Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Kerr optical switching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7906 KiB  
Article
Abundant New Optical Soliton Solutions to the Biswas–Milovic Equation with Sensitivity Analysis for Optimization
by Md Nur Hossain, Faisal Alsharif, M. Mamun Miah and Mohammad Kanan
Mathematics 2024, 12(10), 1585; https://doi.org/10.3390/math12101585 - 19 May 2024
Cited by 6 | Viewed by 1678
Abstract
This study extensively explores the Biswas–Milovic equation (BME) with Kerr and power law nonlinearity to extract the unique characteristics of optical soliton solutions. These optical soliton solutions have different applications in the field of precision in optical switching, applications in waveguide design, exploration [...] Read more.
This study extensively explores the Biswas–Milovic equation (BME) with Kerr and power law nonlinearity to extract the unique characteristics of optical soliton solutions. These optical soliton solutions have different applications in the field of precision in optical switching, applications in waveguide design, exploration of nonlinear optical effects, imaging precision, reduced intensity fluctuations, suitability for optical signal processing in optical physics, etc. Through the powerful (G/G, 1/G)-expansion analytical method, a variety of soliton solutions are expressed in three distinct forms: trigonometric, hyperbolic, and rational expressions. Rigorous validation using Mathematica software ensures precision, while dynamic visual representations vividly portray various soliton patterns such as kink, anti-kink, singular soliton, hyperbolic, dark soliton, and periodic bright soliton solutions. Indeed, a sensitivity analysis was conducted to assess how changes in parameters affect the exact solutions, aiding in the understanding of system behavior and informing decision-making, especially in accurately designing or analyzing real-world optical phenomena. This investigation reveals the significant influence of parameters λ, τ, c, B, and Κ on the precise solutions in Kerr and power law nonlinearities within the BME. Notably, parameter λ exhibits consistently high sensitivity across all scenarios, while parameters τ and c demonstrate pronounced sensitivity in scenario III. The outcomes derived from this method are distinctive and carry significant implications for the dynamics of optical fibers and wave phenomena across various optical systems. Full article
(This article belongs to the Special Issue Exact Solutions and Numerical Solutions of Differential Equations)
Show Figures

Figure 1

12 pages, 2379 KiB  
Article
Fractional Photoconduction and Nonlinear Optical Behavior in ZnO Micro and Nanostructures
by Victor Manuel Garcia-de-los-Rios, Jose Alberto Arano-Martínez, Martin Trejo-Valdez, Martha Leticia Hernández-Pichardo, Mónica Araceli Vidales-Hurtado and Carlos Torres-Torres
Fractal Fract. 2023, 7(12), 885; https://doi.org/10.3390/fractalfract7120885 - 15 Dec 2023
Cited by 4 | Viewed by 1975
Abstract
A fractional description for the optically induced mechanisms responsible for conductivity and multiphotonic effects in ZnO nanomaterials is studied here. Photoconductive, electrical, and nonlinear optical phenomena exhibited by pure micro and nanostructured ZnO samples were analyzed. A hydrothermal approach was used to synthetize [...] Read more.
A fractional description for the optically induced mechanisms responsible for conductivity and multiphotonic effects in ZnO nanomaterials is studied here. Photoconductive, electrical, and nonlinear optical phenomena exhibited by pure micro and nanostructured ZnO samples were analyzed. A hydrothermal approach was used to synthetize ZnO micro-sized crystals, while a spray pyrolysis technique was employed to prepare ZnO nanostructures. A contrast in the fractional electrical behavior and photoconductivity was identified for the samples studied. A positive nonlinear refractive index was measured on the nanoscale sample using the z-scan technique, which endows it with a dominant real part for the third-order optical nonlinearity. The absence of nonlinear optical absorption, along with a strong optical Kerr effect in the ZnO nanostructures, shows favorable perspectives for their potential use in the development of all-optical switching devices. Fractional models for predicting electronic and nonlinear interactions in nanosystems could pave the way for the development of optoelectronic circuits and ultrafast functions controlled by ZnO photo technology. Full article
(This article belongs to the Special Issue Fractional Mathematical Modelling: Theory, Methods and Applications)
Show Figures

