, particularly at coating defects, enabling rapid barrier formation. This inorganic–organic hybrid design achieves defect compensation and enhanced protective barriers. Full article
(This article belongs to the Special Issue Metal Corrosion Behavior and Protection in Service Environments)
Show Figures

Figure 1

16 pages, 8504 KiB  
Article
Synergistic Corrosion Inhibition and UV Protection via TTA-Loaded LDH Nanocontainers in Epoxy Coatings
by Qiuli Zhang, Yaning Yu, Jingjing Li, Chengxian Yin, Feng Tian, Jiahui Liu and Jun Zhou
Coatings 2025, 15(5), 505; https://doi.org/10.3390/coatings15050505 - 23 Apr 2025
Viewed by 459
Abstract
To address the issue of metal corrosion in marine environments, we developed a nanofiller with corrosion resistance and UV absorption capabilities. This nanofiller is prepared using a coprecipitation hydrothermal method and consists of TTA intercalated into an LDH structure with an outer layer [...] Read more.
To address the issue of metal corrosion in marine environments, we developed a nanofiller with corrosion resistance and UV absorption capabilities. This nanofiller is prepared using a coprecipitation hydrothermal method and consists of TTA intercalated into an LDH structure with an outer layer containing CeO2, forming a layered double hydroxide (LDH) sandwich structure nanocontainer. TTA can be successfully released in corrosive environments, and the filler exhibits excellent corrosion inhibition and interlayer ion exchange properties. Polarization curve analysis shows that the corrosion inhibition efficiency of MgAl-TTA LDH@CeO2 reaches 89.87%. After immersion in a corrosion solution for 60 days, the EP/MgAl-TTA LDH@CeO2 coating maintains a high impedance of 3.88 × 108 Ω·cm2 in the low-frequency region, which is 166 times that of the pure EP coating. Even after 240 h of UV aging, the impedance of the EP/MgAl-TTA LDH@CeO2 coating remains high at 3.10 × 108 Ω·cm2 (20,000 times higher than the pure EP coating). This significantly enhances the coating’s anti-aging and corrosion resistance, providing a feasible method for creating new long-lasting corrosion-resistant coatings in challenging environments. Full article
Show Figures

Graphical abstract

18 pages, 7417 KiB  
Article
Densely Stacked CoCu-MOFs Coated with CuAl/LDH Enhance Sulfamethoxazole Degradation in PMS-Activated Systems
by Xin Zhong, Xiaojun Liu, Meihuan Ji and Fubin Jiang
Nanomaterials 2025, 15(6), 432; https://doi.org/10.3390/nano15060432 - 11 Mar 2025
Viewed by 780
Abstract
As the most promising techniques for refractory antibiotic degradation in wastewater management, sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable attention. However, systematic studies on potassium peroxymonosulfate (PMS) activation by MOF-derived metal oxides coated with LDH materials are still lacking. In this [...] Read more.
As the most promising techniques for refractory antibiotic degradation in wastewater management, sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable attention. However, systematic studies on potassium peroxymonosulfate (PMS) activation by MOF-derived metal oxides coated with LDH materials are still lacking. In this work, a series of catalysts consisting of CoCu-MOFs coated with CuAl/LDH were synthesized for PMS activation in the removal of sulfamethoxazole (SMX). As expected, CoCu-MOFs coated with CuAl/LDH catalyst showed high SMX removal and stability in PMS activation. In the CoCu/LDH/PMS reaction, the SMX removal was nearly 100% after 60 min, and the mineralization reached 53.7%. The catalyst showed excellent catalytic stability and low metal leaching concentrations (Co: 0.013 mg/L, Cu: 0.313 mg/L), as detected by ICP. Sulfate radicals and hydroxyl radicals were identified as the dominant reactive species in the CoCu/LDH/PMS system. Moreover, the presence of 1O2 in the process revealed the coupling of non-radical and radical processes. The XPS results showed that the layered structure of CoCu/LDH promoted the recycling of metal ions (high and low valence), which facilitated heterogeneous PMS activation. The effects of different reaction conditions and reuse cycles were also determined. The SMX oxidation pathways were proposed based on the intermediates identified by LC/MS. The high activity and stability of CoCu/LDH provide a new mechanistic understanding of PMS activation catalysts and their potential utilization in practical wastewater treatment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

