Impact of Microstructure on the In Situ Formation of LDH Coatings on AZ91 Magnesium Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Melting of AZ91 Magnesium Alloy
2.2. Heat Treatment of AZ91
Material | Al | Zn | Mn | Si | Fe | Ni | Cu | Mg |
---|---|---|---|---|---|---|---|---|
AZ91 | 8.57 | 0.62 | 0.28 | 0.06 | 0.006 | 0.002 | 0.015 | Bal. |
2.3. Preparation of Mg-Al-NO3-LDH Coatings
2.4. Characterization
2.5. Electrochemical Measurement
2.6. Hydrogen Test
3. Results
3.1. AZ91 Phase Composition
3.2. XRD Patterns of the Coatings
3.3. Microstructure
3.4. Corrosion Resistance of LDH Composite Coating
3.5. Hydrogen Evolution Tests
4. Discussion
4.1. Free Energy Estimation and Formation Mechanism of LDH Coating
4.2. Formation Process and Mechanism Analysis of LDH on AZ91
4.3. Impact of β-Mg17Al12 on Corrosion Resistance of LDH Coatings
5. Conclusions
- In Cast-AZ91, the coarse β-phase exhibits strong galvanic corrosion with Mg, accelerating the dissolution of Mg and promoting the initial formation of the LDH coating. As the reaction time increases, the coating grows both inward and outward, and the large β-phase embedded in the coating disrupts its integrity. In T6-AZ91, fine, dispersed β-phases are formed, while in T4-AZ91, a single solid solution eliminates the negative impact of the coarse β-phase, facilitating the formation of a uniform and compact LDH surface coating during the self-corrosion process.
- The LDH coatings on T6-AZ91 and T4-AZ91 exhibit superior corrosion resistance compared to those on Cast-AZ91. This is attributed to the coarse β-phase in Cast-a-12h, which compromises the integrity of the coating, making the weaker areas more susceptible to Cl− attack. In contrast, the coatings on T6-AZ91 and T4-AZ91 are more uniform and compact, significantly enhancing the corrosion resistance of the magnesium alloy.
- Hydrolysis diagrams of Al and Mg were constructed under different pH conditions, allowing for the prediction of LDH chemical reactions under varying microstructural conditions, thereby improving understanding of the reaction mechanisms of LDH in different pH environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Chen, J.; Pan, X.; Chen, D.; Pan, F. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloys 2021, 9, 705–747. [Google Scholar] [CrossRef]
- Chalisgaonkar, R. Insight in applications, manufacturing and corrosion behavior of magnesium and its alloys—A review. Mater. Today Proc. 2020, 26, 1060–1071. [Google Scholar] [CrossRef]
- Chatterjee, B.; Bhowmik, S. Evolution of material selection in commercial aviation industry—A review. In Sustainable Engineering Products and Manufacturing Technologies; Academic Press: Cambridge, MA, USA, 2019; pp. 221–228. [Google Scholar]
- Mathaudhu, S.N.; Luo, A.A.; Neelameggham, N.R.; Nyberg, E.A.; Sillekens, W.H. Essential Readings in Magnesium Technology; Springer: Ocracoke, NC, USA, 2014; pp. 154–192. [Google Scholar]
- Bommalav, K.; Krishna, M.G.; Rao, C.T. Magnesium matrix composites for biomedical applications: A review. J. Magnes. Alloys 2019, 7, 72–79. [Google Scholar] [CrossRef]
- Yin, Z.Z.; Qi, W.C.; Zeng, R.C.; Chen, X.B.; Gu, C.D.; Guan, S.K.; Zheng, Y.F. Advances in coatings on biodegradable magnesium alloys. J. Magnes. Alloys 2020, 8, 42–65. [Google Scholar] [CrossRef]
- Jones, D.A. Principles and Prevention of Corrosion, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996; pp. 134–196. [Google Scholar]