Figure 1

12 pages, 8872 KiB  
Article
Novel Optical Kerr Switching Photonic Device Based on Nonlinear Carbon Material
by Ke Wang, Zhoufa Xie, Jianhua Ji, Yufeng Song, Bin Zhang and Zhenhong Wang
Micromachines 2023, 14(12), 2216; https://doi.org/10.3390/mi14122216 - 8 Dec 2023
Cited by 5 | Viewed by 1638
Abstract
In the context of current communication systems, there is an urgent demand for more efficient and higher-speed optical signal processing technologies. Researchers are actively exploring new materials and devices to harness nonlinear optical phenomena, seeking advancements in this field. Nonlinear carbon materials, especially [...] Read more.
In the context of current communication systems, there is an urgent demand for more efficient and higher-speed optical signal processing technologies. Researchers are actively exploring new materials and devices to harness nonlinear optical phenomena, seeking advancements in this field. Nonlinear carbon materials, especially promising 2D materials, have garnered attention for their potential interaction with light and have become integral to the development of all-optical signal processing devices. This study focuses on utilizing a photonic device based on a nonlinear Au/CB composite material for optical Kerr switching. The application of Au/CB as a nonlinear material in the Kerr switch represents a noteworthy advancement, demonstrating its capability to modulate optical signals. By appropriately applying a pump light, the study achieves optical Kerr switching with an extinction ratio of approximately 15 dB in the fully off state of the signal light carrying a 10 GHz analog signal, marking a pioneering achievement in the field to the best of our knowledge. The experimental results, encompassing extinction ratios, signal control, and stability, not only validate the feasibility of this technology but also underscore its potential applicability within optical communication systems. The successful modulation and control of a 10 GHz analog signal showcase the practicality and effectiveness of the Au/CB-based optical Kerr switch. This progress contributes to the continuous evolution of optical Kerr switching, a crucial component in modern optical communication systems. Therefore, we believe that the Au/CB-based optical Kerr switch is an exceptionally promising and stable all-optical signal processing device. As the contemporary communication landscape evolves, the integration of this technology holds the potential to enhance the efficiency and speed of optical signal processing. Full article
(This article belongs to the Special Issue Applications of Microfiber Devices)
Show Figures

Figure 1

10 pages, 833 KiB  
Article
Second Harmonic Generation Versus Linear Magneto-Optical Response Studies of Laser-Induced Switching of Pinning Effects in Antiferromagnetic/Ferromagnetic Films
by Irina A. Kolmychek, Vladimir B. Novikov, Nikita S. Gusev, Igor Yu. Pashen’kin, Evgeny A. Karashtin and Tatiana V. Murzina
Photonics 2023, 10(12), 1303; https://doi.org/10.3390/photonics10121303 - 25 Nov 2023
Cited by 4 | Viewed by 1611
Abstract
Composite magnetic nanostructures are a subject of high research interest, as they provide a number of exciting effects absent in live nature. Among others, much attention has been paid to the studies of exchange coupling in antiferromagnetic/ferromagnetic (AFM/FM) films, which leads to the [...] Read more.
Composite magnetic nanostructures are a subject of high research interest, as they provide a number of exciting effects absent in live nature. Among others, much attention has been paid to the studies of exchange coupling in antiferromagnetic/ferromagnetic (AFM/FM) films, which leads to the pinning effect. It manifests itself as a widening and shift of the magnetic hysteresis loop with respect to zero value of the external magnetic field oriented along the pinning direction. In this work, we report on comparative studies of linear and nonlinear magneto-optical effects under the laser-induced switching of the pinning effect in IrMn/CoFe films of various thickness of the ferromagnetic CoFe layer. We found that the magneto-optical response of the pinned AFM/FM nanofilms appears with different hysteresis loop parameters in the transverse magneto-optical Kerr effect (MOKE) and interface-sensitive magnetization-induced second harmonic generation (SHG), indicating the diversity of the magnetic effects at interfaces compared to the bulk of the films. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
Show Figures