24 pages, 5022 KiB  
Review
Review of Layered Double Hydroxide (LDH) Nanosheets in Corrosion Mitigation: Recent Developments, Challenges, and Prospects
by Jintao Cao, Yangmin Wu and Wenjie Zhao
Materials 2025, 18(6), 1190; https://doi.org/10.3390/ma18061190 - 7 Mar 2025
Cited by 1 | Viewed by 1293
Abstract
Layered double hydroxides (LDHs) are a typical class of two-dimensional nanomaterials that present numerous possibilities in both scientific and practical applications. LDHs, with a layered structure and unique interlayer ion-exchange properties, can be utilized to prepare various functional coatings, showing great potential in [...] Read more.
Layered double hydroxides (LDHs) are a typical class of two-dimensional nanomaterials that present numerous possibilities in both scientific and practical applications. LDHs, with a layered structure and unique interlayer ion-exchange properties, can be utilized to prepare various functional coatings, showing great potential in the field of marine corrosion protection. In this review, the preparation approaches and properties of LDHs are first briefly introduced. Subsequently, various protection types based on LDH-based composite coatings for marine corrosion protection are highlighted, including physical barriers, self-healing, chloride trapping effects, and hydrophobic effects, respectively. Furthermore, critical factors influencing the anti-corrosion performance of composite coatings are discussed in detail. Finally, remaining challenges and future prospects for LDH-modified composite coatings in corrosion protection are proposed. This review provides a distinctive perspective on fabricating LDH-enhanced corrosion-resistant materials, contributing toward the development of multifunctional, intelligent anti-corrosion coatings for diverse applications. Full article
(This article belongs to the Special Issue Research on Friction, Wear and Corrosion Properties of Materials)
Show Figures

Graphical abstract

24 pages, 18833 KiB  
Article
Impact of Microstructure on the In Situ Formation of LDH Coatings on AZ91 Magnesium Alloy
by Nan Wang, Yulai Song, Anda Yu, Yong Tian and Hao Chen
Materials 2025, 18(5), 1178; https://doi.org/10.3390/ma18051178 - 6 Mar 2025
Viewed by 786
Abstract
Layered Double Hydroxide (LDH) coatings were synthesized on as-cast, T4 (solution treatment), and T6 (aging treatment) AZ91 magnesium alloys using a hydrothermal method. XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) analyses showed that the large β-phases in as-cast AZ91 initially promoted LDH [...] Read more.
Layered Double Hydroxide (LDH) coatings were synthesized on as-cast, T4 (solution treatment), and T6 (aging treatment) AZ91 magnesium alloys using a hydrothermal method. XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) analyses showed that the large β-phases in as-cast AZ91 initially promoted LDH growth via galvanic corrosion, but later compromised coating integrity. In contrast, T6 and T4 alloys, with refined microstructures, formed uniform and compact LDH coatings. Corrosion resistance was enhanced in T6 and T4 alloys, as evidenced by higher impedance from EIS (Electrochemical Impedance Spectroscopy), and HER (Hydrogen Evolution Reaction) tests, due to the formation of dense LDH layers. Full article
Show Figures

