Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (155,768)

Search Parameters:
Keywords = L741,626

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2270 KB  
Article
The Role of Reduced Surface Sulfur Species in the Removal of Se(VI) by Sulfidized Nano Zero-Valent Iron
by Stefan Peiffer, John Mohanraj, Kerstin Hockmann, Jörg Göttlicher, Mukundan Thelakkat and Bouchra Marouane
Minerals 2026, 16(1), 68; https://doi.org/10.3390/min16010068 (registering DOI) - 9 Jan 2026
Abstract
Sulfidized nano zero-valent iron (S-nZVI) particles are known to stimulate the reductive removal of various oxyanions due to enhanced electron selectivity and electron conductivity between the Fe(0) core and the target compound. Sulfidation creates a number of reactive sulfur species, the role of [...] Read more.
Sulfidized nano zero-valent iron (S-nZVI) particles are known to stimulate the reductive removal of various oxyanions due to enhanced electron selectivity and electron conductivity between the Fe(0) core and the target compound. Sulfidation creates a number of reactive sulfur species, the role of which has not yet been investigated in the context of S-nZVI. In this study, we investigated the contribution of reactive sulfur species to Se(VI) reduction by S-nZVI at different molar S/Fe ratios (0, 0.1 and 0.6) and Se(VI) concentrations (0, 5 and 50 mg L−1). In the presence of S-nZVI, the rate of reduction was accelerated by a factor of up to ten. X-ray Absorption Near-Edge Structure (XANES) spectroscopy and surface-sensitive X-ray photoelectron spectroscopy (XPS) identified Se(0) as the predominant reduction product (~90%). The reduction reaction was accompanied by a loss of FeS and the formation of surface-bound Fe(II) polysulfide (FeSx) and S(0) species. Likewise, wet chemical extraction techniques suggested a direct involvement of acid volatile sulfide (AVS) species (surface-bound FeS) in the reduction of Se(IV) to Se(0) and formation of S(0). Mass balance estimates reveal that between 9 and 15% of the conversion of Se(0) originates from oxidation of FeS to FeSx. From these findings, we propose that surface-bound Fe sulfide species are important but previously overlooked reactants contributing to the reduction of oxyanions associated with S-nZVI particles, as well as in natural environments undergoing sulfidation reactions. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
23 pages, 2945 KB  
Article
Intracellular Oxidant Levels Are Crucial for Cell Survival and JAK/STAT Signaling in Classical Hodgkin’s Lymphoma
by Julia Wildfeuer, Rashmi P. Dheenadayalan, Svenja Hartung, Malena Zahn, Timo P. Albrecht, Zhouli Cao, Alexey Ushmorov, Peter Möller, Nadine T. Gaisa and Ralf Marienfeld
Antioxidants 2026, 15(1), 90; https://doi.org/10.3390/antiox15010090 (registering DOI) - 9 Jan 2026
Abstract
Although oxidants are known to be deleterious for cellular homeostasis by oxidizing macromolecules like DNA or proteins, they are also involved in signaling processes essential for cellular proliferation and survival. Here, we investigated the role of superoxide anion (O2) and [...] Read more.
Although oxidants are known to be deleterious for cellular homeostasis by oxidizing macromolecules like DNA or proteins, they are also involved in signaling processes essential for cellular proliferation and survival. Here, we investigated the role of superoxide anion (O2) and hydrogen peroxide (H2O2) homeostasis for the proliferation and survival of classical Hodgkin’s lymphoma (cHL) cell lines. Inhibition of NADPH oxidases (NOX) using apocynin (Apo) and diphenylene iodonium (DPI), or treatment with the antioxidant butylated hydroxyanisole (BHA), significantly reduced proliferation and induced apoptosis in HL cell lines. These effects correlated with transcriptomic alterations involving redox regulation, immune signaling, and cell cycle control. Interestingly, treatment with DPI or antioxidants attenuated constitutive Signal Transducer and Activator of Transcription (STAT) activity, as seen by decreased phospho-STAT6 levels and reduced STAT6 DNA binding. This suggests a sensitivity of the Janus kinase (JAK)/STAT pathway in cHL cell lines to O2 and H2O2 depletion. Functional assays confirmed this by demonstrating partial restoration of proliferation or apoptosis in L428 cells that expressed constitutively active STAT6 or were transfected with small interfering RNAs (siRNAs) that targeted STAT regulators. These findings highlight that oxidants, particularly H2O2, act as both general oxidative stressors and essential modulators of oncogenic signaling pathways. Specifically, maintenance of oxidant homeostasis is critical for sustaining JAK/STAT-mediated growth and survival programs in cHL cells. Targeting redox homeostasis might offer a promising therapeutic strategy to impair JAK/STAT-driven proliferation and survival in cHL. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
27 pages, 1121 KB  
Article
Effect of Organic Soil Amendments and Vineyard Topographic Position on the Chemical Composition of Syrah, Trincadeira, Alicante Bouschet, and Antão Vaz Grapes (Vitis vinifera L.) in the Alentejo Wine Region
by Matteo Pierini, Shrika G. Harjivan, Nicolò Sieli, Maria João Cabrita, Sérgio Prats, Sofia Catarino and Jorge M. Ricardo-da-Silva
Environments 2026, 13(1), 44; https://doi.org/10.3390/environments13010044 - 9 Jan 2026
Abstract
Climate change and unsustainable agricultural practices are triggering land degradation in semi-arid Mediterranean regions. Organic amendments, such as mulching materials, have shown promising potential to mitigate these impacts by improving soil chemical, physical, and biological properties, while enhancing grapevine growth and productivity. This [...] Read more.
