Second Harmonic Generation Versus Linear Magneto-Optical Response Studies of Laser-Induced Switching of Pinning Effects in Antiferromagnetic/Ferromagnetic Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Moke vs. SHG Magnetic Measurements
3.2. Laser-Induced Pinning Switching
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SHG | second harmonic generation |
MOKE | magneto-optical Kerr effect |
PM | power-meter |
PMT | photomultiplier tube |
AFM | antiferromagnet |
FM | ferromagnet |
References
- Zhang, H.; Zhang, Y.; Hou, Z.; Qin, M.; Gao, X.; Liu, J. Magnetic skyrmions: Materials, manipulation, detection, and applications in spintronic devices. Mater. Futur. 2023, 2, 032201. [Google Scholar] [CrossRef]
- Nogués, J.; Schuller, I.K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232. [Google Scholar] [CrossRef]
- Nogués, J.; Sort, J.; Langlais, V.; Skumryev, V.; Suriñach, S.; Muñoz, J.; Baró, M. Exchange bias in nanostructures. Phys. Rep. 2005, 422, 65–117. [Google Scholar] [CrossRef]
- Kravets, A.F.; Timoshevskii, A.N.; Yanchitsky, B.Z.; Bergmann, M.A.; Buhler, J.; Andersson, S.; Korenivski, V. Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: A thermomagnetic Curie switch. Phys. Rev. B 2012, 86, 214413. [Google Scholar] [CrossRef]
- Vdovichev, S.N.; Polushkin, N.I.; Rodionov, I.D.; Prudnikov, V.N.; Chang, J.; Fraerman, A.A. High magnetocaloric efficiency of a NiFe/NiCu/CoFe/MnIr multilayer in a small magnetic field. Phys. Rev. B 2018, 98, 014428. [Google Scholar] [CrossRef]
- Berkowitz, A.; Takano, K. Exchange anisotropy—A review. J. Magn. Magn. Mater. 1999, 200, 552–570. [Google Scholar] [CrossRef]
- Peng, S.; Zhu, D.; Li, W.; Wu, H.; Grutter, A.J.; Gilbert, D.A.; Lu, J.; Xiong, D.; Cai, W.P.; Shafer, K.L.W.; et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–Orbit torque. Nat. Electron. 2020, 3, 757–764. [Google Scholar] [CrossRef]
- Fang, B.; Sánchez-Tejerina San José, L.; Chen, A.; Li, Y.; Zheng, D.; Ma, Y.; Algaidi, H.; Liu, K.; Finocchio, G.; Zhang, X. Electrical Manipulation of Exchange Bias in an Antiferromagnet/Ferromagnet-Based Device via Spin–Orbit Torque. Adv. Funct. Mater. 2022, 32, 2112406. [Google Scholar] [CrossRef]
- Devasahayam, A.J.; Kryder, M.H. The dependence of the antiferromagnet/ferromagnet blocking temperature on antiferromagnet thickness and deposition conditions. J. Appl. Phys. 1999, 85, 5519–5521. [Google Scholar] [CrossRef]
- Gritsenko, C.; Dzhun, I.; Volochaev, M.; Gorshenkov, M.; Babaytsev, G.; Chechenin, N.; Sokolov, A.; Tretiakov, O.A.; Rodionova, V. Temperature-dependent magnetization reversal in exchange bias NiFe/IrMn/NiFe structures. J. Magn. Magn. Mater. 2019, 482, 370–375. [Google Scholar] [CrossRef]
- Saito, Y.; Kholid, F.N.; Karashtin, E.; Pashenkin, I.; Mikhaylovskiy, R.V. Terahertz Emission Spectroscopy of Exchange-Biased Spintronic Heterostructures: Single- and Double-Pump Techniques. Phys. Rev. Appl. 2023, 19, 064040. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, J.; Malinowski, G.; Zhang, B.; Zhang, W.; Wang, H.; Liu, C.; Peng, Y.; Vallobra, P.; Xu, Y.; et al. Single-shot laser-induced switching of an exchange biased antiferromagnet. arXiv 2023, arXiv:2302.04510. [Google Scholar]
