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Abstract: Optical nonlinearities can enable unusual light–matter interactions, with functionalities
that would be otherwise inaccessible relying only on linear phenomena. Recently, several studies
have harnessed the role of optical nonlinearities to implement nonreciprocal optical devices that do
not require an external bias breaking time-reversal symmetry. In this work, we explore the design of a
metasurface embedding Kerr nonlinearities to break reciprocity for free-space propagation, requiring
limited power levels. After deriving the general design principles, we demonstrate an all-dielectric
flat metasurface made of coupled nonlinear Fano silicon resonant layers realizing large asymmetry
in optical transmission at telecommunication frequencies. We show that the metrics of our design
can go beyond the fundamental limitations on nonreciprocity for nonlinear optical devices based
on a single resonance, as dictated by time-reversal symmetry considerations. Our work may shed
light on the design of flat subwavelength free-space nonreciprocal metasurface switches for pulsed
operation which are easy to fabricate, fully passive, and require low operation power. Our simulated
devices demonstrate a transmission ratio >50 dB for oppositely propagating waves, an operational
bandwidth exceeding 600 GHz, and an insertion loss of <0.04 dB.

Keywords: nonlinear metasurface; nonreciprocal metasurface; nonreciprocity; Fano resonance

1. Introduction

Optical nonreciprocity allows asymmetric light transmission from the opposite sides
of a two-port device [1,2]. A common approach to break reciprocity is to utilize a magnetic
bias [3,4], or in general a bias with odd symmetry under time-reversal, such that the prop-
agating signals from opposite sides see entirely different devices. While a DC magnetic
bias is bulky and difficult to integrate along with other components [3,4], the use of artifi-
cial angular or linear momentum bias achieved by periodically modulating the material
parameters has enabled a paradigm shift to realize nonreciprocal components [5]. Time
modulation has been successfully implemented on different platforms, from acoustics [6]
to RF [7,8], THz [9], and optical frequencies [5,10],. Free-space nonreciprocal metasurfaces
based on time modulation have been explored spanning the RF frequency range [11–13]
and in the visible frequency range [14]. However, modulating the material parameters
comes at the cost of power consumption, and it generates spurious harmonics that may
interfere with nearby components [15], unless the devices are judiciously designed [16]. In
addition, time modulation becomes harder as the operating frequency increases because the
modulation frequency should scale accordingly [15]. Breaking the passivity of the system
through the use of unidirectional gain elements (amplifiers) has also been explored to break
reciprocity, leading to small size, ease of fabrication, and integrable CMOS technology for
nonreciprocal responses [17–20]. However, the main disadvantage of such approaches is
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the large power consumption and noise, because amplifiers are active elements that need
to be properly biased in order to operate [20]. Additionally, the use of a CMOS amplifier
limits the dynamic range of operation, so these metasurfaces are limited to work in the
low power regime not exceeding a few dBm in order to avoid triggering nonlinearities in
the amplifiers.

An alternative to these techniques, with the appealing property of not requiring any
form of external bias or power, is the use of nonlinearities [21] combined with geometrical
asymmetries. Light waves traveling through these devices can modulate the material
refractive index while passing through it [22], and the geometrical asymmetry ensures
that the induced variations are different for opposite propagation directions, breaking
reciprocity. Due to the typically weak optical nonlinearity of nonlinear materials, these self-
biased nonreciprocal devices have to rely on strong optical resonances and large contrast
in the induced field distributions [23–25].

An ideal two-port optical isolator supports unitary transmission in one direction
and full absorption (zero transmission) in the opposite direction, where the deviation
from unitary transmission in the forward direction defines the insertion loss and the
finite transmission in the reverse direction defines the isolation of the device [26]. In
reality, nonlinearity-based nonreciprocal devices do not work like conventional isolators,
in that they do not absorb the backward power, but instead reflect it [23,25,27]. While it is
strictly forbidden by thermodynamic considerations to realize a passive two-port isolator
using a lossless material, as we consider throughout our work [28,29], we emphasize that
nonlinearity-based nonreciprocal devices are not true isolators, as they cannot isolate a
weak backward-propagating signal in the presence of a strong forward signal [29], as
dictated by dynamic reciprocity [30]. Therefore, our nonreciprocal device only ensures
asymmetric transmission features in a switched mode operation, based on which it is
separately excited at the two ports. Thermodynamic considerations [31–33] also imply that
asymmetric transmission cannot arise for all power levels, as is consistent with the fact that
nonreciprocity is inherently rooted in the nonlinear response of the system.

Different metrics can be used to characterize the performance of the devices under
consideration. We can define a Nonreciprocal Intensity Range (NRIR) [5,27] as the range
of input intensities for which we expect to find a largely different transmission level for
opposite excitations. Interestingly, a nonlinearity-based nonreciprocal device based on a
single nonlinear resonator, with an arbitrary Fano lineshape, suffers from an important
trade-off between the minimum insertion loss in the system and its NRIR [27]. These
limitations, along with the high power requirements and the associated signal distortions,
hinder several applications of these concepts, despite their appealing bias-free, fully passive
nature. Only recently, a few proposals to realize free-space nonreciprocal devices based on
these concepts have been presented, based on coupled dielectric spheres in multilayers [23]
or narrow slits in a dielectric grating [24,27], in addition to proposals based on guided wave
implementations in optical [1] and RF frequencies [34]. In this work, we show theoretically
and with full-wave simulations that, by using nonlinear metasurface bilayers separated by
a subwavelength spacer, we can obtain a nonreciprocal compact device that overcomes the
trade-off between insertion loss and NRIR in a free-space implementation. Moreover, we
discuss the design guidelines and the response of the device at different wavelengths in
order to assess its spectral bandwidth.

2. Principle of Operation of Nonlinearity-Based Nonreciprocal Devices Based on
Coupled Fano Metasurfaces

Figure 1a schematically depicts the functionality of the nonlinear metasurface bilayer
described in this work; a few designs will be explored in the following sections to demon-
strate both high and low power operations. We use silicon (Si) as the material of choice,
given its wide availability, compatibility with CMOS fabrication processes, and relatively
large third-order nonlinear susceptibility χ(3) ≈ 2.8× 10−18 m2/V2 [22]. The choice of Si is
also motivated by the possibility of comparing our results with recent reports using silicon
metasurfaces for similar purposes [24,27]. We use glass as the spacer in our design due
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to similar reasons, apart from the fact that it has no appreciable optical nonlinearity in
the frequency and intensity ranges of interest. The device operation in Figure 1a can be
explained in analogy with the microwave circuits introduced in [34], but with the Fano
resonance realized using dielectric metasurfaces instead of electrical circuits. Fano resonant
metasurfaces have been widely studied in nanophotonics. More recently, there has been
significant work devoted to realize high-quality factor Fano resonances for optical and
visible frequencies based on bound states in the continuum (BICs) [35–41]. Due to their
enhanced light–matter interactions, these BIC metasurfaces can be efficiently employed in
nonlinear optics applications [35].

Figure 1. (a) Schematic depicts the nonlinearity-based nonreciprocal metasurface bilayer presented in this work. The arrows
represent high power plane waves pointing to the direction of propagation that are blocked and reflected when propagating
from the top to the bottom (red arrow) and transmitted when propagating from the bottom to the top (blue arrows). The
zoomed in box shows one unit cell of the metasurface top layer made of Si (the bottom layer is similar, but with different
geometrical parameters). Upon the plane wave excitation, the transmission from each layer takes the Fano line shape in the
dashed box, and can be explained by the interference between: (1) the dark narrow band mode similar to the waveguide
mode inside the unperturbed slab (i.e., with filled Si in the dashed box) and (2) the bright wideband mode that resembles
a Fabry–Pérot mode or background reflection, as shown in the top and bottom of the shadowed rectangle, respectively.
(ω1, ω2) are the resonance frequencies of the modes, while their complex amplitudes are (a1, a2) and their coupling rates
to the free space are (κ1, κ2 ) for the dark and bright mode, respectively. (b) Transmission in the forward direction vs the
nonreciprocal intensity range for the various nonlinear resonator designs presented in this work (red asterisks). The blue
shaded region corresponds to the bound in Equation (5).