Climate change and unsustainable agricultural practices are triggering land degradation in semi-arid Mediterranean regions. Organic amendments, such as mulching materials, have shown promising potential to mitigate these impacts by improving soil chemical, physical, and biological properties, while enhancing grapevine growth and productivity. This study evaluated the effects of wheat straw mulch (M) and wheat straw combined with biochar (MB), together with vineyard topography (bottom vs. top), on grape chemical and phenolic composition in four Vitis vinifera L. cultivars (Syrah, Trincadeira, Alicante Bouschet, and Antão Vaz) grown in the Alentejo wine region. Grapes were sampled separately at top and bottom topographic positions, and classical and phenolic parameters were analyzed. The application of M and MB significantly modified must composition, mainly through changes in nitrogen and sugar levels across topographic positions. Only MB exhibited stronger effects, enhancing must quality, while MB and M reduced bottom–top variability. Similar patterns and positional effects were observed for phenolic and color parameters. Both organic treatments lowered total monomeric anthocyanin concentrations, although positional differences with wheat straw mulch were found. The results highlight that combining soil management with topography and variety response can optimize grape phenolic composition and promote sustainable viticulture through targeted, site-specific mulching strategies. Full article
17 pages, 698 KB  
Article
Biofortification of Baby Leaf Lettuce with Iron and Zinc: Agronomic and Nutritional Impacts
by Gildeon Santos Brito, Arthur Bernardes Cecílio Filho, Fernanda Abduche Galvão Pimentel, Gean Rodrigues Rossi, Francisco Laurimar do Nascimento Andrade, Daniel Pietragala Alves and Alexandre Rinaldi Humel Junior
Agriculture 2026, 16(2), 175; https://doi.org/10.3390/agriculture16020175 - 9 Jan 2026
Abstract
Inadequate intake of Fe and Zn is prevalent in a large part of the world’s population, and agronomic biofortification has been a strategy to improve the nutritional quality of food and, consequently, the nutrient intake by people. The objective of this study was [...] Read more.
Inadequate intake of Fe and Zn is prevalent in a large part of the world’s population, and agronomic biofortification has been a strategy to improve the nutritional quality of food and, consequently, the nutrient intake by people. The objective of this study was to evaluate the effects of Fe and Zn concentrations in the nutrient solution on the morphophysiological traits, nutritional quality, and biofortification of two cultivars of baby leaf lettuce in a deep water technique hydroponic system. Two experiments were conducted, one with ‘Vanda’ lettuce (green) and the other with ‘Luminosa’ lettuce (reddish). Six treatments were evaluated, in a 3 × 2 factorial scheme, corresponding to the concentrations of Fe (2.0, 4.0, and 8.0 mg L−1) and Zn (0.06 and 0.24 mg L−1), with four replicates. ‘Vanda’ proved to be more productive, while ‘Luminosa’ has a higher nutraceutical value. The growth traits, yield, and leaf contents of carotenoids and anthocyanins of both cultivars were not influenced by the increase in Fe and Zn concentrations in the nutrient solution. There was a 25% and a 33% increase in the content of phenolic compounds in ‘Vanda’ and ‘Luminosa’, respectively, when the Fe concentration increased from 2 to 8 mg L−1. The Fe content in ‘Vanda’ was influenced only by the Fe concentration in the nutrient solution and increased by 13% between 2 and 8 mg L−1 of Fe. For ‘Luminosa’, there was an interaction, but the highest Fe contents in the shoot were observed with 8 mg L−1 of Fe, which were 24 and 38% higher than those obtained with 2 mg L−1 of Fe at Zn concentrations of 0.06 and 0.24 mg L−1, respectively. The study showed the importance of evaluating the biofortification for cultivars. While ‘Vanda’ baby leaf was biofortified only with Fe, ‘Luminosa’ was biofortified with both micronutrients. Full article
(This article belongs to the Special Issue Greens—Biofortification for Improved Nutritional Quality)
Show Figures

Figure 1

27 pages, 2319 KB  
Article
Sea Buckthorn, Aronia, and Black Currant Pruning Waste Biomass as a Source of Multifunctional Skin-Protecting Cosmetic and Pharmaceutical Cream Ingredients
by Anna Andersone, Anna Ramata-Stunda, Natalija Zaharova, Liga Petersone, Gints Rieksts, Uldis Spulle, Galina Telysheva and Sarmite Janceva
Int. J. Mol. Sci. 2026, 27(2), 701; https://doi.org/10.3390/ijms27020701 - 9 Jan 2026