- Porat, A.; Bar-Ad, S.; Schuller, I.K. Novel laser-induced dynamics in exchange-biased systems. Europhys. Lett. 2009, 87, 67001. [Google Scholar] [CrossRef]
- Seu, K.A.; Reilly, A.C. Ultrafast laser excitation of spin waves and the permanent modification of the exchange bias interaction in IrMn/Co. J. Appl. Phys. 2008, 103, 07C104. [Google Scholar] [CrossRef]
- Dalla Longa, F.; Kohlhepp, J.T.; de Jonge, W.J.M.; Koopmans, B. Resolving the genuine laser-induced ultrafast dynamics of exchange interaction in ferromagnet/antiferromagnet bilayers. Phys. Rev. B 2010, 81, 094435. [Google Scholar] [CrossRef]
- Ju, G.; Nurmikko, A.V.; Farrow, R.F.C.; Marks, R.F.; Carey, M.J.; Gurney, B.A. Ultrafast Time Resolved Photoinduced Magnetization Rotation in a Ferromagnetic/Antiferromagnetic Exchange Coupled System. Phys. Rev. Lett. 1999, 82, 3705–3708. [Google Scholar] [CrossRef]
- Weber, M.C.; Nembach, H.; Fassbender, J. Picosecond optical control of the magnetization in exchange biased NiFe/FeMn bilayers. J. Appl. Phys. 2004, 95, 6613–6615. [Google Scholar] [CrossRef]
- Dalla Longa, F.; Kohlhepp, J.T.; de Jonge, W.J.M.; Koopmans, B. Laser-induced magnetization dynamics in Co/IrMn exchange coupled bilayers. J. Appl. Phys. 2008, 103, 07B101. [Google Scholar] [CrossRef]
- Almeida, M.; Matthes, P.; Ueberschär, O.; Müller, M.; Ecke, R.; Exner, H.; Albrecht, M.; Schulz, S. Optimum Laser Exposure for Setting Exchange Bias in Spin Valve Sensors. Phys. Procedia 2015, 75, 1192–1197. [Google Scholar] [CrossRef]
- Guo, Z.; Malinowski, G.; Vallobra, P.; Peng, Y.; Xu, Y.; Mangin, S.; Zhao, W.; Hehn, M.; Zhang, B. Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers. Chin. Phys. B 2023, 32, 087507. [Google Scholar] [CrossRef]
- Vallobra, P.; Fache, T.; Xu, Y.; Zhang, L.; Malinowski, G.; Hehn, M.; Rojas-Sánchez, J.C.; Fullerton, E.E.; Mangin, S. Manipulating exchange bias using all-optical helicity-dependent switching. Phys. Rev. B 2017, 96, 144403. [Google Scholar] [CrossRef]
- Berthold, I.; Loschner, U.; Schille, J.; Ebert, R.; Exner, H. Exchange Bias Realignment Using a Laser-based Direct-write Technique. Phys. Procedia 2014, 56, 1136–1142. [Google Scholar] [CrossRef]
- Sharma, A.; Hoffmann, M.; Matthes, P.; Busse, S.; Selyshchev, O.; Mack, P.; Exner, H.; Horn, A.; Schulz, S.; Zahn, D.; et al. Exchange bias and diffusion processes in laser annealed CoFeB/IrMn thin films. J. Magn. Magn. Mater. 2019, 489, 165390. [Google Scholar] [CrossRef]
- Kirilyuk, A. Nonlinear optics in application to magnetic surface and thin films. J. Magn. Mag. Mater. 2002, 35, 189–207. [Google Scholar] [CrossRef]
- Pan, R.P.; Wei, H.D.; Shen, Y.R. Optical second-harmonic generation from magnetized surfaces. Phys. Rev. B 1989, 39, 1229–1234. [Google Scholar] [CrossRef]
- Kolmychek, I.A.; Krutyanskiy, V.L.; Murzina, T.V.; Sapozhnikov, M.V.; Karashtin, E.A.; Rogov, V.V.; Fraerman, A.A. First and second order in magnetization effects in optical second-harmonic generation from a trilayer magnetic structure. J. Opt. Soc. Am. B 2015, 32, 331–338. [Google Scholar] [CrossRef]