Figure 1

10 pages, 3552 KiB  
Communication
Co/Al–Layered Double Hydroxide-Modified Silicon Carbide Membrane Filters as Persulphate Activator for Aniline Degradation
by Yunfei Zhang, Hongmei Shen, Wenzheng Zheng, Tong Wu, Xianjuan Pu, Diwen Zhou, Senyuan Shen and Yingchao Lin
Water 2025, 17(3), 355; https://doi.org/10.3390/w17030355 - 27 Jan 2025
Cited by 1 | Viewed by 920
Abstract
Novel catalytic silicon carbide membrane filters (SCMFs) are synthesized with Co/Al–layered double hydroxide (Co/Al-LDH)-coated silicon carbide powder. After capsuled in a self-designed membrane shell, the SCMFs are utilized in activating persulphate for aniline degradation. Thermal analysis conducted via TG/DTG/DSC examination shows that the [...] Read more.
Novel catalytic silicon carbide membrane filters (SCMFs) are synthesized with Co/Al–layered double hydroxide (Co/Al-LDH)-coated silicon carbide powder. After capsuled in a self-designed membrane shell, the SCMFs are utilized in activating persulphate for aniline degradation. Thermal analysis conducted via TG/DTG/DSC examination shows that the heating treatment is beneficial in elevating the activating ability of SCMFs, and the derived Co3O4 displays superior catalytical efficiency than Co/Al-LDHs precursor. The XRD patterns and SEM images indicate the sheet-like Co/Al-LDHs are uniformly coprecipitated throughout the surface of SCMFs. Within 20 min, around 95% of aniline is eliminated under 0.7 m of flow velocity and 8:1 of persulphate to aniline ratio. Three-dimensional fluorescence and GC chromatography reveal that distinct by-products exist in the early stage of the aniline degradation process between the sintered and non-sintered Co/Al-LDH-coated SCMFs. The integration strategy of Co/Al-LDH coatings and heating treatment endows traditional SCMFs with robust catalytic properties for engineering-oriented applications in wastewater treatment. Full article
(This article belongs to the Special Issue Science and Technology for Water Purification, 2nd Edition)
Show Figures

Figure 1

23 pages, 5279 KiB  
Article
Synergistic Effects of Zn-Rich Layered Double Hydroxides on the Corrosion Resistance of PVDF-Based Coatings in Marine Environments
by Hissah A. Alqahtani, Jwaher M. AlGhamdi and Nuhu Dalhat Mu’azu
Polymers 2025, 17(3), 331; https://doi.org/10.3390/polym17030331 - 25 Jan 2025
Cited by 2 | Viewed by 1505
Abstract
In this study, zinc–aluminum layered double hydroxide (ZLDH) and its calcined counterpart (CZLDH) were synthesized and incorporated into a poly(vinylidene fluoride) (PVDF) matrix to develop high-performance anti-corrosion coatings for mild steel substrates. The structural integrity, morphology, and dispersion of the LDH fillers were [...] Read more.
In this study, zinc–aluminum layered double hydroxide (ZLDH) and its calcined counterpart (CZLDH) were synthesized and incorporated into a poly(vinylidene fluoride) (PVDF) matrix to develop high-performance anti-corrosion coatings for mild steel substrates. The structural integrity, morphology, and dispersion of the LDH fillers were analyzed using FTIR, XRD, Raman spectroscopy, and SEM/EDS, while coating performance was evaluated through water contact angle (WCA), adhesion tests, and electrochemical techniques. Comparative electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in a 3.5% NaCl solution revealed that the ZLDH/PVDF coating exhibited superior corrosion resistance and long-term stability compared to CZLDH/PVDF and pristine PVDF coatings. The intact lamellar structure of ZLDH promoted excellent dispersion within the polymer matrix, enhancing interfacial adhesion, reducing porosity, and effectively blocking chloride ion penetration. Conversely, calcination disrupted the lamellar structure of ZLDH, reducing its compatibility and adhesion performance within the PVDF matrix. This study demonstrates the critical role of ZLDH’s structural integrity in achieving enhanced adhesion, barrier properties, and corrosion protection, offering an effective anti-corrosion coating for marine applications. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