Figure 1

31 pages, 2299 KiB  
Article
Sensitive Demonstration of the Twin-Core Couplers including Kerr Law Non-Linearity via Beta Derivative Evolution
by Adeel Asad, Muhammad Bilal Riaz and Yanfeng Geng
Fractal Fract. 2022, 6(12), 697; https://doi.org/10.3390/fractalfract6120697 - 24 Nov 2022
Cited by 5 | Viewed by 1738
Abstract
To obtain new solitary wave solutions for non-linear directional couplers using optical meta-materials, a new extended direct algebraic technique (EDAT) is used. This model investigates solitary wave propagation inside a fiber. As a result, twin couplers are the subject of this study. Kerr [...] Read more.
To obtain new solitary wave solutions for non-linear directional couplers using optical meta-materials, a new extended direct algebraic technique (EDAT) is used. This model investigates solitary wave propagation inside a fiber. As a result, twin couplers are the subject of this study. Kerr law is the sort of non-linearity addressed there. Because it offers solutions to problems with large tails or infinite fluctuations, the resulting solution set is more generalized than the current solution because it is turned into a fractional-order derivative. Furthermore, the found solutions are fractional solitons with spatial–temporal fractional beta derivative evolution. In intensity-dependent switches, these nonlinear directional couplers also serve as limiters. Non-linearity alters the transmission constants of a system’s modes. The significance of the beta derivative parameter and mathematical approach is demonstrated graphically, with a few of the extracted solutions. A parametric analysis revealed that the fractional beta derivative parameter has a significant impact on the soliton amplitudes. With the aid of the advanced software tools for numerical computations, the categories of semi-dark solitons, singular dark-pitch solitons, single solitons of Type-1 along with 2, intermingled hyperbolically, trigonometric, and rational solitons were established and evaluated. We also discussed sensitivity analysis, which is an inquiry that determines how sensitive our system is. A comparative investigation via different fractional derivatives was also studied in this paper so that one can easily understand the correlation with other fractional derivatives. The findings demonstrate that the approach is simple and efficient and that it yields generalized analytical results. The findings will be extremely beneficial in examining and comprehending physical issues in nonlinear optics, specifically in twin-core couplers with optical metamaterials. Full article
Show Figures

Figure 1

7 pages, 2582 KiB  
Communication
High-Transmittance Femtosecond Optical Kerr Gate with Double Gate Pulses Based on Birefringence Effect
by Zhenqiang Huang, Wenjiang Tan, Jinhai Si, Shijia Zeng, Zhen Kang and Xun Hou
Photonics 2022, 9(2), 71; https://doi.org/10.3390/photonics9020071 - 27 Jan 2022
Cited by 2 | Viewed by 3248
Abstract
An optical Kerr gate (OKG) is an ultrafast optical switch based on the optical Kerr effect. The performance of a conventional OKG depends mainly on Kerr materials. Traditional Kerr materials do not demonstrate both large optical nonlinearity and an ultrafast response time. Therefore, [...] Read more.
An optical Kerr gate (OKG) is an ultrafast optical switch based on the optical Kerr effect. The performance of a conventional OKG depends mainly on Kerr materials. Traditional Kerr materials do not demonstrate both large optical nonlinearity and an ultrafast response time. Therefore, the performance of a conventional OKG is limited by an inherent trade-off between high signal transmittance and fast switching time, which limits its application in many fields. We propose an improved femtosecond OKG with double gate pulses, based on the use of a birefringent crystal to realize an ultrashort switching time, even with a slow-response optical Kerr medium. We assessed the dependence of the double gate pulsed OKG (D-OKG)’s performance on the intensity ratio of the double gate pulses. A transmittance of 50% and a switching time of 142 fs were achieved. The D-OKG is convenient to construct, and its integrated performance is superior to that of a conventional OKG. Full article
(This article belongs to the Special Issue Ultrafast Spectroscopy: Fundamentals and Applications)
Show Figures