To start, we designed the top and bottom silicon surfaces in Figure 1a such that each
layer supports a Fano resonance in the frequency range of interest based on the guided
mode resonances concept (GMR) [24]. The zoomed-in box in Figure 1a shows one unit
cell of the top metasurface layer. The Fano resonance of each layer can be explained
similarly; here, we focus only on the top layer, of which the resonance can be explained
by considering the interference between the broadband (bright) and narrowband (dark)
modes. The (dark, bright) mode has a complex amplitude (a1, a2), resonance frequency
(ω1, ω2) and linewidth (κ1, κ2) defining its coupling to free space. Here, these two modes
correspond to (1) the waveguide mode that can be coupled to free-space radiation through
the periodic perturbation along the slab interface, and (2) the Fabry–Pérot mode of the
Si slab, or the broadband reflection from this slab, as shown in the top right and bottom
right panels of Figure 1a, respectively. In general, κ2 � κ1 because the bright mode has a
much larger coupling rate to the radiation continuum than the dark mode has. Therefore,
when excited by plane waves, these modes interfere, creating a Fano line shape in the
transmission curve due to their different coupling rates, as shown in the dashed box in
Figure 1a. We define ω0 as the resonance frequency of the Fano resonator, at which the linear
transmission coefficient goes to zero. This frequency also equals the resonance frequency of
the dark mode, ω0 = ω1, as shown in the dashed box in Figure 1a. In particular, when we
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excite the Fano resonator with an incident plane wave with frequency ω, the transmission
curve takes the form (see Equation (8) in Section 5.1 (Coupled Mode Theory))

T =
1

1 + x2 ; x =

(
κ1

δ1
+

κ2

δ2

)
, (1)

where δ1 = ω − ω1 and δ2 = ω − ω2. It is readily seen that, when δ1or δ2 = 0, we have
zero transmission; therefore, ω1 = ω0 in a linear case, and when κ1δ2 = −κ2δ1 we have
unitary transmission. Additionally, because we assume κ2 � κ1 because it describes the
bright mode, it follows that the mode frequency ω2 � ω1 to obtain unitary transmission is
very close to the zero transmission and we have appreciable Fano resonance, as shown in
the dashed box in Figure 1a.

Next, we now include the Kerr nonlinearity of Si, so that the refractive index n changes
as a function of the incident field intensity according to the relation n = n0 + n2 I, where
n0 is the refractive index at low incident power and n2 characterizes the Kerr nonlinearity
according to the relation n2 = 3

√
µ0/ε0<

{
χ(3)

}
/
(
4n2

0
)
> 0. When we have high inci-

dent power, the resonance frequency ω1 is no longer constant, i.e., ω1 6= ω0; instead, it
depends on the frequency and power of the incident wave, such that (see Equation (11) in
Section 5.2 (Nonlinear Bistability))

δ1 = δ01 +

(
κ1
δ1

)2

1 +
(

κ1
δ1
+ κ2

δ2

)2 P, (2)

where δ01 = ω−ω0 is the frequency shift where we recall that ω0 is the resonance frequency
of mode 1 before including the nonlinearity, and P is a normalized term proportional to
the incident power. Because we assume that the mode frequency ω2 is very far away from
the frequency range of interest, its properties are weakly affected by the high power, so we
assume its parameters ω2 and κ2 to be fixed in the nonlinear analysis. In the following, we
study optical switching in nonlinear Fano resonators near their resonance frequencies as a
function of the incident power P and input frequency ω.

First, we assume an incident monochromatic wave with fixed normalized power
(P = 0.5), and we study the response of the nonlinear Fano resonance as a function of the
input frequency ω. Inspecting Equation (2), we can immediately recognize that a regime can
arise for which the response of the nonlinear Fano resonator becomes bistable, a scenario
of particular importance for the findings described in this paper. In particular, we expect a
bistable response at some threshold input power if (see Section 5.3 Bistability Condition))

ωmod −ω

κmod
>
√3, (3)

where ωmod = ω1 − ∆ωκ1κ2
∆2

ω+κ2
2

and κmod = ∆2
ωκ1

∆2
ω+κ2

2
. In Figure 2a, we show the resonance

frequency shift δ1 as a function of the applied incident frequency for P = 0.5. Generally, the
resonance frequency shift increases with the incident frequency; however, in a range of
frequencies slightly below the resonance frequency for low intensities ω0, it abruptly jumps
to the upper branch of the bistability curve, as indicated by the black arrow at the critical
point c1. The further increase of the incident frequency leads to a monotonic increase of
the resonance shift. If we now consider a decreasing input frequency, we find an abrupt
jump of the resonance shift from the upper branch to the lower branch at the critical point
c2, implying a hysteresis in the bistable response. Interestingly, for Fano resonators, we
can choose the parameters (κ1, κ2, ω1, ω2) such that this discontinuous jump enables
zero to unitary switching in transmission, by requiring δ1 = 0 at the lower branch, while
κ2δ2 = −κ1δ1 at the upper branch. This particular scenario is identified by the horizontal
dashed line in Figure 2a, where we choose the parameters to ensure δ1 = 0 at the point c1
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on the lower branch, and δ1κ2 = −δ2κ1 on the upper branch. This interesting response may
find potential applications for frequency filters [22]. In order to demonstrate the abrupt
zero to the unitary transmission feature, we plot the transmission of this Fano resonator
as a function of the incident frequency in Figure 2b, where it indeed shows that the point
c1 offers very low transmission and, as we increase the frequency beyond a threshold
value, the transmission abruptly switches to unity (0 dB). In general, we can design the
bistability region as desired, e.g., to have the abrupt change in transmission at some desired
frequency; however, we emphasize that, because we assumed n2 > 0, the bistability can
only happen for input frequencies smaller than the resonance frequency at low intensities.
We can prove this important property by solving Equation (2) exactly such that δ1 has a
single real solution, or we can graphically compare the bistable transmission curve to the
linear transmission curve, i.e., the solid blue line in Figure 2b, showing that we can find a
bistability only when the incident frequency is lower than the linear resonance frequency,
as in the case of nonlinear Lorentzian resonators [42]. This behavior can be observed for
any desired power level P, as shown in Figure 2c. A larger incident power generally results
in a lower switch-up frequency threshold and a wider hysteresis of the bistable response,
and in the limit of very low power levels the transmission converges to the linear scenario,
confirming again that the bistability can only occur for incident frequencies lower than the
resonance frequency. The opposite remarks apply for n2 < 0. Figure 2c confirms that, for
P = 0.5, we find an abrupt change in transmission from 0 to 1, corresponding to the dashed
line in Figure 2a.

