Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Kiss1 receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1455 KiB  
Article
A Genome-Wide Association Study of Anti-Müllerian Hormone (AMH) Levels in Samoan Women
by Zeynep Erdogan-Yildirim, Jenna C. Carlson, Mohanraj Krishnan, Jerry Z. Zhang, Geralyn Lambert-Messerlian, Take Naseri, Satupaitea Viali, Nicola L. Hawley, Stephen T. McGarvey, Daniel E. Weeks and Ryan L. Minster
Genes 2025, 16(7), 793; https://doi.org/10.3390/genes16070793 - 30 Jun 2025
Viewed by 457
Abstract
Background/Objectives: The anti-Müllerian hormone (AMH) is a key biomarker of the ovarian reserve, correlating with ovarian follicle count, fertility outcomes, and menopause timing. Understanding its genetic determinants has broad implications for female reproductive health. However, prior genome-wide association studies (GWASs) have focused [...] Read more.
Background/Objectives: The anti-Müllerian hormone (AMH) is a key biomarker of the ovarian reserve, correlating with ovarian follicle count, fertility outcomes, and menopause timing. Understanding its genetic determinants has broad implications for female reproductive health. However, prior genome-wide association studies (GWASs) have focused exclusively on women of European ancestry, limiting insights into diverse populations. Methods: We conducted a GWAS to identify genetic loci associated with circulating AMH levels in a sample of 1185 Samoan women from two independently recruited samples. Using a Cox mixed-effects model we accounted for AMH levels below detectable limits and meta-analysed the summary statistics using a fixed-effect model. To prioritize variants and genes, we used FUMA and performed colocalization and transcriptome-wide association analysis (TWAS). We also assessed whether any previously reported loci were replicated in our GWAS. Results: We identified eleven genome-wide suggestive loci, with the strongest signal at ARID3A (19-946163-G-C; p = 2.32 × 10−7) and replicated rs10093345 near EIF4EBP1. The gene-based testing revealed ARID3A and R3HDM4 as significant genes. Integrating GWAS results with expression quantitative trait loci via TWAS, we detected seven transcriptome-wide significant genes. The lead variant in ARID3A is in high linkage disequilibrium (r2 = 0.79) with the known age-at-menopause variant 19-950694-G-A. Nearby KISS1R is a biologically plausible candidate gene that encodes the kisspeptin receptor, a regulator of ovarian follicle development linked to AMH levels. Conclusions: This study expands our understandings of AMH genetics by focusing on Samoan women. While these findings may be particularly relevant to Pacific Islanders, they hold broader implications for reproductive phenotypes such as the ovarian reserve, menopause timing, and polycystic ovary syndrome. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 3324 KiB  
Article
Kisspeptin Administration and mRNA Expression in Adult Syrian Hamsters
by Megan A. L. Hall, Peyton L. Reeder, Johnathan M. Borland and Robert L. Meisel
Cells 2025, 14(13), 992; https://doi.org/10.3390/cells14130992 - 29 Jun 2025
Viewed by 397
Abstract
Kisspeptin (Kiss1) and kisspeptin 1 receptor (Kiss1R) are vital in regulating various functions across many species, primarily those relating to reproduction. The kisspeptin system has recently attracted clinical interest as a potential therapeutic treatment for patients with hypoactive sexual [...] Read more.
Kisspeptin (Kiss1) and kisspeptin 1 receptor (Kiss1R) are vital in regulating various functions across many species, primarily those relating to reproduction. The kisspeptin system has recently attracted clinical interest as a potential therapeutic treatment for patients with hypoactive sexual desire disorder. This study maps the distribution of Kiss1 and Kiss1R mRNA in the Syrian hamster forebrain using dual-labeled RNAscope. In our study, the distributions of kisspeptin and its receptor were mapped across adult males and females on day 1 or day 2 of their estrous cycle. Conditioned place preference was used to observe the potential effect of kisspeptin on sexual reward in female hamsters. The expression of kisspeptin was greater in females than males, with the estrous cycle having no effect on expression. A comparison of these findings to those in other species revealed that the expression in Syrian hamsters was similar to that reported for other species, demonstrating the conservation of expression. Kisspeptin did not influence sexual reward in females, nor did it affect measures of their primary sexual behavior. These findings provide additional insights into the expression and function of kisspeptin across novel species and add to ongoing research in understanding how kisspeptin may influence sexual desire in animals, including humans. Full article
Show Figures