Abstract
Fruit shrubs’ lignocellulosic biomass remaining as waste after harvesting and/or after pruning is an underutilized, little-explored bioresource. Sea buckthorn (Hippophae rhamnoides L.), aronia (Aronia melanocarpa) and blackcurrant (Ribes nigrum) berries are rich in biologically active compounds, so these [...] Read more.
Fruit shrubs’ lignocellulosic biomass remaining as waste after harvesting and/or after pruning is an underutilized, little-explored bioresource. Sea buckthorn (Hippophae rhamnoides L.), aronia (Aronia melanocarpa) and blackcurrant (Ribes nigrum) berries are rich in biologically active compounds, so these shrubs’ woody biomass derivatives are prospective investigation objects. The influence of pre-treated biomass, extracts, and purified proanthocyanidins on the oxidative stability of lipid-based systems was studied by accelerated oxidation method. Emulsion stability, antimicrobial activity against bacteria that causes acne—Cutibacterium acnes; contaminating wounds; skin care products—Streptococcus pyogenes, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus; cytotoxicity and phototoxicity of extracts and proanthocyanidins on HaCaT human keratinocytes were tested. The study established that biomass, lipophilic extracts obtained using liquefied hydrofluorocarbon, and hydrophilic extracts obtained by aqueous ethanol increased oxidative stability of lipid-based formulations. Compounds with skin-protecting properties were detected. Sea buckthorn and aronia hydrophilic extracts and proanthocyanidins had the highest antimicrobial activity. Low phototoxicity was revealed, emphasizing safety and applicability in topical formulations; human HaCaT keratinocyte viability was the best with aronia extracts, but none of the other samples decreased cell viability by more than 50%. It was proven that agro-waste biomass is a prospective source of multifunctional ingredients for cosmetic and pharmaceutical topical formulations. Full article
13 pages, 1950 KB  
Article
The Effect of Selected Cathinones on Natural Cell Membranes: Microelectrophoretic Methods
by Anna Trynda, Katarzyna Karwowska, Weronika Karpowicz, Katarzyna Kazimierska-Drobny and Aneta D. Petelska
Molecules 2026, 31(2), 234; https://doi.org/10.3390/molecules31020234 - 9 Jan 2026
Abstract
Synthetic cathinones are cathinone analogues that humans have artificially created. The first compounds appeared on the European market in 2005. They belong to a class of drugs called stimulants, classified as new psychoactive substances. Synthetic cathinones are very popular; people use these drugs [...] Read more.
Synthetic cathinones are cathinone analogues that humans have artificially created. The first compounds appeared on the European market in 2005. They belong to a class of drugs called stimulants, classified as new psychoactive substances. Synthetic cathinones are very popular; people use these drugs because they are cheaper “substitutes” for other stimulants. They produce psychostimulant and hallucinogenic effects similar to cocaine, amphetamine, and MDMA, among others. Despite their presence on the market for several years, the precise toxicological impacts of these compounds on the human body remain unknown. Studies were conducted on the effects of selected cathinones (mephedrone, clephedrone) on blood cells: erythrocytes and platelets. The effect of cathinones was determined by measuring the surface density of biological membranes using microelectrophoresis. The continued popularity of these compounds, coupled with limited knowledge of their precise effects on the human body, makes the problem significant and requires ongoing research. Based on the results obtained for mephedrone and clephedrone, it can be concluded that at the tested concentrations (170 ng/mL and 2700 ng/mL), they alter the surface charge density of the biological membranes of red blood cells and platelets. Full article
Show Figures

Figure 1

33 pages, 6524 KB  
Article
Development of Human Serum Albumin-Based Hydrogels for Potential Use as Wound Dressings
by Inna Zharkova, Irina Bauer, Oksana Gulyaeva, Evgenia Kozyreva, Zhanna Nazarkina and Elena Dmitrienko
Gels 2026, 12(1), 64; https://doi.org/10.3390/gels12010064 - 9 Jan 2026
Abstract
Protein-based materials such as human serum albumin (HSA) have demonstrated significant potential for the development of novel wound management materials. For the first time, the formation of HSA-based hydrogels was proposed using a combination of thermal- and ethanol-induced approaches. The combination of phosphate-buffered [...] Read more.