22 pages, 11093 KiB  
Article
Moisture Absorption and Mechanical Degradation of Polymer Systems Incorporated with Layered Double Hydroxide Particles
by Stanislav Stankevich, Daiva Zeleniakiene, Jevgenijs Sevcenko, Olga Bulderberga, Katerina Zetkova, Joao Tedim and Andrey Aniskevich
Polymers 2024, 16(23), 3388; https://doi.org/10.3390/polym16233388 - 30 Nov 2024
Viewed by 1525
Abstract
This study investigated the moisture absorption and mechanical degradation of epoxy-based polymer systems with Mg-Al/NO3 layered double hydroxide (LDH) nanoparticles content up to 5 wt%. Such systems are developed for multilayer corrosion protective coatings. A sorption model was developed to calculate the [...] Read more.
This study investigated the moisture absorption and mechanical degradation of epoxy-based polymer systems with Mg-Al/NO3 layered double hydroxide (LDH) nanoparticles content up to 5 wt%. Such systems are developed for multilayer corrosion protective coatings. A sorption model was developed to calculate the moisture concentration field in the multilayer structures using Fick’s law of diffusion. The finite-difference method was used for the numerical solution. Epoxy/LDH nanocomposites were prepared using various dispersion methods with solvents, wetting agents, and via a three-roll mill. Moisture absorption was measured under different environmental conditions, including temperatures up to 50 °C and salinity levels up to 26.3 wt% salt solution. The results showed that equilibrium moisture content increased by 50% in hot water, while it was reduced by up to two times in salt solution. The diffusion coefficient in hot water increased up to four times compared to room temperature. The numerical algorithm was validated against experimental data, accurately predicting moisture distribution over time in complex polymer systems. Mechanical tests revealed that the elastic modulus did not change after water exposure; however, the ultimate strength decreased by 10–15%, especially in specimens with 5 wt% LDH. Full article
Show Figures

Figure 1

20 pages, 7629 KiB  
Article
MgAl-Layered Double Hydroxide-Coated Bio-Silica as an Adsorbent for Anionic Pollutants Removal: A Case Study of the Implementation of Sustainable Technologies
by Muna Abdualatif Abduarahman, Marija M. Vuksanović, Nataša Knežević, Katarina Banjanac, Milena Milošević, Zlate Veličković and Aleksandar Marinković
Int. J. Mol. Sci. 2024, 25(21), 11837; https://doi.org/10.3390/ijms252111837 - 4 Nov 2024
Cited by 2 | Viewed by 1551
Abstract
The adsorption efficiency of Cr(VI) and anionic textile dyes onto MgAl-layered double hydroxides (LDHs) and MgAl-LDH coated on bio-silica (b-SiO2) nanoparticles (MgAl-LDH@SiO2) derived from waste rice husks was studied in this work. The material was characterized using field-emission scanning [...] Read more.
The adsorption efficiency of Cr(VI) and anionic textile dyes onto MgAl-layered double hydroxides (LDHs) and MgAl-LDH coated on bio-silica (b-SiO2) nanoparticles (MgAl-LDH@SiO2) derived from waste rice husks was studied in this work. The material was characterized using field-emission scanning electron microscopy (FE-SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopic (XPS) techniques. The adsorption capacities of MgAl-LDH@SiO2 were increased by 12.2%, 11.7%, 10.6%, and 10.0% in the processes of Cr(VI), Acid Blue 225 (AB-225), Acid Violet 109 (AV-109), and Acid Green 40 (AG-40) dye removal versus MgAl-LDH. The obtained results indicated the contribution of b-SiO2 to the development of active surface functionalities of MgAl-LDH. A kinetic study indicated lower intraparticle diffusional transport resistance. Physisorption is the dominant mechanism for dye removal, while surface complexation dominates in the processes of Cr(VI) removal. The disposal of effluent water after five adsorption/desorption cycles was attained using enzymatic decolorization, photocatalytic degradation of the dyes, and chromate reduction, satisfying the prescribed national legislation. Under optimal conditions and using immobilized horseradish peroxidase (HRP), efficient decolorization of effluent solutions containing AB-225 and AV-109 dyes was achieved. Exhausted MgAl-LDH@SiO2 was processed by dissolution/precipitation of Mg and Al hydroxides, while residual silica was used as a reinforcing filler in polyester composites. The fire-proofing properties of composites with Mg and Al hydroxides were also improved, which provides a closed loop with zero waste generation. The development of wastewater treatment technologies and the production of potentially marketable composites led to the successful achievement of both low environmental impacts and circular economy implementation. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