Figure 1

19 pages, 2859 KiB  
Review
Kisspeptin Receptor Agonists and Antagonists: Strategies for Discovery and Implications for Human Health and Disease
by Xing Chen, Shu Yang, Natalie D. Shaw and Menghang Xia
Int. J. Mol. Sci. 2025, 26(10), 4890; https://doi.org/10.3390/ijms26104890 - 20 May 2025
Viewed by 2215
Abstract
The kisspeptin/kisspeptin receptor (KISS1/KISS1R) system has emerged as a vital regulator of various physiological processes, including cancer progression, metabolic function, and reproduction. KISS1R, a member of the G protein-coupled receptor family, is crucial for regulating the hypothalamic/pituitary/gonadal axis. [...] Read more.
The kisspeptin/kisspeptin receptor (KISS1/KISS1R) system has emerged as a vital regulator of various physiological processes, including cancer progression, metabolic function, and reproduction. KISS1R, a member of the G protein-coupled receptor family, is crucial for regulating the hypothalamic/pituitary/gonadal axis. A growing number of KISS1R agonists are currently being investigated in clinical trials, whereas the number of antagonists remains limited. Most existing ligands are synthetic peptides, with only a few small-molecule compounds, such as musk ambrette, having been identified. In this article, we provide an overview of the KISS1/KISS1R system and its involvement in diseases such as reproductive disorders, cancer, diabetes, and cardiovascular disease. We also highlight the various technologies used to identify KISS1R ligands, including radioligand binding assays, calcium flux assays, IP1 formation assays, ERK phosphorylation assays, qRT-PCR, and AI-based virtual screening. Furthermore, we discuss the latest advances in identifying KISS1R agonists and antagonists, highlighting ongoing challenges and future directions in research. These insights lay the groundwork for future research aimed at leveraging this system for developing innovative therapeutic strategies across a range of medical conditions. Full article
(This article belongs to the Special Issue Current Research on G Protein-Coupled Receptors)
Show Figures

Figure 1

21 pages, 701 KiB  
Systematic Review
Systematic Review of the Antitumor Activities and Mechanisms of Scorpion Venom on Human Breast Cancer Cells Lines (In Vitro Study)
by Na-Yoen Kwon, Hyun-Kyung Sung and Jang-Kyung Park
J. Clin. Med. 2025, 14(9), 3181; https://doi.org/10.3390/jcm14093181 - 4 May 2025
Viewed by 909
Abstract
Background/Objectives: Breast cancer remains the most prevalent malignancy among women worldwide. Innovative therapies are essential to address its diverse subtypes and treatment resistance. Scorpion venom and its bioactive proteins have gained attention as potential anticancer agents owing to their multitargeted cellular effects. This [...] Read more.
Background/Objectives: Breast cancer remains the most prevalent malignancy among women worldwide. Innovative therapies are essential to address its diverse subtypes and treatment resistance. Scorpion venom and its bioactive proteins have gained attention as potential anticancer agents owing to their multitargeted cellular effects. This review systematically evaluates their anticancer properties and mechanisms in breast cancer, highlighting therapeutic potential. Methods: A systematic search was conducted in five databases (PubMed, Science Direct, EMBASE, OVID, and KISS) up to September 2024. Only in vitro studies using breast cancer cell lines and investigating scorpion venom or its bioactive proteins were included. Extracted data covered study characteristics, intervention types, control groups, dose range, duration, and key outcomes. Results: In total, 19 studies met the eligibility criteria. Crude scorpion venom showed broad cytotoxicity against hormone receptor-positive, triple-negative, and HER2-positive breast cancer subtypes. The primary mechanisms included apoptosis induction, DNA fragmentation, oxidative stress modulation, and cell cycle regulation. Bioactive proteins, such as chlorotoxin (CTX) and Neopladine 1/2, exhibited selective anticancer effects by targeting signaling pathways, inhibiting migration and invasion, and promoting apoptosis. Conclusion: These findings support scorpion venom’s potential as a multitargeted anticancer agent. The complementary actions of crude venom and its proteins highlight their promise for combination therapies. Further research is needed to clarify their synergistic interactions and optimize preclinical and clinical applications. Full article
(This article belongs to the Section Oncology)
Show Figures