Protein-based materials such as human serum albumin (HSA) have demonstrated significant potential for the development of novel wound management materials. For the first time, the formation of HSA-based hydrogels was proposed using a combination of thermal- and ethanol-induced approaches. The combination of phosphate-buffered saline (PBS) and limited (up to 20% v/v) ethanol content offers a promising strategy for fabricating human serum albumin-based hydrogels with tunable properties. The hydrogel formation was studied using in situ dynamic light scattering (DLS) for qualitative and semi-quantitative analysis of the patterns of protein hydrogel formation through thermally induced gelation. The rheological properties of human serum albumin-based hydrogels were investigated. Hydrogels synthesized via thermally induced gelation using a denaturing agent exhibit a dynamic viscosity ranging from 100 to 10,000 mPa·s. The biocompatibility, biodegradability, and structural stability of human serum albumin-based hydrogels were comprehensively evaluated in physiologically relevant media. These human serum albumin-based hydrogels represent a promising platform for developing topical therapeutic agents for wound management and tissue engineering applications. This study investigated the kinetics of tetracycline release from human serum albumin-based hydrogels in PBS and fetal bovine serum (FBS). All tested formulations of HSA-based hydrogels loaded with tetracycline (1 mg/mL) demonstrated antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Corynebacterium striatum strains. Full article
(This article belongs to the Section Gel Chemistry and Physics)
39 pages, 10760 KB  
Article
Automated Pollen Classification via Subinstance Recognition: A Comprehensive Comparison of Classical and Deep Learning Architectures
by Karol Struniawski, Aleksandra Machlanska, Agnieszka Marasek-Ciolakowska and Aleksandra Konopka
Appl. Sci. 2026, 16(2), 720; https://doi.org/10.3390/app16020720 - 9 Jan 2026
Abstract
Pollen identification is critical for melissopalynology (honey authentication), ecological monitoring, and allergen tracking, yet manual microscopic analysis remains labor-intensive, subjective, and error-prone when multiple grains overlap in realistic samples. Existing automated approaches often fail to address multi-grain scenarios or lack systematic comparison across [...] Read more.
Pollen identification is critical for melissopalynology (honey authentication), ecological monitoring, and allergen tracking, yet manual microscopic analysis remains labor-intensive, subjective, and error-prone when multiple grains overlap in realistic samples. Existing automated approaches often fail to address multi-grain scenarios or lack systematic comparison across classical and deep learning paradigms, limiting their practical deployment. This study proposes a subinstance-based classification framework combining YOLOv12n object detection for grain isolation, independent classification via classical machine learning (ML), convolutional neural networks (CNNs), or Vision Transformers (ViTs), and majority voting aggregation. Five classical classifiers with systematic feature selection, three CNN architectures (ResNet50, EfficientNet-B0, ConvNeXt-Tiny), and three ViT variants (ViT-B/16, ViT-B/32, ViT-L/16) are evaluated on four datasets (full images vs. isolated grains; raw vs. CLAHE-preprocessed) for four berry pollen species (Ribes nigrum, Ribes uva-crispa, Lonicera caerulea, and Amelanchier alnifolia). Stratified image-level splits ensure no data leakage, and explainable AI techniques (SHAP, Grad-CAM++, and gradient saliency) validate biological interpretability across all paradigms. Results demonstrate that grain isolation substantially improves classical ML performance (F1 from 0.83 to 0.91 on full images to 0.96–0.99 on isolated grains, +8–13 percentage points), while deep learning excels on both levels (CNNs: F1 = 1.000 on full images with CLAHE; ViTs: F1 = 0.99). At the instance level, all paradigms converge to near-perfect discrimination (F1 ≥ 0.96), indicating sufficient capture of morphological information. Majority voting aggregation provides +3–5% gains for classical methods but only +0.3–4.8% for deep models already near saturation. Explainable AI analysis confirms that models rely on biologically meaningful cues: blue channel moments and texture features for classical ML (SHAP), grain boundaries and exine ornamentation for CNNs (Grad-CAM++), and distributed attention across grain structures for ViTs (gradient saliency). Qualitative validation on 211 mixed-pollen images confirms robust generalization to realistic multi-species samples. The proposed framework (YOLOv12n + SVC/ResNet50 + majority voting) is practical for deployment in honey authentication, ecological surveys, and fine-grained biological image analysis. Full article
(This article belongs to the Special Issue Latest Research on Computer Vision and Image Processing)
Show Figures

Figure 1

16 pages, 3313 KB  
Article
Comparative Analysis of Freeze–Thaw Effects on the Parallel-to-Grain Compressive Properties of Bamboo and Chinese Fir
by Kang Zhao and Yang Wei
Buildings 2026, 16(2), 291; https://doi.org/10.3390/buildings16020291 - 9 Jan 2026
Abstract
To evaluate the application potential of bamboo in cold regions, this study systematically compared the differences in the effects of freeze–thaw cycles on the longitudinal compressive properties of moso bamboo (Phyllostachys edulis) and Chinese fir (Cunninghamia lanceolata). By subjecting [...] Read more.