- Zhang, G.; Wu, L.; Tang, A.T.; Weng, B.; Atrens, A.; Ma, S.; Liu, L.; Pan, F. Sealing of anodized magnesium alloy AZ31 with MgAl layered double hydroxides layers. RSC Adv. 2018, 8, 2248–2259. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Lin, B.; Liu, Y.H.; Yu, A.B. Effect of Ultrasonic on Coating Performances of Electroplated Diamond Tools. Key Eng. Mater. 2011, 487, 180–183. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.; Song, L.; Zeng, R.C.; Liu, Z.; Cui, H. Corrosion of in-situ grown MgAl-LDH coating on aluminum alloy. TNMSC 2015, 25, 3498–3504. [Google Scholar] [CrossRef]
- Su, Y.; Qiu, S.; Yang, D.; Yang, D.P.; Liu, S.; Zhao, H.C.; Wang, L.P.; Xue, Q.J. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH. J. Hazard. Mater. 2020, 391, 122215. [Google Scholar] [CrossRef]
- Guo, L.; Wu, W.; Zhou, Y.; Zhang, F.; Zeng, R.C.; Zeng, J.M. Layered double hydroxide coatings on magnesium alloys: A review. J. Mater. Sci. Technol. 2018, 34, 1455–1466. [Google Scholar] [CrossRef]
- Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Liu, R.; Xu, D.; Liu, Y.; Wu, L.; Yong, Q.W.; Xie, Z.H. Enhanced corrosion protection for MAO coating on magnesium alloy by the synergism of LDH doping with deposition of 8HQ inhibitor film. Ceram. Int. 2023, 49, 30039–30048. [Google Scholar] [CrossRef]
- Zhang, X.; Li, R.; Feng, X.; Pan, X.; He, X.; Jin, Z.; Ren, H.P.; Li, K.L.; Dai, X.J.; Du, Z.; et al. Influence of Li+/Al3+ on the corrosion behavior of Li-Al layered double hydroxides (LDHs) film on LA51 magnesium alloys. J. Magnes. Alloys 2023, 11, 1083–1093. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, P.; Wang, J.; Li, Y.; Chen, F.; Wei, K.; Zuo, Y. LDHs/graphene film on aluminum alloys for active protection. Appl. Surf. Sci. 2018, 433, 927–933. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Tang, A.; Ma, Y.; Song, G.L.; Zheng, D.; Jiang, B.; Atrens, A.; Pan, F. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros. Sci. 2018, 319, 370–382. [Google Scholar] [CrossRef]
- Chen, J.; Fang, L.; Wu, F.; Xie, J.; Hu, J.; Jiang, B.; Luo, H. Corrosion resistance of a self-healing rose-like MgAl-LDH coating intercalated with aspartic acid on AZ31 Mg alloy. Prog. Org. Coat. 2019, 354, 105234. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, F.; Fang, L.; Guan, T.; Hu, J.; Zhang, S. A comparative study and optimization of corrosion resistance of ZnAl layered double hydroxides films intercalated with different anions on AZ31 Mg alloys. Surf. Coat. Technol. 2019, 358, 594–603. [Google Scholar] [CrossRef]
- Liao, S.; Yu, B.; Zhang, B.; Zhou, P.; Zhang, T.; Wang, F. Chemically depleting the noble impurities from AZ91-T4 magnesium alloy: A new and efficient pretreatment method to improve the corrosion resistance of phosphate conversion coatings. Corros. Sci. 2021, 191, 109725. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, F.; Li, X.; Liu, B.; Zhang, C.; Buhe, B.; Zhang, T.; Meng, G.; Wang, F. The effect of hot extrusion on the microstructure and anti-corrosion performance of LDHs conversion coating on AZ91D magnesium alloy. J. Alloys Compd. 2019, 788, 756–767. [Google Scholar] [CrossRef]
- Li, F.; Sun, X.; Song, L.; Kannan, M.B.; Zhang, F.; Cui, L.Y.; Zou, Y.H.; Li, S.Q.; Liu, C.B.; Zeng, R.C. Influence of intermetallic Al-Mn particles on in-situ steam Mg-Al-LDH coating on AZ31 magnesium alloy. TNMSC 2022, 32, 3926–3949. [Google Scholar] [CrossRef]