Figure 2. Nonlinear response of individual Fano resonators as a function of the input frequency and power. (a) Bistability in
the shift of the zero-transmission frequency, δ1, versus the frequency ω of the input plane wave, with fixed input power
P = 0.5. For an incident wave with an increasing frequency, the shift follows the path through the point c1 along the arrow
direction to the top branch, and for a decreasing frequency the shift path follows the line passing through the point c2 along
the arrow direction to the lower branch. The dashed lines indicate the value δ1, such that the transmission coefficient goes
to 0 dB. (b) Similar to (a), but with the transmission coefficient instead of shift δ1. The blue line plots the linear response of
the resonator, i.e., at P = 0. (c) Similar to (b) but considering different power levels and only branches with an increasing
frequency. (d–f) Similar to (a–c) but analyzing the variations with the input power at fixed frequency ω = 0.995×ω0. The
other parameters are constant for all of the subfigures, ω0 = 1.1, κ2 = 152, ω2 = 100, and κ1 = 0.02.
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Next, we study the nonlinear Fano resonator properties for fixed incident frequency
while changing the input power P. Similar conclusions can be drawn by observing the
results in Figure 2d–f. For instance, Figure 2d shows the nonlinear shift δ1 as a function
of the incident power P while keeping the frequency fixed (ω = 0.995ω0). Similar to
Figure 2a, we select the parameters that enable an abrupt jump in transmission from
0 (−40 dB) to 1 (0 dB) as we increase the incident power. This can be confirmed in
the transmission plot in Figure 2e, in which at the critical point c1 the lower branch
shows 0 transmission, and a slight increase in power causes an abrupt jump to unitary
transmission. This behavior has potential in optical applications like optical limiters,
nanoswitches [22,43] and nonreciprocal devices [23]. Similar to Figure 2c, we plot in
Figure 2f the transmission as the input power increases for different frequencies. We
observe again that the bistability only arises when the input frequency is lower than the
resonance frequency of the linear resonator. In addition, as the incident frequency becomes
smaller, the power needed to trigger a bistable transition becomes larger. Because this
bistability regime can be used to induce a nonreciprocal response, by making sure that the
system operates in different stable states for opposite propagation directions, we deduce
that a low-power nonreciprocal device can be achieved if the operating frequency is close
to, and less than, the resonance frequency of the linear Fano resonator (Figure 2c).

Having analyzed the response of a single Si layer operated as a Fano resonator, we
can now consider nonlinear optical devices based on coupled nonlinear Fano resonators, as
shown in Figure 1a, where each Si layer supports a Fano resonance with its own resonance
frequency and decay rate, and they are separated from each other by an electrical length θ.
A functional working principle of a nonreciprocal device based on this geometry consists
in the following scheme: for a given excitation frequency and power, one of the resonators
(resonator 2) is designed to enter its bistable region, while the other one (resonator 1)
remains outside this region. In order to distinguish the dark mode resonance frequency
of each Fano resonator, we call the dark mode of resonator 1 ω01, while the dark mode of
resonator 2 is ω02, and we recall that ω0i is the frequency at which the linear transmission
goes to zero. Therefore, we can design resonator 2 with the linear resonance frequency
ω02 > ωin > ω01. The linear spectral transmission curves for resonator 1 and resonator
2 are shown in Figure 3a for the parameters in Table 3 in the first and second rows in
Section 5.5 (Fano Resonator Parameters) for resonator 1 and resonator 2, respectively. We
now consider an incident excitation with increasing power P and of frequency ωin indicated
by the vertical dashed line in Figure 3a, such that ω01 < ωin < ω02. As we increase the
power of the incident wave, resonator 2 exhibits a sharp transition in the transmission
curve at the critical point P = 0.7, confirming that it operates in the bistable region, while
resonator 1 maintains a smooth variation of transmission, as shown in Figure 3b. For
operation as an ideal nonreciprocal device, it is particularly important to design the two
resonators to have unitary transmission at the same power level [31], as shown in Figure 3b
for the intensity around P = 1. By placing the resonators separated by an electrical distance
θ, as shown in the inset of Figure 3c, we can test the working principle of this device by
exploring the response for excitation from opposite sides. First, we excite the structure with
frequency ωin from the side of resonator 2. Initially, with the very small incident power P,
the reflection is large and, as we increase the power, we reach the critical point at which
the transmission for resonator 2 goes from 0 to 1; therefore, the signals are transmitted
from resonator 2 to resonator 1. Because we designed resonator 1 to support unitary
transmission at the same critical power as resonator 2, the incident signal is transmitted to
the left port. Overall, the transmission as a function of intensity for excitation from right to
left TRL is similar to the transmission of the individual resonator 2, as shown by the dashed
line in Figure 3c. Next, we consider the excitation from the left side. Again, we start with
a small input power, for which the incident wave is partially transmitted to resonator 2.
Because at this power level resonator 2 is highly reflective, the wave experiences multiple
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reflections between the resonators, and it reaches a steady-state transmission level Ta. The
incident power on resonator 2, Peff, can be calculated as (see Equation (18) in Section 5.4)

Peff =
Ta

2− Ta − 2
√

1− Ta cos(φa + φb + 2θ)
P, (4)

where Ta is the nonlinear transmission for excitation from the side of resonator 1, and φa
and φb are the nonlinear reflection phases from resonator 1 and resonator 2, respectively, as
shown in Figure 3e, which are not to be confused with the reflection phase in the linear
regime shown in Figure 3d. While the former shows an abrupt change in phase at the
bistability transition, the latter obviously does not.

Figure 3. Operation of the device based on coupled shifted Fano resonators. (a) Linear transmission coefficient for two
individual resonators with different zero transmission frequencies. ω01 is the zero-transmission frequency of the first
resonator, and ω02 is for the second resonator. (b) Nonlinear transmission coefficient of the resonators in (a) excited at
the frequency dictated by dashed lines in (a) with increased power P. (c) Nonlinear transmission coefficient for coupled
resonators, separated by a delay line θ with increasing P. The transmission from left to right is TLR, while that from
righ to left is denoted as TLR. (d,e) Linear and nonlinear reflection phases of the individual resonators. (f) The effective
power seen by the second resonator when the device is excited from left for different electrical lengths θ. The vertical
dashed lines indicate the required input power for the transition to happen in the transmission curve for the corresponding
thetas. We used the parameters for resonator 1 and resonator 2 as given in Table 3 (row 1 and row 2) in Section 5.5 (Fano
Resonator Parameters).

The solution of Equation (4) considers an effective value of Ta stemming from the mul-
tiple reflections between the two resonators, which may be calculated based on numerical
simulations, but it can also be evaluated with good approximation assuming that Ta is only
affected by the incident power from the left, ignoring the reflected power from resonator 2.
In other words, when the wave experiences the first round trip, resonator 1 will see two
incoming waves: the incident wave from left, and the reflected wave from resonator 2
from the right. Therefore, Ta should be updated based on the total input power from left
and right. This process should repeat; in each iteration we update Ta based on the total
incoming power from left and right until we reach a steady state; however, in Equation (4)
we assumed that Ta is updated only once, neglecting that the reflection from resonator 2
will update the transmission Ta. This approximation makes it easier to develop physical
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insights into the response of the system; however, as shown in the numerical results in
the next section, this approximation is quite accurate. We calculate the value of Peff for
different electrical lengths θ as a function of the incident power P, as shown in Figure 3f. It
is evident that Peff can be larger or smaller than P, thereby shifting the transmission curve
of resonator 2 to higher or lower input power, respectively. In particular, for 2θ = 2.1π, P
should be 0.4 < 0.7 in order to obtain a bistable transition in resonator 2 which is lower
than the transition power when excited from the right; in contrast, 2θ = 1.5π shows that
P should be 0.95 > 0.7 in order to enable the bistable transition. These particular values
are indicated by the vertical dashed lines in Figure 3f. For the two values of θ considered,
we plot the transmission from left to right TLR, as shown in Figure 3c. Thus, we obtain a
nonreciprocal response with a large transmission from left to right, and zero transmission
from right to left for a specific value of θ. We stress that this is not equivalent to a conven-
tional isolator, as the energy from right to left is not absorbed in the device, but rather it is
reflected. Interestingly, as shown in Figure 3c, we can obtain an arbitrarily large forward
transmission ~100% and complete reflection ~100% for a given range of incident power.
We define the ratio between the power levels at the edges of the isolation region as the
nonreciprocal intensity range (NRIR). Time-reversal symmetry implies a fundamental limit
to NRIR for devices based on a single nonlinear Fano resonator with asymmetric decay
rates to the two ports [27].