To evaluate the application potential of bamboo in cold regions, this study systematically compared the differences in the effects of freeze–thaw cycles on the longitudinal compressive properties of moso bamboo (Phyllostachys edulis) and Chinese fir (Cunninghamia lanceolata). By subjecting the materials to 0, 5, and 10 standard freeze–thaw cycles, the evolution patterns were analyzed from three aspects: mechanical properties, failure modes, and apparent color. The results show that bamboo exhibits significantly superior freeze–thaw resistance: after 10 cycles, bamboo retained 95.4% of its compressive strength (decreasing from 50.2 MPa to 47.9 MPa), whereas the strength of Chinese fir decreased by 14.2% (from 46.7 MPa to 40.0 MPa). The elastic modulus of bamboo remained stable, while that of Chinese fir decreased by 30.86%. Load–displacement curves revealed that bamboo displayed a ductile plateau after failure, whereas Chinese fir exhibited a linear drop-off. Analysis of failure modes further highlighted the intrinsic differences between the materials: bamboo primarily underwent progressive buckling of fiber bundles, forming typical accordion-like folds; Chinese fir mainly showed brittle failures such as end crushing and longitudinal splitting. Color characterization indicated that the lightness index L of the bamboo outer skin (bamboo green) decreased by 26.1%, while the chromaticity indices a (red) and b* (yellow) increased significantly, showing the most notable changes; the color of Chinese fir and the bamboo inner skin (bamboo yellow) remained relatively stable. This study demonstrates that natural bamboo outperforms Chinese fir in terms of frost resistance, toughness, and strength retention in the short term. The findings provide important experimental evidence and design references for promoting the application of bamboo in engineering projects in cold regions. Full article
17 pages, 3404 KB  
Article
Aldehyde Dehydrogenase in Sesquiterpenoid Hormone Pathway of Slugs Can Be Potential Target for Slug Control
by Haiyao Ma, Yingying Liu, Zesheng Hao, Bo Pang, Zhongping Jiang and Zhenpeng Kai
Agriculture 2026, 16(2), 173; https://doi.org/10.3390/agriculture16020173 - 9 Jan 2026
Abstract
Slugs are significant agricultural pests and act as vectors for zoonotic parasites. However, current molluscicide options are limited and associated with substantial environmental risks. This study investigates the role of aldehyde dehydrogenase (ALDH) in the biosynthesis of farnesoic acid (FA), a key intermediate [...] Read more.