- Phuong, N.V.; Moon, S.; Chang, D.; Lee, K.H. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91. Appl. Surf. Sci. 2013, 264, 70–78. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, B.; Yu, B.; Lu, X.; Wei, Y.; Zhang, T.; Mol, J.M.C.; Wang, F. Influence of surface pretreatment on phosphate conversion coating on AZ91 Mg alloy. Surf. Coat. Technol. 2019, 359, 414–425. [Google Scholar] [CrossRef]
- Yang, H.Y.; Chen, X.B.; Guo, X.W.; Wu, G.H.; Ding, W.J.; Birbils, N. Coating pretreatment for Mg alloy AZ91D. Appl. Surf. Sci. 2012, 258, 5472–5481. [Google Scholar] [CrossRef]
- Akbarzadeh, F.Z.; Rajabi, M.; Jamaati, R.; Braem, A. Effect of β-Mg17Al12 phase on the surface interactions and morphology of hydroxyapatite coating deposited on AZ91 alloy. Surf. Interfaces 2024, 51, 104589. [Google Scholar] [CrossRef]
- Hofmeister, W.; Platen, H.V. Crystal Chemistry and Atomic Order in Brucite-related Double-layer Structures. Crystallogr. Rev. 1992, 3, 3–26. [Google Scholar] [CrossRef]
- Kurchavov, D.; Rustambek, U.; Ottochian, A.; Lefevre, G.; Seyeux, A.; Ciofini, I.; Marcus, P.; Lair, V.; Volovitch, P. Synergistic effect of ionic liquid (IL) cation and anion inhibits negative difference effect on Mg in water-IL mixtures. Corros. Sci. 2022, 209, 110723. [Google Scholar] [CrossRef]
- Song, G.L. Theoretical analysis of the measurement of polarisation resistance in reinforced concrete. Cem. Concr. Compos. 2000, 22, 407–415. [Google Scholar] [CrossRef]
- Li, Z.; Jing, X.; Yuan, Y.; Zhang, M. Composite coatings on a Mg–Li alloy prepared by combined plasma electrolytic oxidation and sol–gel techniques. Corros. Sci. 2012, 63, 358–366. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, H.; Li, J.; Zhao, H.; Wang, L. Polydopamine modified ultrathin hydroxyapatite nanosheets for anti-corrosion reinforcement in polymeric coatings. Corros. Sci. 2021, 178, 109064. [Google Scholar] [CrossRef]
- Li, L.X.; Xie, Z.H.; Fernandez, C.; Wu, L.; Cheng, D.; Jiang, X.; Zhong, C. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection. Electrochim. Acta 2020, 330, 135186. [Google Scholar] [CrossRef]
- Song, Y.; Gao, Y.; Zhou, X.; Lv, Y.; Zhang, L.; Zhang, H.; Liu, B. Step-by-step in-situ preparation of magnesium-aluminum layered double hydroxide film to improve the corrosion resistance of AZ31 magnesium alloy. Mater. Today Commun. 2024, 40, 109754. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Liu, Q.; Li, G.; Wang, S.; Zhu, X. Sodium dodecyl sulfate (SDS) intercalated MgAl layered double hydroxides film to enhance the corrosion resistance of AZ31 magnesium alloy. Surf. Coat. Technol. 2021, 422, 127524. [Google Scholar] [CrossRef]
- Li, C.Y.; Gao, L.; Fan, X.L.; Zeng, R.C.; Chen, D.C.; Zhi, K.Q. In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31. Bioact. Mater. 2020, 5, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Allada, R.K.; Navrotsky, A.; Berbeco, H.T. Thermochemistry and Aqueous Solubilities of Hydrotalcite-Like Solids. Science 2022, 296, 721–723. [Google Scholar] [CrossRef] [PubMed]
- Allada, R.K.; Pless, J.D.; Nenoff, T.M.; Navrotsky, A. Thermochemistry of Hydrotalcite-like Phases Intercalated with CO32−, NO3−, Cl−, I−, and ReO4. Chem. Mater. 2015, 17, 2455–2459. [Google Scholar] [CrossRef]
- Sun, Z.; Gu, L.; Zheng, J.; Zhang, J.; Wang, L.; Xu, F.; Lin, C. A controlled release strategy of antifouling agent in coating based on intercalated layered double hydroxides. Mater. Lett. 2016, 172, 105–108. [Google Scholar] [CrossRef]