T ≤ 4 · NRIx

(1 + NRIR)2 , (5)

where T is the forward transmission. This is due to the fact that time-reversal symmetry
requires the transmission to be identical, even in largely asymmetric resonators, if they fully
transmit the input signal from one port [44]. This trade-off is plotted in Figure 1b, where the
shaded blue region denotes the range of transmission and nonreciprocal intensity ranges
available for any nonlinearity-based nonreciprocal device based on a single resonance
satisfying the inequality (4). Interestingly, in our case, similar to previously demonstrated
nonlinearity-based nonreciprocal devices based on coupled resonators [34], we do not need
to comply with this limitation, and we can have an arbitrarily large forward transmission
over a wide range of incident power levels. In particular, we show in our numerical results
that some of the proposed designs (red asterisks in Figure 1b) can overcome the bound
in Equation (5) (blue dashed region). Our approach is consistent with the method used
in [34], with the difference that, in our case, we use two coupled Fano resonators, instead
of a coupled Fano and Lorentzian resonator. This approach makes it easier to design the
two resonators so that they have the same geometric topology with only slight deviations
in the geometrical parameters for the different resonators, a property that is important for
optical components where fabrication errors can easily occur and drift the parameters of
the two resonators in a correlated manner. In addition, we found that it is difficult to design
Fano and Lorentzian resonators similar to the approach in [34] with similar quality factors
based on metasurfaces. For instance, in one of the designs we will present, the quality
factor of the Fano resonance based on guided mode resonance is in the order of ~103,
attained using only a thin Si layer of a few nanometers thickness~λ/6; if we try to design a
Lorentzian resonant metasurface with the same quality factor based on, e.g., a Fabry–Pérot
resonance, we need a homogeneous slab of Si with thickness ∼ 103

n × λ, where λ is the
operation wavelength, meaning that the device will be extremely thick. Finally, we notice

that the power factor P scales with the nonlinear coefficient, P ∝ 1/
∣∣∣χ(3)

∣∣∣2; therefore, in
order to obtain both a lower operating power and larger bandwidth, we can use materials
with larger χ(3), for example multiple quantum wells, which have been shown to support
extremely large nonlinear coefficients and low incident power requirements to trigger
nonlinear responses [45]. In addition, using high quality-factor Lorentzian [46] or Fano [47]
resonant metasurfaces, it is possible to further boost the nonlinear response.

Based on these design requirements, we present two implementations of nonlinearity-
based nonreciprocal optical metasurface devices. The first design is based on low quality-
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factor metasurfaces, which are therefore less prone to fabrication errors, but requiring
large intensities in the range of GW/cm2. The second design is based on high quality-
factor resonators, which are more sensitive to fabrication errors but require much lower
input power levels. The results for the proposed designs are plotted with red asterisks in
Figure 1b. Some of them lie in the red shaded region, thereby overcoming the fundamental
limitation Equation (5).

3. Practical Implementations (for the Numerical Analysis, Please See Section ‘Full
Wave Numerical Simulation’)
3.1. Low Quality Factor Resonators

As illustrated in the previous section, we designed two optical Fano resonators with
shifted resonance frequencies such that they have the same unitary transmission at the
same incident power level; in addition, one exhibits a bistable transmission curve, while
the other smoothly varies as we increase the input power for the individual resonators.
Next, we will arrange the resonators in order to realize large optical nonreciprocity.

In order to design a Fano resonator, we consider a thin dielectric slab of Si (εSi = 12) of
thickness d1 with an etched groove on the top surface of thickness d2 patterned periodically
with period p, as shown in the inset of Figure 4a. We choose the period p = λ/2 to couple
the normally incident wave to the guide mode of the unpatroned slab. This structure
supports Fano resonances based on two coupled modes. In order to inspect the two modes
in this periodic array, let us consider first the special case d2 = 0, so that the thick dielectric
slab acts like a Fabry–Pérot resonator with a broadband resonance, i.e., a bright mode.
When we next structure the slab with periodic grooves, a normally incident plane wave,
with a magnetic field polarized along the z axis (TM), can couple to the dielectric waveguide
mode, which is essentially a dark mode and cannot be accessible without the presence of
the grooves. Upon the TM excitation, the two modes interfere, and the transmission spec-
trum experiences a Fano line shape as a function of the incident frequency f, as shown in
Figure 4a for different parameters of d1 and d2. In order to confirm the role of interference
between the two modes, we fit the transmission spectrum with a standard CMT model,
which indeed shows excellent agreement with the full wave simulation (COMSOL Mul-
tiphysics, Stockholm, Sweden). In order to further confirm that the waveguide mode is
excited, we plot the magnetic field component Hz, as shown in the inset in Figure 4a, which
indeed shows a field distribution very similar to the TM01 dielectric waveguide mode [42].
The quality factor of the resonance is in the order of 10, suggesting that the design is not
very prone to fabrication errors and imperfections, and has a wide bandwidth.

We choose (d1 and d2) for each resonator, such that they satisfy the requirements
illustrated in the previous section. In order to confirm this, we numerically investigate
the nonlinear response of the individual resonators by including in the simulations the
Kerr nonlinearity of Si, εSi(r) = 12 + χ(3)|E(r)|2, where |E| is the magnitude of the elec-
tric field, and r is the position vector. Figure 4b shows the response at the normalized
resonance frequency, f/(0.5 c/p) = 1 (vertical dashed line in Figure 4a), with a high-power
incident plane wave with intensity Pinc. The transmissions for two different structures
with parameters shown in the legend as a function of the input intensity are plotted in
Figure 4b, showing that they both exhibit very high transmission T = −0.03dB at the same
power level, Pinc = 15 GW/cm2, as shown in the inset at point ℵ, confirming the design
requirements presented in the previous section.
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Figure 4. Full wave simulation results for the design of an optical Fano resonator for free-space radiation at normal
incidence, achieved by choosing p = λ/2, where λ is the free-space wavelength. (a) Linear response of the transmission
coefficient of individual resonators arranged in a periodic array, with period p excited with a normally incident plane wave,
with polarization as shown in the inset. The red markers indicate the CMT results with the fitting parameters given in Table
3 in Section 5.5 (Fano Resonator Parameters). The color plot inset shows the z-component of the magnetic field distribution
inside the slab, consistent with the guided mode inside the unperturbed dielectric slab of the same thickness, and the color
bar is normalized to the maximum field. (b) Transmission coefficient for individual resonators in dB versus the incident
power for normal incidence assuming χ(3) = 2.8× 10−18m2/V2 at the resonance frequency.

We can now form a nonreciprocal device by arranging the two periodic resonators
back-to-back, separated by an electrical length θ (a top grooved slab with d1 = 0.18λ0
and d2 = d1/4, separated by a thickness l = λθ/(2π) and a bottom grooved slab with
d1 = 0.203λ0 and d2 = d1/3, p = λ0/2 where λ0 = 1.55 µm, and θ = 1.5π), where one
unit cell is shown in the inset of Figure 5a. We consider high power excitation (Hz) with
increased input intensities (Pinc) from top and bottom, and plot the transmission coefficients
T12 and T21 at different operating wavelengths. Figure 5a shows the transmission coefficient
when excited from different sides at the operation wavelength λ0. As expected, at a low
incident power Pinc < 10.5 GW/cm2, the system is almost reciprocal, resulting in T12 ≈ T21.
As we increase the incident power, specifically at Pinc = 10.5 GW/cm2, T21 experiences a
sharp transition from 0 to 0.95, while at the same time T21 remains very low. As we further
increase the input intensity, the transmission T12 exhibits a similar abrupt transition from
0.07 to 0.98. The intensity range between the two transitions defines our NRIR = 0.27 dB,
and the highest transmission between the two transitions is −0.132 dB, plotted in Figure 1b,
showing that at wavelength λ0 = 1.55 µm the device does not overcome the bounds of an
optimal single resonance device.