Slugs are significant agricultural pests and act as vectors for zoonotic parasites. However, current molluscicide options are limited and associated with substantial environmental risks. This study investigates the role of aldehyde dehydrogenase (ALDH) in the biosynthesis of farnesoic acid (FA), a key intermediate in the sesquiterpenoid hormone pathway, in two slug species: Philomycus bilineatus and Laevicaulis alte. Transcriptomic analysis revealed that both species possess conserved sesquiterpenoid biosynthetic pathways, yet they exhibit distinct levels of ALDH gene expression and differences in FA content. RNA interference (RNAi)-mediated gene silencing was employed to validate the potential of these candidate genes as targets for molluscicide development. Structural modeling of ALDH proteins using AlphaFold2 demonstrated notable divergence in the architecture of their active sites, suggesting species-specific enzymatic properties. Citral, a known inhibitor of ALDH, significantly reduced FA production in vivo and exhibited contact toxicity against both slug species. The lethal concentration 50 (LC50) values were determined to be 378.2 g/L for P. bilineatus and 85.2 g/L for L. alte, respectively. Molecular docking analyses indicated that citral binds within the conserved substrate-binding tunnel of ALDH, potentially inhibiting the oxidation of farnesal. These findings establish ALDH as a critical enzymatic target for disrupting endogenous hormone biosynthesis in slugs and support the development of novel, eco-friendly molluscicides targeting the sesquiterpenoid pathway. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
15 pages, 37042 KB  
Article
Ecotoxicological Impacts of Microplastics and Cadmium Pollution on Wheat Seedlings
by Shuailing Yang, Steven Xu, Tianci Guo, Zhangdong Wei, Xingchen Fan, Shuyu Liang and Lin Wang
Nanomaterials 2026, 16(2), 90; https://doi.org/10.3390/nano16020090 - 9 Jan 2026
Abstract
As plastic and heavy metal pollution continue to escalate, the co-occurrence of microplastics and heavy metals in the environment poses significant threats to ecosystems and human health. This study was designed to explore the combined effects of polyethylene microplastics (PE-MPs) and cadmium (Cd) [...] Read more.
As plastic and heavy metal pollution continue to escalate, the co-occurrence of microplastics and heavy metals in the environment poses significant threats to ecosystems and human health. This study was designed to explore the combined effects of polyethylene microplastics (PE-MPs) and cadmium (Cd) pollution on wheat seedlings, focusing on antioxidant enzyme activity and Cd bioaccumulation. At low concentrations of PE (1mg·L1), peroxidase (POD) activity in wheat shoots slightly increased without significance, while at higher concentrations (50mg·L1 and 100mg·L1) of PE, POD activity was significantly inhibited compared to 0mg·L1 PE treatment. At Cd exposure activity, with POD activity in the shoots increasing by 73.7% at 50μmol·L1Cd2+ compared to 0μmol·L1 Cd treatment. When wheat seedlings were exposed to a combination of 50mg·L1 PE and Cd at different concentrations Cd, significant differences in POD activity were observed in the shoots compared to the control group, showing an upward trend with increasing Cd concentration. However, the addition of PE suspension generally reduced POD activity in wheat shoots compared to Cd treatment alone. Specifically, the presence of 50mg·L1 PE did not significantly alter POD activity in the wheat shoots (p>0.05). Furthermore, exposure to different concentrations of Cd resulted in a general increase in POD activity of roots, with significant differences observed at 5μmol·L1 and 25μmol·L1 Cd (p<0.05). Regarding Cd bioaccumulation, at Cd low concentrations (1μmol·L1 and 5μmol·L1), PE significantly promoted Cd accumulation in the shoots. However, at high Cd concentrations (50μmol·L1), PE microplastics reduced Cd accumulation in the shoots but promoted its accumulation in the roots.These results suggest that PE microplastics influence the bioavailability of Cd, mitigating the toxic effects of high Cd concentrations. This paper scientifically elucidates the ecotoxicological effects of co-contamination for microplastics and heavy metals, also their potential impacts on agricultural production are discussed. Full article
(This article belongs to the Special Issue Progress of Emerging Nanomaterials in Ecotoxicity and Biotoxicity)
28 pages, 8942 KB  
Article
Exploration and Preliminary Investigation of Wiled Tinospora crispa: A Medicinal Plant with Promising Anti-Inflammatory and Antioxidant Properties
by Salma Saddeek
Curr. Issues Mol. Biol. 2026, 48(1), 70; https://doi.org/10.3390/cimb48010070 - 9 Jan 2026
Abstract
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in [...] Read more.