Figure 1

7 pages, 1794 KiB  
Article
Surface Magnetization Reversal of Wiegand Wire Measured by the Magneto-Optical Kerr Effect
by Tomoaki Nakamura, Hiroki Tanaka, Tomofumi Horiuchi, Tsutomu Yamada and Yasushi Takemura
Materials 2021, 14(18), 5417; https://doi.org/10.3390/ma14185417 - 19 Sep 2021
Cited by 4 | Viewed by 2473
Abstract
The Wiegand wire is known to exhibit a unique feature of fast magnetization reversal in the magnetically soft region accompanied by a large Barkhausen jump. We clarified a significant difference between the magnetization reversals at the surface and at the entire cross section [...] Read more.
The Wiegand wire is known to exhibit a unique feature of fast magnetization reversal in the magnetically soft region accompanied by a large Barkhausen jump. We clarified a significant difference between the magnetization reversals at the surface and at the entire cross section of a Wiegand wire. We conducted magnetization measurements based on the magneto-optical Kerr effect and applied conventional methods to determine the magnetization curves. The switching field of the magnetization reversal at the surface was greater than that at the initiation of a large Barkhausen jump. Our analysis suggests that the outer surface layer exhibits low coercivity. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

12 pages, 1112 KiB  
Article
Numerical Simulations on Polarization Quantum Noise Squeezing for Ultrashort Solitons in Optical Fiber with Enlarged Mode Field Area
by Arseny A. Sorokin, Elena A. Anashkina, Joel F. Corney, Vjaceslavs Bobrovs, Gerd Leuchs and Alexey V. Andrianov
Photonics 2021, 8(6), 226; https://doi.org/10.3390/photonics8060226 - 18 Jun 2021
Cited by 14 | Viewed by 2839
Abstract
Broadband quantum noise suppression of light is required for many applications, including detection of gravitational waves, quantum sensing, and quantum communication. Here, using numerical simulations, we investigate the possibility of polarization squeezing of ultrashort soliton pulses in an optical fiber with an enlarged [...] Read more.
Broadband quantum noise suppression of light is required for many applications, including detection of gravitational waves, quantum sensing, and quantum communication. Here, using numerical simulations, we investigate the possibility of polarization squeezing of ultrashort soliton pulses in an optical fiber with an enlarged mode field area, such as large-mode area or multicore fibers (to scale up the pulse energy). Our model includes the second-order dispersion, Kerr and Raman effects, quantum noise, and optical losses. In simulations, we switch on and switch off Raman effects and losses to find their contribution to squeezing of optical pulses with different durations (0.1–1 ps). For longer solitons, the peak power is lower and a longer fiber is required to attain the same squeezing as for shorter solitons, when Raman effects and losses are neglected. In the full model, we demonstrate optimal pulse duration (~0.4 ps) since losses limit squeezing of longer pulses and Raman effects limit squeezing of shorter pulses. Full article
(This article belongs to the Special Issue Novel Materials and Technologies for Fiber Lasers)
Show Figures