Graphical abstract

22 pages, 5898 KiB  
Article
Adult Neurogenesis Is Regulated by the Endocannabinoid and Kisspeptin Systems
by Marianna Marino, Paola Di Pietro, Raffaella D’Auria, Martina Lombardi, Grazia Maria Giovanna Pastorino, Jacopo Troisi, Francesca Felicia Operto, Albino Carrizzo, Carmine Vecchione, Andrea Viggiano, Rosaria Meccariello and Antonietta Santoro
Int. J. Mol. Sci. 2025, 26(9), 3977; https://doi.org/10.3390/ijms26093977 - 23 Apr 2025
Viewed by 2948
Abstract
Neurogenesis is considered the most robust form of plasticity in the adult brain. To better decipher this process, we evaluated the potential crosstalk of Kisspeptin and Endocannabinoid Systems (KPS and ECS, respectively) on hippocampal neurogenesis. Male adolescent rats were exposed to kisspeptin-10 (KP10) [...] Read more.
Neurogenesis is considered the most robust form of plasticity in the adult brain. To better decipher this process, we evaluated the potential crosstalk of Kisspeptin and Endocannabinoid Systems (KPS and ECS, respectively) on hippocampal neurogenesis. Male adolescent rats were exposed to kisspeptin-10 (KP10) and the endocannabinoid anandamide (AEA) administered alone or in combination with the type 1 cannabinoid receptor (CB1R) antagonist SR141716A. The expression of Kiss1 and Kisspeptin receptor (Kiss1R) has been characterized for the first time in rat hippocampus together with the expression of the CB1R and the Transient Receptor Potential Vanilloid 1 ion channel receptor (TRPV1). Results show that both systems inhibit neurogenesis by reducing the extracellular signal-regulated kinase (ERK) signaling. Despite little differences in the expression of Kiss1R and CB1R, TRPV1 is enhanced by both KP10 and AEA treatments, suggesting TRPV1 as a common thread. KP10 administration reduces CB1R expression in the dentate gyrus, while AEA does not. KPS, unlike ECS, promotes the expression of estrogen receptor α (ER-α) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), also upregulating sirtuin 1 (SIRT1), brain-derived-neurotrophic factor (BDNF), and c-Jun. These findings suggest that the interaction between ECS and KPS could be involved in the fine-tuning of neurogenesis, highlighting a novel role for KPS. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

18 pages, 16026 KiB  
Article
Hypothyroidism Alters Uterine Kisspeptin System and Activity Modulators in Cyclic Rats
by Thayná Queiroz Menezes da Silva, Erikles Macêdo Barbosa, Luciano Cardoso Santos, Luciana Santos de Oliveira, Maria Clara da Silva Galrão Cunha, Isabella Oliveira de Macedo, Brenda Geovana Campos Martins, Cibele Luz Oliveira, Natalia Panhoca Rodrigues, Roberta Araújo-Lopes, Raphael Escorsim Szawka and Juneo Freitas Silva
Int. J. Mol. Sci. 2025, 26(2), 543; https://doi.org/10.3390/ijms26020543 - 10 Jan 2025
Viewed by 1015
Abstract
Hypothyroidism causes ovarian dysfunction and infertility in women and animals and impairs the hypothalamic expression of kisspeptin (Kp). However, kisspeptin is also expressed in the genital system, and the lack of the Kp receptor (Kiss1r) in the uterus is linked to reduced implantation [...] Read more.
Hypothyroidism causes ovarian dysfunction and infertility in women and animals and impairs the hypothalamic expression of kisspeptin (Kp). However, kisspeptin is also expressed in the genital system, and the lack of the Kp receptor (Kiss1r) in the uterus is linked to reduced implantation rates. This study investigated the impact of hypothyroidism on the uterine expression of Kp and Kiss1r in female rats throughout the estrous cycle and the associated changes in uterine activity modulators. Hypothyroidism was induced through daily administration of propylthiouracil (PTU) over a period of 14 days. Plasma levels of LH, E2, and P4, cyclicity, body and uterine weight, uterine histomorphometry, and the gene and/or protein expression of Kiss1, Kiss1r, estrogen receptor α (ERα), progesterone receptor (PR), and thyroid hormone receptor α (TRα) were assessed. Additionally, proliferative activity (CDC-47) and the gene expression of uterine receptivity mediators (SMO, WNT4, BMP2, HAND2, MUC1, and LIF) were evaluated. Hypothyroidism prolonged the diestrus and increased progesterone levels during this phase, while decreasing luteinizing hormone and estradiol on proestrus. In the uterus, hypothyroidism reduced Kp immunostaining on diestrus and KISS1R mRNA levels on proestrus. These changes were accompanied by reduced endometrial glands, reduced uterine proliferative activity, and reduced ERα gene and protein expression. Additionally, hypothyroidism led to reduced uterine gene expression of LIF, BMP2, WNT4, and HAND2. On the other hand, thyroid hypofunction increased uterine PR and TRα immunostaining, while it reduced PGR gene expression on diestrus. These findings demonstrate that hypothyroidism reduces the expression of Kiss1/Kiss1r system in the uterus, which is associated with disrupted uterine estrogen and progesterone signaling and reduced expression of uterine receptivity mediators across the rat estrous cycle. Full article
Show Figures