We can also calculate the transmission at larger wavelengths λ0 = 1.56 µm and
at λ0 = 1.565 µm, as shown in Figure 5b,c, respectively. Interestingly, the response at
λ0 = 1.565 µm shows an NRIR = 0.984 dB and the highest transmission T = −0.037 dB,
and it indeed shows that the response breaks the limitation of a single Fano nonlinear
device, as denoted by its asterisk point in Figure 1b. However, the design at λ0 = 1.56 µm
still satisfies the bounds for a single nonlinear resonator, as indicated in Figure 1b. We
also calculated the transmission in the dB scale, finding that T12 = −50 dB at the peak
transmission for T21 when λ = 1.565 µm, demonstrating a large contrast in transmission, a
sort of pseudo-isolation of 50 dB for this device at an incident power Pinc = 18 GW/cm2.
We stress that we should not consider this quantity as a conventional isolation metric,
because it is based on the assumption that the two ports are excited independently, and the
device cannot fully isolate in the general case of continuous wave excitation from opposite
ports. At this level of incident power and frequency, we show the full-wave simulation
results of the field distribution when the device is excited from each side in the inset of
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Figure 5c, which indeed shows close to unitary transmission in the forward propagation,
while the field is largely reflected in backward propagation, forming a standing wave at the
opposite port. Notice that this functionality is very different from a conventional isolator,
which would instead necessarily absorb the input energy coming from the input port. This
reflectivity can be used to our advantage, for instance by routing it to a third port for
circulation purposes [1]. Overall, the results in Figure 5 are far superior to those reported
in [23,24] for designs using the same material parameters; however, here we use larger
input intensities because of the low-quality factor of the involved resonators. As shown
in Figure 5a–c for each frequency, the device works for slightly different power levels.
Therefore, in order to characterize the response in the frequency domain at a fixed input
power, we plot in Figure 5d the transmission versus the frequency at a fixed input power of
16.5 GW/cm2, which shows the isolation of the bandwidth greater than 600 GHz around
the telecommunication wavelength, confirming the wideband response of the device due
to the low quality factor of the constituent resonators, at the cost of increased required
power levels.

Figure 5. Full wave simulation results for transmission from opposite ports (T12, T21) of the pro-
posed bilayer metasurface shown in the inset of (a), where the top resonator has dimensions
(d1 = 0.203λ, d2 = d1/4 ) and the bottom resonator has dimensions (d1 = 0.18λ, d2 = d1/3 )
for the electrical distance θ = 1.5π = 2π/λl, and l is the physical distance between the two res-
onators. The period of the two-groove array is λ/2 where λ = 1.55 µm. The transmission of a
normally incident plane wave with increased input power Pinc at (a) wavelength λ0 = 1.55 µm,
(b) λ0 = 1.56 µm and (c) λ0 = 1.565 µm. The inset in (c) shows the full wave simulation of the
magnetic field when the device is excited from each side separately when Pinc = 18 GW/cm2.
(d) Transmission from two sides versus the frequency at a fixed power level of 16.5 GW/cm2. The
NRIR and transmission for the plots from (a) to (c) are NRIR = [0.27, 0.541, 0.984] dB, and the peak
transmission is T = [−0.132, −0.04, −0.037] dB, respectively.

3.2. High Quality Factor Resonators

As shown in the previous section, the power levels required for the device to work
in its optimal condition are in the order of GW/cm2, due to the low-quality factor of
the resonator, which may hinder its broad applicability. However, one possible solution
is to employ materials with high nonlinearity, e.g., multiple quantum wells have shown
extremely high nonlinear susceptibilities both in both the second and third orders [45,48,49].
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Higher-Q Fano resonators can be used to reduce the required power, however, and for
this reason we aim to maximize the field enhancement levels inside the resonators by
designing a high-Q Fano resonator based on guided mode resonance coupling through
narrow slits in a dielectric slab, as shown in inset of Figure 6a. The transmission coefficient
for a normally incident plane wave, with an electric field in the z-direction (TE), is shown
in Figure 6a, exhibiting a typical Fano line shape with zero transmission at λ0 = 1.5608 µm
and unitary transmission at the very nearby wavelength λ0 = 1.5598 µm. In order to
evaluate the quality factor of this resonator, we plot the average electric field enhancement
inside the nonlinear material |E|2, as shown in Figure 6b, which shows a Lorentzian line
shape with quality factor Q = 1700, compared to Q = 10 of the design in the previous
section. Additionally, the inset shows that the electric field distribution inside the slab is
similar to the TE01 waveguide mode [42]. The second resonator is formed by adding a
glass slab (nglass = 1.5) to another Si grating, as shown in the inset of Figure 6c. Similar
to Figure 6a, the transmission exhibits a sharp Fano resonance; however, the average
electric field enhancement is smaller than in Figure 5d. This is understood, as we chose
the guided mode resonance to be formed inside the glass slab, and not in the Si layer, as
confirmed by the electric field distribution in the inset of Figure 6d. We chose the second
resonator to be attached to the glass substrate in order to control the field enhancement
in the Si layer and hence obtain unitary transmission at the same power levels when the
nonlinearity is included (similar to point ℵ in Figure 4b). In addition, we plot the CMT
standard model results in Figure 6a, and Figure 6c using the fitting parameters from Table 3
in Section 5.5 (Fano Resonator Parameters), which shows excellent agreement with the full
wave simulation.

Figure 6. Full wave simulation results for the linear response of the Fano resonators. (a) Linear
transmission of a periodically patterned dielectric slab for a normally incident plane wave excitation
with an electric field along the z axis. The red markers are the CMT standard model results using
the parameters given in Table 3 (see Section 5.5 (Fano Resonator Parameters)) for resonator 1 (w/o
glass). (b) Average squared value of the electric field inside the Si material shown in (a); the inset
shows the electric field distribution at resonance, and the scale bar is normalized to the maximum
field. (c) The same as (a), but with an added glass slab. The red markers are the CMT standard
model results using the parameters given in Table 3 (see Section 5.5 (Fano Resonator Parameters)) for
resonator 2 (w glass). (d) The same as (b) but for the structure in (c). The geometry parameters used
are d = 0.1179 µm, p = 1.4763 µm, dg = 0.45875 µm, and slit width = 0.0536 µm.
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By exciting each metasurface separately with a normally incident TE plane wave
with input intensity Pinc, we can calculate the transmission as a function of the intensity,
considering the Si nonlinearity using full wave simulation (COMSOL Multiphysics). The
nonlinear transmission coefficient is shown in Figure 7a for the two resonators indepen-
dently. We stress that the excitation for each structure from different sides results in a
symmetric transmission curve following identically the same curves in Figure 7a, essen-
tially having NRIR = 0 dB. Following a similar design process as above, we are able to
achieve unitary transmission for each individual resonator at the same incident power
level Pinc = 1.5 MW/cm2 (point ℵ in the inset of Figure 7a), which is much smaller than
the input intensity of 15 GW/cm2 obtained in the previous section. Additionally, we can
plot the CMT results for this nonlinear behavior, which shows excellent agreement with
the numerical simulation. We can form an optimal nonreciprocal device by stacking the
two gratings of Figure 7a, separated by the distance l = λθ/(2π), where λ = 1.56104 µm
and θ = 6.4π, as shown in the inset of Figure 7b. The nonlinear transmission coefficient for
excitation from opposite sides for increased input intensities Pinc is shown in Figure 7b. We
obtain very high transmission T = −0.2 dB and large transmission contrast of over 60 dB
at an incident power level of only 1.4 MW/cm2. Interestingly, the NRIR = 2.1 dB, and by
plotting the point (NRIR, T) in Figure 1b, we see that this design exceeds the limitation of
a single Fano nonlinear resonator. We emphasize that this power level is very small, and
can be achieved even with continuous wave lasers; however, this comes at the cost of being
vulnerable to fabrication errors [50]. Concepts borrowed from topological photonics may
be used to enhance the robustness of the response in high-quality factor systems, even in
the presence of fabrication errors [51,52].