Figure 1

23 pages, 4152 KiB  
Article
Free-Space Nonreciprocal Transmission Based on Nonlinear Coupled Fano Metasurfaces
by Ahmed Mekawy, Dimitrios L. Sounas and Andrea Alù
Photonics 2021, 8(5), 139; https://doi.org/10.3390/photonics8050139 - 23 Apr 2021
Cited by 24 | Viewed by 5362
Abstract
Optical nonlinearities can enable unusual light–matter interactions, with functionalities that would be otherwise inaccessible relying only on linear phenomena. Recently, several studies have harnessed the role of optical nonlinearities to implement nonreciprocal optical devices that do not require an external bias breaking time-reversal [...] Read more.
Optical nonlinearities can enable unusual light–matter interactions, with functionalities that would be otherwise inaccessible relying only on linear phenomena. Recently, several studies have harnessed the role of optical nonlinearities to implement nonreciprocal optical devices that do not require an external bias breaking time-reversal symmetry. In this work, we explore the design of a metasurface embedding Kerr nonlinearities to break reciprocity for free-space propagation, requiring limited power levels. After deriving the general design principles, we demonstrate an all-dielectric flat metasurface made of coupled nonlinear Fano silicon resonant layers realizing large asymmetry in optical transmission at telecommunication frequencies. We show that the metrics of our design can go beyond the fundamental limitations on nonreciprocity for nonlinear optical devices based on a single resonance, as dictated by time-reversal symmetry considerations. Our work may shed light on the design of flat subwavelength free-space nonreciprocal metasurface switches for pulsed operation which are easy to fabricate, fully passive, and require low operation power. Our simulated devices demonstrate a transmission ratio >50 dB for oppositely propagating waves, an operational bandwidth exceeding 600 GHz, and an insertion loss of <0.04 dB. Full article
(This article belongs to the Special Issue Advances in Complex Media Electromagnetics)
Show Figures

Figure 1

15 pages, 3485 KiB  
Article
Unidirectional Optical Kerr Transmittance in Hierarchical Carbon/Platinum Nanostructures
by Samuel Morales-Bonilla, Cecilia Mercado-Zúñiga, Juan Pablo Campos-López, César Carrillo-Delgado, Claudia Lizbeth Martínez-González and Carlos Torres-Torres
Photonics 2020, 7(3), 54; https://doi.org/10.3390/photonics7030054 - 30 Jul 2020
Cited by 3 | Viewed by 3337
Abstract
A strong contrast in the third-order nonlinear optical effects exhibited by hierarchical nanostructures explored in a bidirectional optical circuit is reported. The samples were integrated by multiwall carbon nanotubes and platinum-decorated carbon nanotubes synthetized by an aerosol pyrolysis technique and followed by a [...] Read more.
A strong contrast in the third-order nonlinear optical effects exhibited by hierarchical nanostructures explored in a bidirectional optical circuit is reported. The samples were integrated by multiwall carbon nanotubes and platinum-decorated carbon nanotubes synthetized by an aerosol pyrolysis technique and followed by a chemical vapor deposition method. Coupled and decoupled third-order nonlinear optical properties of the nanocomposites were studied. A nanosecond two-wave mixing experiment at 532 nm wavelength was conducted to analyze the optical Kerr effect in the samples. Multi-photonic interactions were evaluated by a single-beam transmittance as a function of input irradiance and volume fraction of the nanoparticles integrated in the nanohybrids. A two-photon absorption process was identified as the main physical mechanism responsible for the anisotropy in the observed optical nonlinearities. Random carbon nanotube networks in film form were put on top of platinum-decorated carbon nanotubes in order to build up a bilayer sample featuring optical selectivity. The switching of optical signals in propagation through the samples was obtained by an orientation-selectable optical transmittance. Unidirectional optically controlled laser pulses dependent on irradiance and polarization in a two-wave mixing was proposed with potential nanophotonic and nanoelectronic applications. The design of signal processing functions driven by nanohybrid platforms can be contemplated. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Graphical abstract