17 pages, 12952 KiB  
Article
Corrosion Inhibition Effect of Mg-Al-pAB-LDH Coating for Steel in the Marine Environment
by Yuwan Tian, Nanchuan Wang, Cheng Wen, Gongqi Lou and Bisheng Zhong
Coatings 2024, 14(10), 1307; https://doi.org/10.3390/coatings14101307 - 12 Oct 2024
Cited by 1 | Viewed by 1220
Abstract
In this study, the surface of steel was coated with a Mg-Al-pAB-LDH coating in order to enhance its corrosion resistance in the marine environment. The crystal structure, micro-morphology, and chemical composition of the Mg-Al-pAB-LDH coating were characterised using physicochemical techniques. The corrosion protection [...] Read more.
In this study, the surface of steel was coated with a Mg-Al-pAB-LDH coating in order to enhance its corrosion resistance in the marine environment. The crystal structure, micro-morphology, and chemical composition of the Mg-Al-pAB-LDH coating were characterised using physicochemical techniques. The corrosion protection performance in a simulated marine environment was evaluated through electrochemical methods. The results indicate that the Mg-Al-pAB-LDH coating effectively adsorbs chloride ions from the environment, thereby increasing the corrosion potential of the steel in chloride environments and reducing its corrosion current density. In addition, the Mg-Al-pAB-LDH coating applied to the surface of steel not only enhances the corrosion resistance in the marine environment but also possesses self-healing capabilities in areas of local damage to the steel surface. Full article
(This article belongs to the Special Issue Advanced Anticorrosion Coatings and Coating Testing)
Show Figures

Figure 1

18 pages, 2442 KiB  
Article
Cytotoxic Potencies of Zinc Oxide Nanoforms in A549 and J774 Cells
by Nazila Nazemof, Dalibor Breznan, Yasmine Dirieh, Erica Blais, Linda J. Johnston, Azam F. Tayabali, James Gomes and Premkumari Kumarathasan
Nanomaterials 2024, 14(19), 1601; https://doi.org/10.3390/nano14191601 - 3 Oct 2024
Cited by 3 | Viewed by 1805
Abstract
Zinc oxide nanoparticles (NPs) are used in a wide range of consumer products and in biomedical applications, resulting in an increased production of these materials with potential for exposure, thus causing human health concerns. Although there are many reports on the size-related toxicity [...] Read more.
Zinc oxide nanoparticles (NPs) are used in a wide range of consumer products and in biomedical applications, resulting in an increased production of these materials with potential for exposure, thus causing human health concerns. Although there are many reports on the size-related toxicity of ZnO NPs, the toxicity of different nanoforms of this chemical, toxicity mechanisms, and potency determinants need clarification to support health risk characterization. A set of well-characterized ZnO nanoforms (e.g., uncoated ca. 30, 45, and 53 nm; coated with silicon oil, stearic acid, and (3-aminopropyl) triethoxysilane) were screened for in vitro cytotoxicity in two cell types, human lung epithelial cells (A549), and mouse monocyte/macrophage (J774) cells. ZnO (bulk) and ZnCl2 served as reference particles. Cytotoxicity was examined 24 h post-exposure by measuring CTB (viability), ATP (energy metabolism), and %LDH released (membrane integrity). Cellular oxidative stress (GSH-GSSG) and secreted proteins (targeted multiplex assay) were analyzed. Zinc oxide nanoform type-, dose-, and cell type-specific cytotoxic responses were seen, along with cellular oxidative stress. Cell-secreted protein profiles suggested ZnO NP exposure-related perturbations in signaling pathways relevant to inflammation/cell injury and corresponding biological processes, namely reactive oxygen species generation and apoptosis/necrosis, for some nanoforms, consistent with cellular oxidative stress and ATP status. The size, surface area, agglomeration state and metal contents of these ZnO nanoforms appeared to be physicochemical determinants of particle potencies. These findings warrant further research on high-content “OMICs” to validate and resolve toxicity pathways related to exposure to nanoforms to advance health risk-assessment efforts and to inform on safer materials. Full article
Show Figures