Figure 1

20 pages, 3654 KiB  
Review
Potential Candidate Genes Associated with Litter Size in Goats: A Review
by Wenting Chen, Ying Han, Yinghui Chen, Xiaotong Liu, Huili Liang, Changfa Wang and Muhammad Zahoor Khan
Animals 2025, 15(1), 82; https://doi.org/10.3390/ani15010082 - 2 Jan 2025
Cited by 6 | Viewed by 1485
Abstract
This review examines genetic markers associated with litter size in goats, a key reproductive trait impacting productivity in small ruminant farming. Goats play a vital socioeconomic role in both low- and high-income regions; however, their productivity remains limited due to low reproductive efficiency. [...] Read more.
This review examines genetic markers associated with litter size in goats, a key reproductive trait impacting productivity in small ruminant farming. Goats play a vital socioeconomic role in both low- and high-income regions; however, their productivity remains limited due to low reproductive efficiency. Litter size, influenced by multiple genes and environmental factors, directly affects farm profitability and sustainability by increasing the output per breeding cycle. Recent advancements in genetic research have identified key genes and pathways associated with reproductive traits, including gonadotropin-releasing hormone (GnRH), inhibin (INHAA), Kit ligand (KITLG), protein phosphatase 3 catalytic subunit alpha (PPP3CA), prolactin receptor (PRLR), POU domain class 1 transcription factor 1 (POU1F1), anti-Müllerian hormone (AMH), bone morphogenetic proteins (BMP), growth differentiation factor 9 (GDF9), and KISS1 and suppressor of mothers against decapentaplegic (SMAD) family genes, among others. These genes regulate crucial physiological processes such as folliculogenesis, hormone synthesis, and ovulation. Genome-wide association studies (GWASs) and transcriptomic analyses have pinpointed specific genes linked to increased litter size, highlighting their potential in selective breeding programs. By incorporating genomic data, breeding strategies can achieve higher selection accuracy, accelerate genetic gains, and improve reproductive efficiency. This review emphasizes the importance of genetic markers in optimizing litter size and promoting sustainable productivity in goat farming. Full article
(This article belongs to the Special Issue Genetics and Genomics of Small Ruminants Prolificacy)
Show Figures

Figure 1

12 pages, 650 KiB  
Review
Kisspeptin and Endometriosis—Is There a Link?
by Blazej Meczekalski, Agata Nowicka, Stefania Bochynska, Aleksandra Szczesnowicz, Gregory Bala and Anna Szeliga
J. Clin. Med. 2024, 13(24), 7683; https://doi.org/10.3390/jcm13247683 - 17 Dec 2024
Cited by 1 | Viewed by 1272
Abstract
This article presents a narrative review that explores the potential link between kisspeptin—a key regulator of the hypothalamic-pituitary-gonadal axis—and the pathogenesis of endometriosis. Kisspeptin plays a significant role in regulating reproductive functions by modulating the release of gonadotropin-releasing hormone (GnRH), which in turn [...] Read more.
This article presents a narrative review that explores the potential link between kisspeptin—a key regulator of the hypothalamic-pituitary-gonadal axis—and the pathogenesis of endometriosis. Kisspeptin plays a significant role in regulating reproductive functions by modulating the release of gonadotropin-releasing hormone (GnRH), which in turn stimulates the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Recent studies suggest that kisspeptin may also impact peripheral reproductive tissues and influence inflammatory processes involved in the development of endometriosis. Altered kisspeptin signaling has been associated with the abnormal hormonal environment observed in endometriosis, which affects menstrual cycles and ovarian function. Research indicates that women with endometriosis exhibit altered levels of kisspeptin and its receptor, KISS1R, in both eutopic and ectopic endometrial tissues, suggesting a role in disease progression, particularly in tissue invasion and lesion formation. Kisspeptin’s role in regulating matrix metalloproteinases (MMPs), enzymes essential for tissue remodeling, further supports its potential contribution to the pathophysiology of endometriosis. Moreover, kisspeptin-based therapeutic strategies are currently under investigation, with the aim of providing targeted treatments that reduce the side effects commonly associated with existing therapies. Despite promising findings, further research is needed to fully understand the mechanisms by which kisspeptin influences endometriosis. Full article
(This article belongs to the Special Issue Recent Developments in Gynecological Endocrinology)
Show Figures