Figure 7. Full wave simulation results for excitation at frequency c/1.56104 [um], with a normally incident plane wave of
power Pinc. (a) Nonlinear transmission for isolated gratings as a function of the input power. The red markers indicate
the results obtained using the CMT standard model with the parameters given in Table 3 (see Section 5.5 (Fano Resonator
Parameters)). (b) Transmission for the coupled metasurface design with θ = 6.4π shown in the inset. T12 indicates the
transmission from top to bottom, while T12 indicates the transmission from bottom to top. The NRIR is 2.1 dB, and the peak
forward transmission is −0.2 dB.

We also studied the response of this optimal device for different electrical lengths θ in
Figure 8. Due to the nonlinearity of the system, the response is interestingly not necessarily
periodic, even after the evanescent field effects disappear. At very large input powers,
past the bistable response region, the response becomes periodic, as shown for the case
θ = 10.4π, which is very similar to θ = 6.4π in Figure 7b. Additionally, as illustrated
above, the value of θ largely controls the direction of isolation; for example, the values
of θ (θ = 3.6, 4.4, 5.2, 10.4π) give forward transmission and backward isolation, and the
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converse is true for the other values of θ = 3.8π, 4.8π. Additionally, there are some values
of θ where the response becomes symmetric and the field enhancement becomes symmetric
for different directions of propagation (θ = 4π, 4.2π).

Figure 8. Full wave simulation results for the nonlinear device in the inset of Figure 7b, excited at frequency c/1.56104 [um]
with a normally incident plane wave of power Pinc for the different values of θ displayed in the bottom right corner of each
figure. The horizontal axis is normalized by the period p = 1.475 µm such that it has units of Watts.

We can characterize the operation of the proposed metasurface by comparing it to
other free-space nonreciprocal metasurface devices operated under different principles. In
Table 2, we present a comparison highlighting the main aspects characterizing the response
of these different nonreciprocal metasurfaces, focusing on the main approaches used to
break the reciprocity, i.e., breaking time invariance [11], passivity [17] and linearity [23],
including this work.

As seen in Table 1, we notice that the bandwidth of all of the proposed approaches
is very small, and it does not exceed a 5% fractional bandwidth in the best case [19]. This
can be illustrated because all of the approaches employ resonant elements with a high
quality factor in order to reduce the power requirements, and as a consequence decrease
the bandwidth. We also observe that it is often difficult to characterize the efficiency of a
metasurface at RF frequencies because there is a non-trivial number of parameters that
need to be taken into account in order to estimate the total power efficiency. For example,
in time-modulated metasurfaces, the efficiency should be calculated by normalizing the
output power to the total input power, including the modulation power. In fact, it is very
valuable that the authors in [13] did a full characterization of the metasurface performance
by calculating all of the relevant power quantities. Although the insertion loss in the their
work is about −5dB, this does not mean that the efficiency is low compared to other works
based on the same concept, because other works [11,14] do not provide a full estimation of
the relevant power quantities. However, we emphasize that for nonlinear metasurfaces, it is
very straightforward to characterize the overall efficiency because the signal self-modulates
the medium through the Kerr nonlinearity, and the metasurface itself is passive.
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Table 1. Comparison between the different approaches used to realize free space nonreciprocity.

Work
Breaking

Reciprocity Due
to:

Bandwidth/
Center Fre-

quency

Modulation Frequency (mf) or
Total Gain of the Amplifiers (tga)
or Kerr Nonlinearity Coefficient

(χ(3))

Thickness/
Wavelength

Pump Power Per Unit Cell or Signal
Power/Intensity

Isolation (or Transmission Contrast)
at Best Insertion Loss

Frequency
Conversion/

Programmable

[11]

Time modulation

NA/
5.28 [GHz]

MF

50 [MHz] 2.54 [mm]/
56.8 [mm]

Modulation signal
power

or intensity

NA NA No/yes

[13] 0.3 [GHz]/
8.97 [GHz]

370 [MHz] or
600 [MHz]

2 [mm]/
33.33 [mm] 10 dBm or 1 V 5 dB loss, isolation of 30 dB Yes/yes

[14] 5.77 [THz]/
348.8 [THz] 2.8 [THz] 400 [nm]/

860 [nm] 15 GW/cm2 NA Yes/yes

[17]

Unidirectional
gain amplifiers

6 [MHz]/
944 [MHz] ¥

TGA

0 dB 31.7 [mm]/
317 [mm]

DC power of each
amplifier in one
layer, number

of layers

NA, 2 Isolation of −1.5 dB assuming 0 dB
insertion loss ¥

No/yes

[18] 0.17 [GHz]/
5.9 [GHz] 20 dB 1.7 [mm]/

50.8 [mm] 0.18 [W], 2 17 dB transmission gain and 10 dB loss
correspond to 27 dB.

[19] 0.25 [GHz]/
5.875 [GHz]

10 dB-
30 dB

1.82 [mm]/
51 [mm] 0.1–0.2 [W] £, 2

20 dB transmission gain and 20 dB loss
correspond to 40 dB isolation

[20] 0.05 [GHz]/
5.5 [GHz] 20 dB 2.1 [mm]/

54.54 [mm] 0.1 [W], 2 13 dB of transmission gain and
32 dB isolation

[23]

Kerr nonlinearity
NA

χ(3)

(m2/V2)

2.8× 10−18 0.1 [um]/1.5 [um]

Signal intensity

5 kW/cm2 −17 dB at −1.2 dB over 4.77 dB *

No/no[24] (2.7–6.15) [um]/
1.53 [um]

(1.5–2)
MW/cm2

Isolation of −25.4 dB at insertion loss
of −0.46 dB over NRIR of 2.79 dB **

Isolation of −35.7 dB at insertion loss
of −0.41 dB over NRIR of 1.5 dB ***

Isolation of −15.2 dB at −0.044 dB over
NRIR of 1.52 dB ****¿

This
work

0.6 [THz]/
192 [THz]

(1.33–5.334) [um]/
1.56 [um]

(16.8–0.001)
GW/cm2 −56 dB at −0.04 dB, −65 dB at −0.2 dB

¥ From Figure 4 [16]. £ Based on the datasheet of the amplifier and the DC bias used in the paper and similar transistors used in previous publications [17], it is expected to be 0.1–0.2 W [18]. * From Figure 3c [23].
** From Figure 3 [22]. *** From Figure 4 [22]. **** From Figure 5 [22]. ¿ Notice that the NRIR of this metasurface does not break the limitation of the single Fano resonator nonlinear isolator, even though 1.52 dB
NRIR goes beyond the limit, the isolation is not infinite, so a fair comparison cannot be guaranteed here.
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4. Conclusions