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in chemotype, bioactivity, and safety, and how this might support or refine traditional use. Study Objectives: This study aimed to compare wild and cultivated ecotypes of T. crispa from the Nile Delta (Egypt) in terms of quantitative and qualitative phytochemical profiles; selected in vitro biological activities (especially antioxidant and cytotoxic actions); genetic markers potentially associated with metabolic variation; and short-term oral safety in an animal model. Core Methodology: Standardized extraction of plant material from wild and cultivated ecotypes. Determination of total phenolics, total flavonoids, and major phytochemical classes (alkaloids, tannins, terpenoids). Metabolomic characterization using UHPLC-ESI-QTOF-MS, supported by NMR, to confirm key compounds such as berberine, palmatine, chlorogenic acid, rutin, and borapetoside C. In vitro bioassays including: Antioxidant activity (e.g., radical-scavenging assay with EC50 determination). Cytotoxicity against human cancer cell lines, with emphasis on HepG2 hepatoma cells and calculation of IC50 values. Targeted genetic analysis to detect single-nucleotide polymorphisms (SNPs) in the gen1 locus that differentiate ecotypes. A 14-day oral toxicity study in rats, assessing liver and kidney function markers and performing histopathology of liver and kidney tissues. Principal Results: The wild ecotype showed a 43–65% increase in total flavonoid and polyphenol content compared with the cultivated ecotype, as well as substantially higher levels of key alkaloids, particularly berberine (around 12.5 ± 0.8 mg/g), along with elevated chlorogenic acid and borapetoside C. UHPLC-MS and NMR analyses confirmed the identity of the main bioactive constituents and defined a distinct chemical fingerprint for the wild chemotype. Bioassays demonstrated stronger antioxidant activity of the wild extract than the cultivated one and selective cytotoxicity of the wild extract against HepG2 cells (IC50 ≈ 85 µg/mL), being clearly more potent than extracts from cultivated plants. Genetic profiling detected a C → T SNP within the gen1 region that differentiates the wild ecotype and may be linked to altered biosynthetic regulation. The 14-day oral toxicity study (up to 600 mg/kg) revealed no evidence of hepatic or renal toxicity, with biochemical markers remaining within physiological limits and normal liver and kidney histology. Conclusions and Future Perspectives: The wild Nile-Delta ecotype of T. crispa appears to be a stress-adapted chemotype characterized by enriched levels of multiple bioactive metabolites, superior in vitro bioactivity, and an encouraging preliminary safety margin. These findings support further evaluation of wild T. crispa as a candidate source for standardized botanical preparations targeting oxidative stress-related and hepatic pathologies, while emphasizing the need for: More comprehensive in vivo efficacy studies. Cultivation strategies that deliberately maintain or mimic beneficial stress conditions to preserve phytochemical richness. Broader geographical and genetic sampling to assess how generalizable the present chemotypic and bioactivity patterns are across the species. Full article
(This article belongs to the Special Issue Advances in Phytochemicals: Biological Activities and Applications)
15 pages, 854 KB  
Article
Longitudinal Trends and Analytical Consistency of Folate and Vitamin B12 Biomarkers: Two Decades of Population-Based Data and Diagnostic Implications
by Kristina Sejersen and Anders O. Larsson
Biomedicines 2026, 14(1), 140; https://doi.org/10.3390/biomedicines14010140 - 9 Jan 2026
Abstract
Background/Objectives: Vitamin B12 (cobalamin) and folate (vitamin B9) are essential cofactors in one-carbon metabolism required for DNA synthesis, methylation, and genomic stability. Deficiencies in these nutrients can cause megaloblastic anemia, neurological dysfunction, and hyperhomocysteinemia, linking micronutrient imbalance to cardiovascular [...] Read more.
Background/Objectives: Vitamin B12 (cobalamin) and folate (vitamin B9) are essential cofactors in one-carbon metabolism required for DNA synthesis, methylation, and genomic stability. Deficiencies in these nutrients can cause megaloblastic anemia, neurological dysfunction, and hyperhomocysteinemia, linking micronutrient imbalance to cardiovascular and neurocognitive outcomes. Population-based surveillance of these biomarkers provides insight into nutritional trends and supports analytical standardization. Methods: This retrospective study included all routine plasma (P) vitamin B12 and folate measurements performed at Uppsala University Hospital from 2005 to 2024 (n = 647,302 and 578,509, respectively). Data were extracted from the laboratory information system and summarized using annual medians, percentile distributions, and coefficients of variation (CV). Linear regression was used to validate the method comparison and assess the impact of the 2021 transition from the Abbott Architect to the Roche cobas platform. Descriptive statistics summarized the temporal and seasonal patterns of P-vitamin B12 and P-folate. Results: Median P-vitamin B12 concentrations remained stable (340–370 pmol/L; median CV = 4.6%), while P-folate increased from 10.5 to 15.5 nmol/L (median CV = 12.9%) from 2005 to 2024. Low P-folate (<7 nmol/L) was observed in 7.1% of measurements and low or borderline P-vitamin B12 (<250 pmol/L) in 22.6%. Females exhibited slightly higher concentrations of both analytes. Although no clear seasonal pattern was observed, small biological effects cannot be excluded. Sample volumes decreased during the summer. The transition to Roche assays introduced measurable methodological shifts, particularly for P-folate. Conclusions: Levels of P-vitamin B12 remained stable over two decades, while P-folate status increased modestly. This reflects both dietary influences and assay-related differences following the 2021 platform transition. Continuous surveillance of biomarker medians provides a sensitive tool for detecting analytical drift and for monitoring long-term nutritional trends in clinical populations. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

20 pages, 907 KB  
Article
Sustainable Valorization of Framiré Sawdust: Extraction of Secondary Metabolites and Conversion of Residues into Fuel Briquettes
by Maimou Nganko, Narcis Barsan, Paul Magloire Ekoun Koffi, Andrei Zaharia, Kouassi Esaie Kouadio Appiah, Echua Elisabeth Jasmine Bilé, Emilian Mosnegutu, Valex Nzouengo Djeukui, Florin-Marian Nedeff, Prosper Gbaha, Diana Mirila, Kouassi Benjamin Yao, Claudia Tomozei and Valentin Nedeff
Appl. Sci. 2026, 16(2), 716; https://doi.org/10.3390/app16020716 - 9 Jan 2026
Abstract
Faced with the depletion of fossil resources and the need to promote a circular economy, lignocellulosic biomass represents a solution for energy transition and bioeconomy. However, wood sawdust, which contains bioactive compounds (secondary metabolites), is often burned in the open by many sawmills. [...] Read more.