Figure 1

19 pages, 2933 KiB  
Article
Expression of GnRH, Kisspeptin, and Their Specific Receptors in the Ovary and Uterus in Deslorelin-Treated Late-Prepubertal Bitches
by Muhammet Ali Karadağ, Aykut Gram, Sabine Schäfer-Somi, Selim Aslan and Duygu Kaya
Vet. Sci. 2024, 11(12), 591; https://doi.org/10.3390/vetsci11120591 - 25 Nov 2024
Cited by 1 | Viewed by 1506
Abstract
In this study, the expression and localization of gonadotropin-releasing hormone (GnRH1) and kisspeptin (KISS1) and their specific receptors in canine ovarian and uterine tissues were investigated after the application of deslorelin acetate (Suprelorin®, 4.7 mg, Virbac, France) in the late prepubertal [...] Read more.
In this study, the expression and localization of gonadotropin-releasing hormone (GnRH1) and kisspeptin (KISS1) and their specific receptors in canine ovarian and uterine tissues were investigated after the application of deslorelin acetate (Suprelorin®, 4.7 mg, Virbac, France) in the late prepubertal period. We hypothesized that prolonged treatment of prepubertal dogs with deslorelin would alter the expression of GnRH and kisspeptin genes in the uterus and ovaries. Ovarian and uterine samples of 25 dogs with an average age of 7.8 ± 0.2 months and from mixed breeds were used. Following implant insertion, dogs entered estrus (EST; n = 6); dogs without estrus (N-EST; n = 10) comprised the experimental groups. Nine dogs with placebo implants served as a control (CONT). Ovarian and uterine tissues were investigated for expression of GnRH1, GnRHR, KISS1, and KISS1R/GPR54 mRNA and protein by using IHC and RT-qPCR. In the uterus, expression of GnRH1 significantly decreased in response to deslorelin treatment in the N-EST, compared with the control group. Compared with CONT, KISS1R expression in ovarian samples was significantly lower in the EST group. Uterine protein expression of GnRH1 appeared weaker in N-EST than in CONT. While GnRH1-system members and KISS1 protein were localized in the follicles at various stages and stroma, no or only weak signals were detected for KISS1R in the ovarian samples. Deslorelin-mediated induction of puberty by changing the expression of some of the GnRH and KISS1-system members seems to have an effect on ovarian and uterine functionality. Deslorelin implants can, therefore, not be considered a valuable alternative to induce fertile estrus in late-prepubertal bitches. However, further studies with a larger number of animals are needed to clarify the effect of deslorelin-mediated induction of puberty. Full article
Show Figures