We studied and designed nonlinearity-based nonreciprocal metasurface devices based
on coupled Fano resonances. Their response has been shown to overcome the fundamental
limitations of a single resonant element associated with time-reversal symmetry [27,44],
and our designs show an insertion loss of −0.04 dB for an NRIR of 1 dB with isolation over
50 dB. Our results are presented in normalized units, such that they can be scaled to other
frequency ranges, and even applied to other materials, such as multiple quantum wells
supporting larger nonlinearities [45]. We focused on two designs, with one supporting a
moderate resonance and therefore requiring large power levels, but with robust response
to fabrication errors. The second design is more prone to fabrication errors, but it requires
much smaller power levels to operate. It is, of course, possible to explore designs that
work in between these two extremes, as a function of the desired trade-off between power
levels and the robustness of the design. It is interesting that all of the considered designs,
while surpassing the bound for single resonant elements in Equation (5), lie very close
to it, as seen in Figure 1b. It appears that metasurface designs do not provide the same
flexibility of circuit elements, which provided a superior performance in terms of NRIR [34].
Our work provides useful guidelines to design these types of nonlinearity-based nonre-
ciprocal metasurfaces for free-space radiation. Similar concepts can also be extended to
photonic integrated circuits for which the control over the structure parameters is easier,
and it provides a useful platform for passive, bias-free, magnetic-free CMOS-compatible
nonreciprocal components for optical communications, sensing, imaging, and computing.

5. Materials and Methods
5.1. Coupled Mode Theory

In order to illustrate the formation of a Fano resonance, we consider in Figure 9 two
generic resonant modes coupled to radiation channels. We assume a complex field inside
resonator n, an such that |an|2 is the normalized energy inside the resonator. We derive the
CMT equations as

da1
dt = (jω1 − κ1)a1 +

√
κ1(S2+ + S1+)

da2
dt = (jω2 − κ2)a2 +

√
κ2
(
S2−e−jθ + S3+

)
S1− =

√
κ1a1 − S2+

S2− =
√

κ1a1 − S1+

S2+ = e−jθ(
√

κ2a2 − S3+)

S3− =
(√

κ2a2 − S2−e−jθ).

Figure 9. Schematic model of coupled resonators to and from a Fano resonance.
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Assuming excitation from the left port with the form S1+ = ejωt, we rewrite the
steady-state equations, assuming that all modes and signals have the form A→ Aejωt , as

(jδ1 + κ1)a1 −
√

κ1S2+ =
√

κ1

(jδ2 + κ2)a2 −
√

κ2S2−e−jθ = 0

S1− −
√

κ1a1 + S2+ = 0

S2− −
√

κ1a1 = −1

S2+ − e−jθ√κ2a2 = 0

S3− −
√

κ2a2 + S2−e−jθ = 0

where, δn = ω−ωn. Then, we solve for a1 and a2, and then substitute in S3− to obtain the
transmission coefficient.

a1 =
jδ2
√

κ1

j(δ2κ1 + δ1κ2)− δ1δ2
S1+; |a1|2 =

κ2
1

δ2
1

1
κ1

1 +
(

κ1
δ1
+ κ2

δ2

)2 |S1+|2. (6)

a2 =
−jδ1
√

κ2

j(δ2κ1 + δ1κ2)− δ1δ2
S1+; |a2|2 =

κ2
2

δ2
2

1
κ2

1 +
(

κ1
δ1
+ κ2

δ2

)2 |S1+|2. (7)

t =
S3−
S1+

= − 1

1− j
(

κ2
δ2
+ κ1

δ1

) ; T = |t|2 =
1(

κ1
δ1
+ κ2

δ2

)2
+ 1

=
1

1 + x2
a

. (8)

r =
S1−
S1+

= 1− t =
−j
(

κ2
δ2
+ κ1

δ1

)
1− j

(
κ2
δ2
+ κ1

δ1

) ; R = |r|2 =

(
κ1
δ1
+ κ2

δ2

)2

(
κ1
δ1
+ κ2

δ2

)2
+ 1

=
x2

a
1 + x2

a
. (9)

There are two zeros in transmission, when δ1 = 0 or δ2 = 0. Furhtermore, the unitary
transmission happens at ω = κ2ω1+κ1ω2

κ1+κ2
, or equivalently when κ1

δ1
= − κ2

δ2
. Throughout

the work, we assume that the second resonance frequency is much larger than the first
resonance frequency ω2 � ω1, with a much higher coupling rate, κ2 � κ1.

5.2. Nonlinear Bistability

If we assume the resonators to be nonlinear, and ω2 is far away from the frequency
range of interest, the resonance frequency of the mode a1 changes according to the rela-
tion [42],

ω1 = ω0

(
1− |a1|2

|a0|2

)
, (10)

where ω0 is the resonance frequency of the mode a1 before including nonlinearity, and
|a0|2 quantifies the nonlinearity, specifically, the rate of the resonance frequency shift due
to nonlinearity. We can substitute for |a1|2 from (10) into (6) and obtain

δ1 = δ01 +

(
κ1
δ1

)2

1 +
(

κ1
δ1
+ κ2

δ2

)2
ω01|S1+|2

κ1|a0|2
, (11)

where, again, δ01 = ω−ω0. This is a cubic equation of the only unknown δ1 when all other
parameters are known, and it has the form(

κ1

δ1

)3

(P + m) +
(

κ1

δ1

)2

(2m†− 1) +
(

κ1

δ1

)(
m+ m†2 − 2†

)
− 1− †2 = 0 (12)
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where the shorthand parameters (P, m, †) are given by

P =
ω0|S1+|2

κ1|a0|2
,m =

δ01

κ1
, † =

κ2

δ2

By solving (12), we obtain the shift in resonance frequency including nonlinearity,
which can later be substituted in (8) to obtain the nonlinear transmission coefficient.

5.3. Bistability Condition

The bistability of a single nonlinear Lorentz resonator can be achieved at a certain
range of power levels if the resonator is excited with a frequency ω, such that [42]

ω < ω0L −
√

3 κ1L, (13)

where ω0L is the resonance frequency of the resonator at which the maximum energy is
stored when exited; κ1L is its total decay rate, and we added the subscript L to refer to
Lorentz resonator. We can derive a similar condition for our two-mode Fano resonator.
This can be accomplished by writing the energy in a1 of our Fano resonator in a similar
form to the energy of a Lorentz resonator, and then finding the resonance frequency
ωmod and coupling rate κmod that are equivalent to ω0L and κ1L. In order to derive these
effective parameters, we start from the fact that the Fano resonant modes satisfy the relation
|ω2 −ω1| � δ1, which means that we are interested in a solution in the vicinity of the
high-quality mode a1. Therefore, a good approximation is

δ2 = ω−ω2 ≈ ω1 −ω2 = ∆ω.