9 pages, 2550 KiB  
Article
Symmetry Breaking Induced Pockels Effect in a Tilted Field Switching BPIII Cell
by Hui-Yu Chen and Yen-Wen Wang
Crystals 2019, 9(11), 598; https://doi.org/10.3390/cryst9110598 - 15 Nov 2019
Cited by 2 | Viewed by 3565
Abstract
In this study, we propose driving the amorphous blue phase III (BPIII) with a tilted electric field to enhance or magnify its inherent linear electro-optical properties. The electro-optical properties of in-plane-switching (IPS) BPIII and tilted-field-switching (TFS) BPIII cells are compared here. According to [...] Read more.
In this study, we propose driving the amorphous blue phase III (BPIII) with a tilted electric field to enhance or magnify its inherent linear electro-optical properties. The electro-optical properties of in-plane-switching (IPS) BPIII and tilted-field-switching (TFS) BPIII cells are compared here. According to the change in the induced birefringence with varying the strength of the electric field in the TFS-BPIII cell, the Kerr effect occurs in the low electric field and the Pockels effect dominates in the high electric field. In addition, the transmittance of the TFS-BPIII cell depends on the polarity of the applied field from 1 Hz to 10 kHz. It also results in the rise time of the TFS-BPIII cell being almost half of that of the IPS-BPIII cell. These experimental results and discussion allowed us to unravel the mystery of the amorphous BPIII step by step and provide the potential application of BPIII in photonic devices. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

10 pages, 3281 KiB  
Article
All-Optical Ultra-Fast Graphene-Photonic Crystal Switch
by Mohammad Reza Jalali Azizpour, Mohammad Soroosh, Narges Dalvand and Yousef Seifi-Kavian
Crystals 2019, 9(9), 461; https://doi.org/10.3390/cryst9090461 - 3 Sep 2019
Cited by 41 | Viewed by 5205
Abstract
In this paper, an all-optical photonic crystal-based switch containing a graphene resonant ring has been presented. The structure has been composed of 15 × 15 silicon rods for a fundamental lattice. Then, a resonant ring including 9 thick silicon rods and 24 graphene-SiO [...] Read more.
In this paper, an all-optical photonic crystal-based switch containing a graphene resonant ring has been presented. The structure has been composed of 15 × 15 silicon rods for a fundamental lattice. Then, a resonant ring including 9 thick silicon rods and 24 graphene-SiO2 rods was placed between two waveguides. The thick rods with a radius of 0.41a in the form of a 3 × 3 lattice were placed at the center of the ring. Graphene-SiO2 rods with a radius of 0.2a were assumed around the thick rods. These rods were made of the graphene monolayers which were separated by SiO2 disks. The size of the structure was about 70 µm2 that was more compact than other works. Furthermore, the rise and fall times were obtained by 0.3 ps and 0.4 ps, respectively, which were less than other reports. Besides, the amount of the contrast ratio (the difference between the margin values for logics 1 and 0) for the proposed structure was calculated by about 82%. The correct switching operation, compactness, and ultra-fast response, as well as the high contrast ratio, make the presented switch for optical integrated circuits. Full article
(This article belongs to the Special Issue Sonic and Photonic Crystals)
Show Figures

Figure 1

6 pages, 1872 KiB  
Article
Quadratic Electro-Optic Effect in Metal Nanoparticles in a Transparent Dielectric Medium
by Mrinal Thakur and Justin Van Cleave
Appl. Sci. 2019, 9(2), 232; https://doi.org/10.3390/app9020232 - 10 Jan 2019
Cited by 8 | Viewed by 3575
Abstract
The quadratic electro-optic effect/Kerr coefficients were measured for the first time for metal nanoparticles. In particular, gold nanoparticles in glass were studied. Measurements were made using the field-induced birefringence method at a wavelength near the onset of the surface plasmon resonance. The magnitudes [...] Read more.
The quadratic electro-optic effect/Kerr coefficients were measured for the first time for metal nanoparticles. In particular, gold nanoparticles in glass were studied. Measurements were made using the field-induced birefringence method at a wavelength near the onset of the surface plasmon resonance. The magnitudes of the Kerr coefficients for different sizes of gold nanoparticles in glass were measured and compared with that of subnanometer size metallic particles in non-conjugated conductive polymers. The magnitude of the Kerr coefficient was found to increase rapidly (about d−3) when the diameter, d, of the nanoparticles was decreased. This is consistent with the existing theories and understanding of nonlinear optics in metal nanoparticles. The results imply a broad range of new applications of metal nanoparticles in electro-optic switching/modulation, low-cost Kerr cells and other uses in optoelectronics. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