Figure 1

19 pages, 3059 KiB  
Article
Kisspeptin Alleviates Human Hepatic Fibrogenesis by Inhibiting TGFβ Signaling in Hepatic Stellate Cells
by Kavita Prasad, Dipankar Bhattacharya, Shams Gamal Eldin Shams, Kimberly Izarraras, Tia Hart, Brent Mayfield, Maryjka B. Blaszczyk, Zhongren Zhou, Utpal B. Pajvani, Scott L. Friedman and Moshmi Bhattacharya
Cells 2024, 13(19), 1651; https://doi.org/10.3390/cells13191651 - 4 Oct 2024
Viewed by 2181
Abstract
The peptide hormone kisspeptin attenuates liver steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and fibrosis in mouse models by signaling via the kisspeptin 1 receptor (KISS1R). However, whether kisspeptin impacts fibrogenesis in the human liver is not known. We investigated the impact of a potent [...] Read more.
The peptide hormone kisspeptin attenuates liver steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and fibrosis in mouse models by signaling via the kisspeptin 1 receptor (KISS1R). However, whether kisspeptin impacts fibrogenesis in the human liver is not known. We investigated the impact of a potent kisspeptin analog (KPA) on fibrogenesis using human precision-cut liver slices (hPCLS) from fibrotic livers from male patients, in human hepatic stellate cells (HSCs), LX-2, and in primary mouse HSCs. In hPCLS, 48 h and 72 h of KPA (3 nM, 100 nM) treatment decreased collagen secretion and lowered the expression of fibrogenic and inflammatory markers. Immunohistochemical studies revealed that KISS1R is expressed and localized to HSCs in MASH/fibrotic livers. In HSCs, KPA treatment reduced transforming growth factor b (TGFβ)-the induced expression of fibrogenic and inflammatory markers, in addition to decreasing TGFβ-induced collagen secretion, cell migration, proliferation, and colony formation. Mechanistically, KISS1R signaling downregulated TGFβ signaling by decreasing SMAD2/3 phosphorylation via the activation of protein phosphatases, PP2A, which dephosphorylates SMAD 2/3. This study revealed for the first time that kisspeptin reverses human hepatic fibrogenesis, thus identifying it as a new therapeutic target to treat hepatic fibrosis. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

16 pages, 3376 KiB  
Article
Comprehensive Analysis of Kisspeptin Signaling: Effects on Cellular Dynamics in Cervical Cancer
by Deisy Yurley Rodríguez-Sarmiento, Paola Rondón-Villarreal, Pedro Henrique Scarpelli-Pereira and Michel Bouvier
Biomolecules 2024, 14(8), 923; https://doi.org/10.3390/biom14080923 - 29 Jul 2024
Viewed by 1836
Abstract
Kisspeptin, a key neuropeptide derived from the KISS1R gene, is renowned for its critical role in regulating the hypothalamic–pituitary–gonadal axis and reproductive hormone secretion. Beyond its primary function in reproductive biology, emerging research has illuminated its influence in various cancers, mediating significant effects [...] Read more.
Kisspeptin, a key neuropeptide derived from the KISS1R gene, is renowned for its critical role in regulating the hypothalamic–pituitary–gonadal axis and reproductive hormone secretion. Beyond its primary function in reproductive biology, emerging research has illuminated its influence in various cancers, mediating significant effects through its interaction with the G protein-coupled receptor, kisspeptin receptor. This interaction has been implicated in modulating cellular processes such as proliferation and metastasis, making it a potential target for therapeutic intervention. Our study initially screened ten kisspeptin-10 analogs through cytotoxic effects of kisspeptin-10 (KP10) and its analogs in several cancer types, including cervical, prostate, breast, and gastric cancers, with a particular focus on cervical cancer, where the most profound effects were observed. Further exploration using kinase array assays revealed that these analogs specifically alter key kinases involved in cancer progression. Migration assays demonstrated a substantial decrease in cell motility, and Bioluminescence Resonance Energy Transfer assays confirmed these analogs’ strong interactions with the kisspeptin receptor. Overall, our results indicate that these KP10 analogs not only hinder cervical cancer cell proliferation but also curtail migration through targeted modulation of kinase signaling, suggesting their potential as therapeutic agents in managing cervical cancer progression. This comprehensive approach underscores the therapeutic promise of exploiting kisspeptin signaling in cancer treatment strategies. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