- Dabizha, A.; Kersten, M. Aqueous solubility of Zn incorporated into Mg-Al-layered double hydroxides. Clays Clay Miner. 2022, 70, 34–47. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; Wiley: New York, NY, USA, 1995; pp. 235–285. [Google Scholar]
- Tamura, H.; Chiba, J.; Ito, M.; Takeda, T.; Kikkawa, S.; Mawatari, Y.; Tabata, M. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange. J. Colloid Interface Sci. 2006, 300, 648–654. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, X.; Zhu, Y.; Zhang, F. Transformation Mechanism of Magnesium and Aluminum Precursor Solution into Crystallites of Layered Double Hydroxide. Chem. Mater. 2012, 64, 81–87. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Shan, D.; Han, E.H. Study of the in situ growth mechanism of Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy. Corros. Sci. 2012, 63, 148–158. [Google Scholar] [CrossRef]
- Paikaray, S.; Gomez, M.A.; Hendry, M.J.; Joseph, E.D. Formation mechanism of layered double hydroxides in Mg2+, Al3+, and Fe3+ rich aqueous media: Implications for neutralization in acid leach ore milling. Appl. Clay Sci. 2014, 101, 579–590. [Google Scholar] [CrossRef]
- Xu, Z.P.; Lu, G.Q. Hydrothermal Synthesis of Layered Double Hydroxides (LDHs) from Mixed MgO and Al2O3: LDH Formation Mechanism. Chem. Mater. 2005, 17, 1055–1062. [Google Scholar] [CrossRef]
- Oestreicher, V.; Fábregas, I.; Jobbágy, M. One-Pot Epoxide-Driven Synthesis of M2Al(OH)6Cl·1.5H2O Layered Double Hydroxides: Precipitation Mechanism and Relative Stabilities. J. Phys. Chem. C 2014, 118, 30274–30281. [Google Scholar] [CrossRef]
- Lee, G.; Kang, J.Y.; Yan, N.; Suh, Y.W.; Jung, J.C. Simple preparation method for Mg–Al hydrotalcites as base catalysts. J. Mol. Catal. A Chem. 2016, 423, 347–355. [Google Scholar] [CrossRef]
- Eliseev, A.A.; Lukashin, A.V.; Vertegel, A.A.; Tarasov, V.P.; Tret’yakov, Y.D. A Study of Crystallization of Mg–Al Double Hydroxides. Dokl. Chem. 2002, 387, 339–343. [Google Scholar] [CrossRef]
- Mclaughlin, W.; White, J.L.; Hem, S. Influence of Heterocoagulation on the Formation of Hydrotalcite in Mixed Suspensions of Magnesium Hydroxide and Aluminum Hydroxycarbonate. J. Colloid Interface Sci. 1994, 165, 41–52. [Google Scholar] [CrossRef]
- Ambat, R.; Zhou, W. Electroless nickel-plating on AZ91D magnesium alloy: Effect of substrate microstructure and plating parameters. Surf. Coat. Technol. 2004, 179, 124–134. [Google Scholar] [CrossRef]
- Kvryan, A.; Livingston, K.; Efaw, C.M.; Knori, K.; Jaques, B.J.; Davis, P.H.; Butt, D.P.; Hurley, M.F. Microgalvanic Corrosion Behavior of Cu-Ag Active Braze Alloys Investigated with SKPFM. Metals 2016, 6, 91. [Google Scholar] [CrossRef]
- Asmussen, R.M.; Binnis, W.J.; Partovi-Nia, R.; Jakupi, P.; Shoesmith, D.W. The stability of aluminum-manganese intermetallic phases under the microgalvanic coupling conditions anticipated in magnesium alloys. Mater. Corros. 2016, 67, 39–50. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Shan, D.; Han, E.H. Different Microgalvanic Corrosion Behavior of Cast and Extruded EW75 Mg Alloys. J. Electrochem. Soc. 2016, 163, 14. [Google Scholar] [CrossRef]
- Zhao, M.C.; Liu, M.; Song, G.L.; Atrens, A. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corros. Sci. 2008, 50, 1939–1953. [Google Scholar] [CrossRef]