- Krutyanskiy, V.L.; Kolmychek, I.A.; Gribkov, B.A.; Karashtin, E.A.; Skorohodov, E.V.; Murzina, T.V. Second harmonic generation in magnetic nanoparticles with vortex magnetic state. Phys. Rev. B 2013, 88, 094424. [Google Scholar] [CrossRef]
- Kolmychek, I.; Radovskaya, V.; Mamonov, E.; Maydykovskiy, A.; Sadovnikov, A.; Sheshukova, S.; Nikitov, S.; Temiryazeva, M.; Gusev, N.; Fraerman, A.; et al. Interface-induced optical effects in magnetic two- and three-layer films. J. Magn. Magn. Mater. 2021, 528, 167780. [Google Scholar] [CrossRef]
- Petukhov, A.V.; Lyubchanskii, I.L.; Rasing, T. Theory of nonlinear magneto-optical imaging of magnetic domains and domain walls. Phys. Rev. B 1997, 56, 2680–2687. [Google Scholar] [CrossRef]
- MacLaren, J.M.; Schulthess, T.C.; Butler, W.H.; Sutton, R.; McHenry, M. Electronic structure, exchange interactions, and Curie temperature of FeCo. J. Appl. Phys. 1999, 85, 4833–4835. [Google Scholar] [CrossRef]
- Binek, C. Training of the exchange-bias effect: A simple analytic approach. Phys. Rev. B 2004, 70, 014421. [Google Scholar] [CrossRef]
- Xu, X.Y.; Gao, Y.J.; Wang, Y.L.; Hu, J.G. Thickness dependence of positive exchange bias in ferromagnetic/antiferromagnetic bilayers. Solid State Commun. 2011, 151, 952–955. [Google Scholar] [CrossRef]
- Sampaio, L.C.; Mougin, A.; Ferré, J.; Georges, P.; Brun, A.; Bernas, H.; Poppe, S.; Mewes, T.; Fassbender, J.; Hillebrands, B. Probing interface magnetism in the FeMn/NiFe exchange bias system using magnetic second-harmonic generation. Europhys. Lett. 2003, 63, 819. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolmychek, I.A.; Novikov, V.B.; Gusev, N.S.; Pashen’kin, I.Y.; Karashtin, E.A.; Murzina, T.V. Second Harmonic Generation Versus Linear Magneto-Optical Response Studies of Laser-Induced Switching of Pinning Effects in Antiferromagnetic/Ferromagnetic Films. Photonics 2023, 10, 1303. https://doi.org/10.3390/photonics10121303
Kolmychek IA, Novikov VB, Gusev NS, Pashen’kin IY, Karashtin EA, Murzina TV. Second Harmonic Generation Versus Linear Magneto-Optical Response Studies of Laser-Induced Switching of Pinning Effects in Antiferromagnetic/Ferromagnetic Films. Photonics. 2023; 10(12):1303. https://doi.org/10.3390/photonics10121303
Chicago/Turabian StyleKolmychek, Irina A., Vladimir B. Novikov, Nikita S. Gusev, Igor Yu. Pashen’kin, Evgeny A. Karashtin, and Tatiana V. Murzina. 2023. "Second Harmonic Generation Versus Linear Magneto-Optical Response Studies of Laser-Induced Switching of Pinning Effects in Antiferromagnetic/Ferromagnetic Films" Photonics 10, no. 12: 1303. https://doi.org/10.3390/photonics10121303
APA StyleKolmychek, I. A., Novikov, V. B., Gusev, N. S., Pashen’kin, I. Y., Karashtin, E. A., & Murzina, T. V. (2023). Second Harmonic Generation Versus Linear Magneto-Optical Response Studies of Laser-Induced Switching of Pinning Effects in Antiferromagnetic/Ferromagnetic Films. Photonics, 10(12), 1303. https://doi.org/10.3390/photonics10121303