12 pages, 2699 KiB  
Article
Sex Differences in the Brain Transcriptomes of Adult Blue Gourami Fish (Trichogaster trichopterus)
by Gad Degani and Ari Meerson
Fishes 2024, 9(7), 287; https://doi.org/10.3390/fishes9070287 - 18 Jul 2024
Cited by 1 | Viewed by 1372
Abstract
Blue gourami (gourami, Trichogaster trichopterus) is a model for labyrinth fishes (Anabantoidei) adapted to partial air breathing. Its reproductive endocrinology has been extensively studied, and transcriptomic sex differences in the gonads were described. Nevertheless, sex differences in gene expression in non-gonadal tissues [...] Read more.
Blue gourami (gourami, Trichogaster trichopterus) is a model for labyrinth fishes (Anabantoidei) adapted to partial air breathing. Its reproductive endocrinology has been extensively studied, and transcriptomic sex differences in the gonads were described. Nevertheless, sex differences in gene expression in non-gonadal tissues ostensibly affected by the sex-specific hormonal balance, e.g., the brain, are unknown. To assess such differences, we used bulk RNA-seq to assemble and compare polyA+ transcriptomes between whole brains of four adult male and five adult female gourami, in addition to other tissues (three dorsal fin and five ovary samples) from the same female group. While all nine brain transcriptomes clustered together relative to the other tissues, they showed separation according to sex. A total of 3568 genes were differentially expressed between male and female brains; of these, 1962 and 1606 showed lower and higher expression in males, respectively. Male brains showed stronger down-regulation of specific genes, which included hormone receptors, e.g., pituitary adenylate cyclase-activating polypeptide receptor (pacap-r1). Among the genes with lower expression in male brains, multiple pathways essential to brain function were over-represented, including GABA, acetylcholine and glutamate receptor signaling, calcium and potassium transmembrane transport, and neurogenesis. In contrast, genes with higher expression in male brains showed no significant over-representation of brain-specific functions. To measure the mRNA levels of specific hormone receptors known from prior studies to regulate reproductive function and behavior in gourami and to validate RNA-seq results for these specific genes, we performed RT-qPCR for five receptors, pacap-r1, gonadotropin-releasing hormone 2 receptor (gnrh2r), kisspeptin receptor 1 (gpαr1/kiss1), insulin-like growth factor 1 receptor (igf1r), and membrane progesterone receptor 1 (mpr1), in the brain RNA sample groups. Of these, pacap-r1 showed a significant, three-fold down-regulation, while gpαr1/kiss1 showed a significant two-fold down-regulation in male vs. female gourami brains. Our results are novel in describing the suppression of brain function-related gene expression in male, as compared to female, gourami brains. Further research is needed to assess the behavioral significance of this effect and its prevalence in other vertebrate groups. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

14 pages, 3370 KiB  
Article
Characterization of the Ovarian Development and Associated Factors during the Breeding Migration of Coilia nasus in the Yangtze River
by Shuwei Wei, Zhong Hua, Yanping Yang, Fengjiao Ma, Wei Han, Wei Zhang, Congping Ying, Yanmin Deng and Kai Liu
Fishes 2024, 9(3), 90; https://doi.org/10.3390/fishes9030090 - 28 Feb 2024
Cited by 2 | Viewed by 2130
Abstract
Coilia nasus is a typical anadromous migratory fish found in the lower reaches of the Yangtze River. Every year, C. nasus clusters offshore and swims upstream along the Yangtze River into the tributaries and lakes in the middle and lower reaches of the [...] Read more.
Coilia nasus is a typical anadromous migratory fish found in the lower reaches of the Yangtze River. Every year, C. nasus clusters offshore and swims upstream along the Yangtze River into the tributaries and lakes in the middle and lower reaches of the Yangtze River to breed. In this study, female C. nasus were collected as study subjects from the Chongming section of Shanghai, the Taizhou section of Jiangsu, and the Anqing section of Anhui. Their ovaries were used to examine tissue sections and investigate gene expression, including the follicle-stimulating hormone receptor (fshr), the luteinizing hormone receptor (lhr), kisspeptin-1 (kiss1), and forkhead box l2 (foxl2), which are related to reproductive development, while the serum levels of estrogen (including estradiol, E2) and progestins (including 17α,20β-dihydroxy-4-pregenen-3-one, 17α,20β-DHP) were also analyzed. Our results showed that, first, the growth period of the oocytes was small in stage II of ovarian development, in which both E2 and 17α,20β-DHP levels and gene expression were low. Then, in stage III, the growth period of the oocytes became large, and the yolk granules and oil droplets began to appear. Simultaneously, E2 and the expression of kiss1 and foxl2 were significantly elevated. Finally, stage IV was the period of a large amount of accumulation of nutrients in the oocytes, and 17α,20β-DHP levels and the expression of fshr and lhr were significantly elevated. These results enrich the theoretical study of ovarian development in the natural population of C. nasus, supplementing the biological basis of C. nasus reproduction and scientifically supporting the study of C. nasus population ecology and resource conservation. Full article
Show Figures