- Hu, R.G.; Zhang, S.; Bu, J.F.; Lin, C.J.; Song, G.L. Recent progress in corrosion protection of magnesium alloys by organic coatings. Prog. Org. Coat. 2012, 73, 129–141. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A.; Wu, X.; Zhang, B. Corrosion behaviour of AZ21, AZ50, and AZ91 in sodium chloride. Corros. Sci. 1998, 40, 1769–1791. [Google Scholar] [CrossRef]
- Song, G.L.; Bowles, A.L.; Stjohn, D.H. Corrosion resistance of aged die cast magnesium alloy AZ91D. Mater. Sci. Eng. A 2004, 366, 74–86. [Google Scholar] [CrossRef]
Samples | Ecorr [V/SCE] | Icorr [A·cm−2] | ba [mV·dec−1] | bc [-mdec−1] | Rp [Ω·cm−2] |
---|---|---|---|---|---|
Cast-AZ91 | −1.44 | 2.18 × 10−6 | 19.83 | 90.14 | 2.01 × 103 |
T4-AZ91 | −1.49 | 2.82 × 10−5 | 38.00 | 174.13 | 3.77 × 102 |
T6-AZ91 | −1.46 | 4.30 × 10−6 | 45.00 | 120.00 | 1.04 × 103 |
Cast-a-20min | −1.25 | 9.5 × 10−8 | 64.79 | 99.25 | 1.80 × 105 |
T4-a-20min | −1.38 | 2.39 × 10−6 | 35.33 | 137.46 | 5.07 × 103 |
T6-a-20min | −1.28 | 5.83 × 10−8 | 32.162 | 79.46 | 1.70 × 105 |
Cast-a-12h | −1.33 | 1.52 × 10−8 | 262.3 | 148.22 | 2.72 × 106 |
T4-a-12h | −1.2 | 2.61 × 10−9 | 116.99 | 98.129 | 8.86 × 106 |
T6-a-12h | −1.19 | 3.41 × 10−9 | 130.89 | 120.44 | 7.95 × 106 |
Samples | CPEf | Rf [Ω·cm2] | Cf [F·cm−2] | CPEdl | Rct [Ω·cm2] | Cdl [F·cm−2] | RL [Ω·cm2] | L [H·cm−2] | χ2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Y0 [Ω−1cm−2sn] | n | Y0 [Ω−1cm−2sn] | n | ||||||||
Cast-AZ91 | 9.41 × 10−6 | 0.93 | 6784 | 7.31 × 10−6 | 6.90 × 10−4 | 0.92 | 3608 | 0.00087 | 3823 | 6605 | 5.96 × 10−3 |
T4-AZ91 | 1.24 × 10−5 | 0.92 | 1551 | 7.98 × 10−6 | 6.06 × 10−5 | 0.90 | 1547 | 3.71 × 10−5 | 20 | 129.6 | 9.60 × 10−3 |
T6-AZ91 | 6.84 × 10−6 | 0.93 | 6376 | 6.08 × 10−6 | 2.45 × 10−5 | 0.96 | 2230 | 2.75 × 10−5 | 7872 | 4.923 | 6.34 × 10−3 |
Cast-a-20min | 3.8 × 10−6 | 0.93 | 3.33 × 104 | 3.12 × 10−6 | 3.65 × 10−4 | 0.61 | 1.4 × 104 | 1.09 × 10−3 | 729.4 | 31,371 | 5.95 × 10−3 |
T4-a-20min | 3.53 × 10−6 | 0.97 | 6172 | 3.20 × 10−6 | 2.6 × 10−4 | 0.40 | 1680 | 7.47 × 10−5 | 10 | 995.7 | 5.82 × 10−2 |
T6-a-20min | 3.63 × 10−6 | 0.94 | 1.94 × 104 | 3.14 × 10−6 | 1.59 × 10−4 | 0.50 | 1.2 × 104 | 2.49 × 10−4 | 4119 | 1330 | 9.11 × 10−3 |
Cast-a-12h | 3.23 × 10−7 | 0.76 | 7.06 × 104 | 9.8 × 10−8 | 1.11 × 10−5 | 0.77 | 8.48 × 107 | 3.47 × 10−4 | --- | --- | 3.03 × 10−3 |
T4-a-12h | 8.05 × 10−8 | 0.74 | 1.0 × 105 | 1.59 × 10−8 | 9.64 × 10−6 | 0.77 | 8.11 × 108 | 6.7 × 10−5 | --- | --- | 6.4 × 10−3 |
T6-a-12h | 1.1 × 10−7 | 0.73 | 9.59 × 104 | 2.1 × 10−8 | 1.01 × 10−5 | 0.79 | 8.54 × 108 | 9.68 × 10−5 | --- | --- | 5.6 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Song, Y.; Yu, A.; Tian, Y.; Chen, H. Impact of Microstructure on the In Situ Formation of LDH Coatings on AZ91 Magnesium Alloy. Materials 2025, 18, 1178. https://doi.org/10.3390/ma18051178
Wang N, Song Y, Yu A, Tian Y, Chen H. Impact of Microstructure on the In Situ Formation of LDH Coatings on AZ91 Magnesium Alloy. Materials. 2025; 18(5):1178. https://doi.org/10.3390/ma18051178
Chicago/Turabian StyleWang, Nan, Yulai Song, Anda Yu, Yong Tian, and Hao Chen. 2025. "Impact of Microstructure on the In Situ Formation of LDH Coatings on AZ91 Magnesium Alloy" Materials 18, no. 5: 1178. https://doi.org/10.3390/ma18051178
APA StyleWang, N., Song, Y., Yu, A., Tian, Y., & Chen, H. (2025). Impact of Microstructure on the In Situ Formation of LDH Coatings on AZ91 Magnesium Alloy. Materials, 18(5), 1178. https://doi.org/10.3390/ma18051178