Then, we rewrite the mode energy |a1|2 from Equation (6) as

|a1|2 ≈
κ1∆2

ω

(∆2
ω+κ2

2)(
δ1 +

∆ωκ1κ2
(∆2

ω+κ2
2)

)2
+

∆4
ωκ2

1

(∆2
ω+κ2

2)
2

|S1+|2 (14)

It is easily shown from Equation (14) that the energy inside the Fano resonator follows
a Lorentzian lineshape, such that we can proceed to derive the equivalent quantities in
order to derive the bistability condition. Additionally, we can see that the largest energy is
achieved at a frequency that lies between the zero and unitary transmission of the Fano
resonator. Thus, this frequency is equivalent to ω0L, and it is given by

ωmod = ω1 −
∆ωκ1κ2

∆2
ω + κ2

2
. (15)

Recall that ∆ω < 0 so ωmod > ω1. We can also derive the effective coupling rate
(linewidth) for this lineshape as

κmod =
∆2
ωκ1

∆2
ω + κ2

2
. (16)

Therefore, the condition for bistabitlity in the proposed Fano resonator is given by

ω < ωmod −
√

3κmod. (17)

5.4. Effective Power of Coupled Nonlinear Fano Resonators

When we connect two Fano resonators (a, b) with shifted resonance frequencies, as
shown in Figure 10, we can calculate the incident power to the right Fano resonator when
the device is excited from the left with incident power |S1a+|2. It is worth mentioning
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that each Fano resonator in Figure 10 can be modeled as a coupled mode resonator, as
shown in Figure 9, and that each resonator can be characterized by its scattering matrix, for
instance, resonator (a, b) to the (left/right) has the field reflection coefficient (ra, rb) and
transmission coefficient (ta, tb). We calculate Peff = |S1b+|2 under the condition that we
operate the device in power levels that ensure complete reflection from the second resonator,
i.e., S1b− = ejφb S1b+, where φb is the reflection phase from the second resonator. In addition,
we assume that the first resonator reflection coefficient in the form raejφa , which is almost
constant with increasing power levels. We can easily write the following equations:

S2a− = taS1a+ + |ra|ejφa S2a+

S2a− = taS1a+ + |ra|ej(φa)e−jθS1b−

S2a− = taS1a+ + |ra|ej(φa+φb)e−j2θS2a−

S2a− = taS1a+ + |ra|ej(φa+φb)e−j2θS2a−

S2a−
(

1− |ra|ej(φa+φb)e−j2θ
)
= taS1a+

S2a− = ta
1−|ra|ej(φa+φb)e−j2θ

S1a+

|S2a−|2 = |S1b+|2 = Peff =
Ta

1+Ra−2|ra | cos(φa+φb+2θ) |S1a+|2

Figure 10. Coupled Fano resonators with shifted zero-transmission frequencies.

We use the relation |ra| =
√

Ra =
√

1− Ta, and define |S1a+|2 = P, so finally:

Peff =
Ta

2− Ta − 2
√

1− Ta cos(φa + φb + 2θ)
P (18)

5.5. Fano Resonator Parameters for Figures 3, 4, 6 and 7

We can interpret the Fano resonances from the structured Si layers used throughout
this work based on their definition as the interference of a broadband bright resonance
and a narrowband dark resonance. The dark resonance can be coupled to the background
continuum when it is coupled evanescently to some bright mode, or through diffraction by
perturbing the mode parameters, as in our case. In the case of guided mode resonance, the
bright resonance is the Fabry–Pérot resonance supported longitudinally by the unperturbed
dielectric slab, while the dark resonance is the guided mode of the dielectric slab, which is
perturbed by the thin grooves in the dielectric. These two modes couple to the background
with different coupling coefficients, and indeed they have different resonance frequencies.
In order to derive the result in Figure 4, we find the best fitting parameters as given in
Table 2. It is interesting to see that the value of the coupling coefficient of the dark mode κ1
is smaller than the coupling of the bright mode κ2. Table 3, on the other hand, gives the
fitting parameters for Figures 3, 6 and 7, which also show that the coupling coefficient of
the dark mode is much smaller than that of the bright mode.
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Table 2. Parameters of the Fano resonance in Figure 4.

Structure 1 (d1 = 0.18λ, d2 = d1/3)
(ω, κ) are normalized by (2π × c/2p) ω1 = 1.016 ω2 = 1.3 κ1 = 0.04 κ2 = 0.138 θ = 0

Structure 2 (d1 = 0.203λ, d2 = d1/4)
(ω, κ) are normalized by (2π × c/2p) ω1 = 0.977 ω2 = 1.33 κ1 = 0.07 κ2 = 0.2 θ = 0

Table 3. Parameters of the Fano resonance in Figures 3, 6 and 7 (operating frequency = 0.9999×1.92162× 1014× 2π (rad/s)) *.

Structure 1 (w/o glass)
(ω, κ) are normalized by (2π× 1014) ω1 = 1.92204 ω2 = 100 κ1 = 0.00191 κ2 = 152.2 θ = 0 |a0|2 = 4.5× ω1

κ2
1

Structure 2 (w glass)
(ω, κ) are normalized by (2π× 1014) ω1 = 1.921628 ω2 = 100 κ1 = 0.00062 κ2 = 144.4 θ = 0 |a0|2 = 10× ω1

κ2
1

* Notice that the numbers 4.5 and 10 in the last column have units of Watts.

5.6. Full Wave Numerical Simulation (We Used Full Wave Numerical Simulation to Obtain the
Results in Figures 4–8)

The characterization of the metasurface was performed using linear and nonlinear
simulations in the commercial software COMSOL Multiphysics. They are based on finite
element numerical simulations, where the solution domain is divided into nonuniform free
triangular elements, and Maxwell’s equations are solved inside and on the boundaries of
these elements enforcing the boundary conditions. Additionally, the software enables us to
define the permittivity values as a function of the local field power. Each of the presented
results contains two simulation steps: a linear simulation where the optical parameters of
the materials are considered linear or equivalently, assuming very low power operation,
and a nonlinear simulation. We first performed linear simulations to obtain the linear
reflection and transmission coefficients, and to obtain the resonance of the structure. In this
simulation, we assume a unit cell of the metasurface with periodic boundary conditions on
the left and right port, and excited the structure with periodic boundaries from top/bottom,
while keeping the bottom/top port as receiving ports, as shown in Figure 11. Additionally,
we added a nonuniform rectangle mesh to the unit cell, assuming a minimum element
size of 38 nm inside the dielectric. A mesh view for the low-quality factor structure is
shown in Figure 11 (left panel), and a distribution map of the mesh cell area is shown
in Figure 11 (right panel). Notice that a similar mesh is used for the high-quality factor
structure; however, it is important in this kind of structure to keep the mesh fixed in
both the linear and nonlinear simulation, because any slight change in the mesh would
significantly change the resonance location.

Figure 11. (Left panel) Setup of the frequency domain simulation showing that the structure is
segmented in triangle areas with a maximum size of 38nm, and that it is excited by a periodic port
either from the top or bottom, while keeping the periodic boundary condition on the left and right.
(Right panel) Distribution map of the area of each mesh element; the scale bar unit is m2.
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After obtaining the linear response of the metasurface encoded in the reflection,
transmission and energy, and determining the frequency of interest as presented in the
main text, we updated the silicon permittivity using a user-defined function, such that
the permittivity is written as ε = εlinear + χ(3)|E|2, where εlinear is the permittivity used in
the linear simulation, and the effect of nonlinearity is encoded in the second term of the
permittivity. Notice that |E|2 is not uniform inside the dielectric; therefore, our simulation
takes into account all spatial inhomogeneity in the electric field. Then, we excited the
unit cell with a plane wave of fixed frequency, and performed a parametric sweep over its
power, in order to obtain the transmission from the top or bottom, respectively. Because the
permittivity is a function of the induced field, the convergence of the solver is not always
guaranteed. In order to overcome this problem, we increased the number of the iterations
in the iterative solver to over 100 iterations in order to make sure that the solution will
converge. In some situations, especially for the high Q structure, the convergence was not
realized using the parameteric sweep, so we had to revert to manually updating the power
and using the solution from the previous step as an initial condition for the next step. This
is similar to following one curve on the bistability by either increasing or reducing the
power. We repeat this step, but for excitation from the bottom to top in order to obtain the
full transmission curves T12 and T21.

Overall, apart from the convergence and manually updating the initial condition,
the solution time for both the linear and nonlinear problem takes less than five minutes,
assuming 100 points of parametric sweep of power and wavelength. The simulation was
performed on a personal laptop.
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