Faced with the depletion of fossil resources and the need to promote a circular economy, lignocellulosic biomass represents a solution for energy transition and bioeconomy. However, wood sawdust, which contains bioactive compounds (secondary metabolites), is often burned in the open by many sawmills. This study aims to valorize Framiré wood sawdust by extracting its secondary metabolites through maceration and infusion, then converting the depleted residue into combustible briquettes. The yellowness index of the extracts ranged from 73.490 ± 0.021 (maceration) to 81.720 ± 0.014 (infusion). The total phenolic content varied from 0.097 ± 0.001 to 0.63 ± 0.049 gGAE/100 g dry matter for maceration and infusion, respectively. The extraction of bioactive compounds did not significantly affect the energy or mechanical properties of the fuels. Their higher heating value ranged from 26,153 ± 92 to 26,201 ± 90 kJ/kg for fuels with and without secondary metabolites, respectively. The Shock Resistance Index ranged from 139.33 ± 7.51% (without metabolites) to 153.00 ± 5.20% (with metabolites). A significant difference was observed in the specific consumption of the fuels, decreasing from 1.400 ± 0.100 to 0.861 ± 0.001 kg/L for fuels without and with secondary metabolites, respectively. These results open promising prospects, particularly for the use of Framiré extracts to develop flame-retardant products for wood and its derivatives. Full article
17 pages, 391 KB  
Article
Exploring the Relationship Between Leadership Styles and Decent Work in Higher Education
by Maria Helena da Silva Matos, Nuno Rebelo dos Santos, Leonor Pais and Bruno de Sousa
Occup. Health 2026, 1(1), 5; https://doi.org/10.3390/occuphealth1010005 - 9 Jan 2026
Abstract
This study examines how Empowering (EL), Responsible (RL), and Ethical Leadership (EtL) relate to employees’ perceptions of Decent Work (DW) in a Portuguese public university, using the Job Demands–Resources (JD-R) framework. DW, defined by dignity, equity, and security, was assessed across seven dimensions. [...] Read more.
This study examines how Empowering (EL), Responsible (RL), and Ethical Leadership (EtL) relate to employees’ perceptions of Decent Work (DW) in a Portuguese public university, using the Job Demands–Resources (JD-R) framework. DW, defined by dignity, equity, and security, was assessed across seven dimensions. A total of 226 faculty, researchers, and staff completed validated measures of EL, RL, EtL, and DW. Results showed moderate to strong positive correlations between leadership styles and DW, especially for Fundamental Principles and Values at Work (DW1), Fulfilling and Productive Work (DW3), and Health and Safety (DW7). EL displayed the strongest associations with fairness, inclusion, and psychological safety, while RL and EtL were more closely linked to accountability and ethical climate. Analyses by role and education revealed systematic asymmetries, with leaders and highly educated employees reporting more favorable experiences. High intercorrelations among leadership styles (r ≈ 0.87–0.90) suggest an integrated values-based leadership pattern. In contrast, weaker associations with structural dimensions such as workload and social protection highlight the limits of leadership influence on DW. These findings advance research on DW in higher education and underscore leadership development as a lever for institutional justice and well-being. Full article
Show Figures

Figure 1

Back to TopTop