Figure 1

14 pages, 4242 KiB  
Article
Fabrication of Vanadate-Exchanged Electrodeposited Zn-Al Layered Double Hydroxide (LDH) Coating on a ZX21 Mg Alloy to Improve the Corrosion Resistance
by Wei-Lun Hsiao and Peng-Wei Chu
Coatings 2024, 14(8), 1047; https://doi.org/10.3390/coatings14081047 - 16 Aug 2024
Cited by 2 | Viewed by 1683
Abstract
This study presents a vanadate-exchanged Zn-Al layered double hydroxide (LDH) coating on a ZX21 Mg alloy (Mg-2.15 wt%Zn-0.97 wt%Ca) by electrodeposition and immersion anion-exchange post-treatment. With the prepared vanadate-exchanged electrodeposited Zn-Al LDH coating, the corrosion resistance of the ZX21 Mg alloy improves with [...] Read more.
This study presents a vanadate-exchanged Zn-Al layered double hydroxide (LDH) coating on a ZX21 Mg alloy (Mg-2.15 wt%Zn-0.97 wt%Ca) by electrodeposition and immersion anion-exchange post-treatment. With the prepared vanadate-exchanged electrodeposited Zn-Al LDH coating, the corrosion resistance of the ZX21 Mg alloy improves with a decrease in the corrosion current density from 62.4 μA/cm2 to 3.32 μA/cm2. The fabricated vanadate-exchanged electrodeposited Zn-Al LDH coating contains complex anions in the interlayers, including mainly nitrate (NO3), carbonate (CO32−), and different vanadates. The coating not only serves as a physical barrier on the ZX21 Mg alloy but also absorbs chloride ions in the environment through anion exchange and inhibits corrosion with the reduction of the interlayer vanadates. Furthermore, the vanadates can also be released into the damaged area of the coating. Full article
(This article belongs to the Special Issue Advances in Corrosion-Resistant Coatings, 2nd Edition)
Show Figures

Figure 1

13 pages, 12442 KiB  
Article
Polyvinyl Alcohol Coatings Containing Lamellar Solids with Antimicrobial Activity
by Maria Bastianini, Michele Sisani, Raúl Escudero García, Irene Di Guida, Carla Russo, Donatella Pietrella and Riccardo Narducci
Physchem 2024, 4(3), 272-284; https://doi.org/10.3390/physchem4030019 - 1 Aug 2024
Viewed by 1933
Abstract
The design of an antimicrobial coating material has become important in the prevention of infections caused by the transmission of pathogens coming from human contact with contaminated surfaces. With that aim, layered single hydroxides (LSHs) and layered double hydroxides (LDHs) containing Zn and [...] Read more.
The design of an antimicrobial coating material has become important in the prevention of infections caused by the transmission of pathogens coming from human contact with contaminated surfaces. With that aim, layered single hydroxides (LSHs) and layered double hydroxides (LDHs) containing Zn and Cu intercalated with antimicrobial molecules were synthesized and characterized. Cinnamate and salicylate anions were chosen because of their well-known antimicrobial activity. Several coatings based on polyvinyl alcohol (PVA) and LDHs or LSHs with increasing amounts of filler were prepared and filmed on a polyethylene terephthalate (PET) substrate. The coatings were characterized, and their antimicrobial activity was evaluated against several pathogens that are critical in nosocomial infections, showing a synergistic effect between metal ions and active molecules and the ability to inhibit their growth. Full article
(This article belongs to the Section Surface Science)
Show Figures

Graphical abstract

Back to TopTop