Figure 1

14 pages, 588 KiB  
Article
Placental mRNA Expression of Neurokinin B Is Increased in PCOS Pregnancies with Female Offspring
by Georgios K. Markantes, Evangelia Panagodimou, Vasiliki Koika, Irene Mamali, Apostolos Kaponis, George Adonakis and Neoklis A. Georgopoulos
Biomedicines 2024, 12(2), 334; https://doi.org/10.3390/biomedicines12020334 - 1 Feb 2024
Viewed by 1852
Abstract
Current research suggests that polycystic ovary syndrome (PCOS) might originate in utero and implicates the placenta in its pathogenesis. Kisspeptin (KISS1) and neurokinin B (NKB) are produced by the placenta in high amounts, and they have been implicated in several pregnancy complications associated [...] Read more.
Current research suggests that polycystic ovary syndrome (PCOS) might originate in utero and implicates the placenta in its pathogenesis. Kisspeptin (KISS1) and neurokinin B (NKB) are produced by the placenta in high amounts, and they have been implicated in several pregnancy complications associated with placental dysfunction. However, their placental expression has not been studied in PCOS. We isolated mRNA after delivery from the placentae of 31 PCOS and 37 control women with term, uncomplicated, singleton pregnancies. The expression of KISS1, NKB, and neurokinin receptors 1, 2, and 3 was analyzed with real-time polymerase chain reaction, using β-actin as the reference gene. Maternal serum and umbilical cord levels of total testosterone, sex hormone-binding globulin (SHBG), free androgen index (FAI), androstenedione, dehydroepiandrosterone sulfate (DHEAS), Anti-Mullerian hormone (AMH), and estradiol were also assessed. NKB placental mRNA expression was higher in PCOS women versus controls in pregnancies with female offspring. NKB expression depended on fetal gender, being higher in pregnancies with male fetuses, regardless of PCOS. NKB was positively correlated with umbilical cord FAI and AMH, and KISS1 was positively correlated with cord testosterone and FAI; there was also a strong positive correlation between NKB and KISS1 expression. Women with PCOS had higher serum AMH and FAI and lower SHBG than controls. Our findings indicate that NKB might be involved in the PCOS-related placental dysfunction and warrant further investigation. Studies assessing the placental expression of NKB should take fetal gender into consideration. Full article
(This article belongs to the Special Issue Molecular Research on Polycystic Ovary Syndrome (PCOS) 2.0)
Show Figures

Figure 1

18 pages, 4963 KiB  
Article
The Expression of Kisspeptins and Matrix Metalloproteinases in Extragenital Endometriosis
by Tatiana Kleimenova, Victoria Polyakova, Natalia Linkova, Anna Drobintseva, Dmitriy Medvedev and Alexander Krasichkov
Biomedicines 2024, 12(1), 94; https://doi.org/10.3390/biomedicines12010094 - 1 Jan 2024
Cited by 6 | Viewed by 2317
Abstract
Endometriosis is characterized by a condition where endometrial tissue grows outside the uterine cavity. The mechanisms of endometrium growth during endometriosis might be similar to the development of a tumor. The kisspeptin (KISS1) gene was initially discovered as a suppressor of metastasis. Matrix [...] Read more.
Endometriosis is characterized by a condition where endometrial tissue grows outside the uterine cavity. The mechanisms of endometrium growth during endometriosis might be similar to the development of a tumor. The kisspeptin (KISS1) gene was initially discovered as a suppressor of metastasis. Matrix metalloproteinases (MMPs) and their inhibitors are described as factors in the early stages of endometriosis and tumor growth progression. We applied the quantitative polymerase chain reaction and the immunofluorescence method to investigate KISS1, its receptor (KISS1R), MMP-2, and MMP-9 in the eutopic and ectopic endometrium in women with and without endometriosis. We presume that the dysregulation of KISS1 and MMPs might contribute to endometriosis pathogenesis. Samples for the immunofluorescence study were collected from patients with a confirmed diagnosis of endometriosis in stages I–IV, aged 23 to 38 years old (n = 40). The cell line was derived from the endometrium of patients with extragenital endometriosis (n = 7). KISS1 and KISS1R expression are present in the ectopic endometrium of patients with extragenital endometriosis, as opposed to the control group where these proteins were not expressed. There is a decrease in KISS1 and KISS1R values at all stages of endometriosis. MMP-2 and MMP-9 genes express statistically significant increases in stages II, III, and IV of extragenital endometriosis. MMP synthesis increased in the last stages of endometriosis. We suppose that the KISS1/KISS1R system can be used in the future as a suppressive complex to reduce MMP-2 and MMP-9 expression and prevent endometrial cells from invading. Full article
Show Figures

Figure 1

Back to TopTop