13 pages, 4075 KiB  
Review
Ion Irradiation for Planar Patterning of Magnetic Materials
by Takeshi Kato, Daiki Oshima and Satoshi Iwata
Crystals 2019, 9(1), 27; https://doi.org/10.3390/cryst9010027 - 4 Jan 2019
Cited by 10 | Viewed by 4261
Abstract
Kr+ ion dose dependence of the magnetic properties of MnGa films and the fabrication of planar-patterned MnGa films by the local ion irradiation technique were reviewed. The magnetization and perpendicular anisotropy of the MnGa vanished at an ion dose of 1 × [...] Read more.
Kr+ ion dose dependence of the magnetic properties of MnGa films and the fabrication of planar-patterned MnGa films by the local ion irradiation technique were reviewed. The magnetization and perpendicular anisotropy of the MnGa vanished at an ion dose of 1 × 1014 ions/cm2 due to the phase change of the MnGa from ferromagnetic L10 to paramagnetic A1 phase. The average switching field Hsw of the planar-patterned MnGa increased with decreasing the bit size, implying low bit edge damage in the patterned MnGa, whereas a rather large switching field distribution (SFD) of 25% was confirmed for a bit size of ~40 nm. Time resolved magneto-optical Kerr effect measurements revealed that as-prepared MnGa exhibits an effective anisotropy field Hkeff = 20 kOe, its distribution ΔHkeff = 200 Oe, and Gilbert damping α = 0.008. The ion-irradiated MnGa films exhibited larger Hkeff = 22–23 kOe than that of the MnGa before the ion dose. Thus, ion irradiation does not decrease the perpendicular anisotropy, which suggests a small bit edge in the patterned MnGa. ΔHkeff increased from 0.2 kOe to 3 kOe, whereas the length of disorder in the film ξ decreased from 10 nm to 3 nm by ion irradiation. Full article
Show Figures

Figure 1

13 pages, 2938 KiB  
Article
Effect of Sharp Diameter Geometrical Modulation on the Magnetization Reversal of Bi-Segmented FeNi Nanowires
by Miguel Méndez, Víctor Vega, Silvia González, Rafael Caballero-Flores, Javier García and Víctor M. Prida
Nanomaterials 2018, 8(8), 595; https://doi.org/10.3390/nano8080595 - 5 Aug 2018
Cited by 25 | Viewed by 5081
Abstract
Controlling functional properties of matter and combining them for engineering a functional device is, nowadays, a common direction of the scientific community. For instance, heterogeneous magnetic nanostructures can make use of different types of geometrical and compositional modulations to achieve the control of [...] Read more.
Controlling functional properties of matter and combining them for engineering a functional device is, nowadays, a common direction of the scientific community. For instance, heterogeneous magnetic nanostructures can make use of different types of geometrical and compositional modulations to achieve the control of the magnetization reversal along with the nano-entities and, thus, enable the fabrication of spintronic, magnetic data storage, and sensing devices, among others. In this work, diameter-modulated FeNi nanowires are fabricated paying special effort to obtain sharp transition regions between two segments of different diameters (from about 450 nm to 120 nm), enabling precise control over the magnetic behavior of the sample. Micromagnetic simulations performed on single bi-segmented nanowires predict a double step magnetization reversal where the wide segment magnetization switches near 16 kA/m through a vortex domain wall, while at 40 kA/m the magnetization of the narrow segment is reversed through a corkscrew-like mechanism. Finally, these results are confirmed with magneto-optic Kerr effect measurements at the transition of isolated bi-segmented nanowires. Furthermore, macroscopic vibrating sample magnetometry is used to demonstrate that the magnetic decoupling of nanowire segments is the main phenomenon occurring over the entire fabricated nanowires. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Nanowires)
Show Figures

Graphical abstract

Back to TopTop