Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = KMT2F

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9552 KB  
Article
Characterization and Genomic Analysis of Pasteurella multocida NQ01 Isolated from Yak in China
by Kewei Li, Haofang Yuan, Chao Jin, Muhammad Farhan Rahim, Xire Luosong, Tianwu An and Jiakui Li
Animals 2025, 15(23), 3462; https://doi.org/10.3390/ani15233462 - 1 Dec 2025
Cited by 2 | Viewed by 482
Abstract
Hemorrhagic septicemia (HS) is a fulminant bovine disease across Asia and Africa, yet Pasteurella multocida (P. multocida) isolated from yak is poorly reported. We isolated strain NQ01 from a fatal HS case in Xizang, China and identified it as P. multocida [...] Read more.
Hemorrhagic septicemia (HS) is a fulminant bovine disease across Asia and Africa, yet Pasteurella multocida (P. multocida) isolated from yak is poorly reported. We isolated strain NQ01 from a fatal HS case in Xizang, China and identified it as P. multocida B:2 by morphology, Gram stain, and PCR (kmt1+, bcbD+, LPS L2). NQO1 formed smooth, non-hemolytic colonies. After Gram staining, the cells appeared as red rods with bipolar staining. Antimicrobial testing showed broad susceptibility to β-lactams, aminoglycosides, tetracyclines, fluoroquinolones, midecamycin, florfenicol, polymyxin, and vancomycin, with resistance to metronidazole, trimethoprim sulfamethoxazole, and clindamycin. Streptomycin and ofloxacin had intermediate activity. In mice, the intraperitoneal and intranasal LD50 values were 40.64 CFU/mL and 9.53 × 106 CFU/mL, respectively. The intranasal fatal cases were characterized by bacteremia with multifocal disseminated intravascular coagulation involving lung, liver, and spleen. The complete genome comprises a single 2.33 Mb chromosome (40.47% GC, 2115 CDS, no plasmids) with only one resistance gene (Eco_EFTu_PLV) and 28 virulence genes spanning adhesion (tadA, rcpA, ppdD, pilB, tuf/tufA, htpB, PM_RS00430, PM_RS00425, PM_RS08640), immune modulation (lpxB/C/D, msbB, manB, rfaE/F, gmhA/lpcA, kdsA, pgi, wecA, galE, bexD’, ABZJ_RS06285, ABD1_RS00310), and nutritional/metabolic factor (hgbA, hemR, hemN), plus a YadA-like factor. Phylogenetically, NQ01 clusters with regional B:2 bovine/yak isolates. Collectively, these data define NQ01 as a highly virulent, low-resistance yak isolate and a practical model for natural-route HS pathogenesis and targeted control in high-altitude pastoral settings yaks. Full article
Show Figures

Figure 1

14 pages, 674 KB  
Article
Molecular Characterization of Seminoma Utilizing the AACR Project GENIE: A Retrospective Observational Study
by Suchit R. Geereddy, Amber Chang, Alma Gallegos, Jonathan Lin, Akaash Surendra, Suraj Puvvadi, Beau Hsia, Abubakar Tauseef, Joseph Thirumalareddy and Akshat Sood
Cancers 2025, 17(20), 3363; https://doi.org/10.3390/cancers17203363 - 18 Oct 2025
Viewed by 851
Abstract
Background: Seminoma is a malignant germ cell tumor that most commonly involves the testicles but may involve the mediastinum, the retroperitoneum, and other extra-gonadal sites as well. This study aims to investigate the somatic genomic landscape of seminoma. Methods: Data for a retrospective [...] Read more.
Background: Seminoma is a malignant germ cell tumor that most commonly involves the testicles but may involve the mediastinum, the retroperitoneum, and other extra-gonadal sites as well. This study aims to investigate the somatic genomic landscape of seminoma. Methods: Data for a retrospective observational analysis of seminoma was acquired from the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) with clinical and genomic data from 2017 and beyond. Using the R and R Studio software (R 4.5.0), analyses for common somatic mutations and copy number alterations were run with a statistical significance of p < 0.05. Results: The most mutated genes included KIT (22.6%), KRAS (17.1%), and MTOR (5.1%), with significant copy number alterations in CDKN1B (17.2%), KRAS (14.7%), CCND2 (10.3%), and H3F3C (9.8%). These suggest involvement within the KIT/RAS/MAPK and PI3K/AKT/mTOR (PAM) pathways for seminoma development. A novel finding within comparative evaluation of PMS1 and AMER1 mutations were found in Black individuals. Additionally, our findings were consistent with a lower testicular cancer rate among individuals with African ancestry than European ancestry. BRD4 mutations were found only in metastatic samples while KMT2C, STAG2, ALK, AXL, and EGFR were only found in primary samples, suggesting a possible association. Conclusions: This study provided a comprehensive molecular and genetic profiling of seminoma including key genetic alterations, affected pathways, and potential therapeutic strategies. Moreover, overlap between pathways and gene mutations provides the potential for alternative treatment options for seminoma via multiple pathways. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

22 pages, 5626 KB  
Article
Could let-7f, miR-10b, miR-34a, miR-181b, and miR-181d Be Useful Tools as a Target Therapy for Uterine Leiomyosarcoma?
by Bruna Cristine de Almeida, Laura Gonzalez dos Anjos, Luciane Tsukamoto Kagohara, Ayman Al-Hendy, Qiwei Yang, Edmund Chada Baracat, Cláudia Malheiros Coutinho-Camillo and Katia Candido Carvalho
Biomedicines 2025, 13(3), 560; https://doi.org/10.3390/biomedicines13030560 - 23 Feb 2025
Cited by 2 | Viewed by 1384
Abstract
Background/Objectives: We have previously identified let-7f-5p, miR-10b-5p, miR-34a-5p, miR-181b-5p, and miR-181d-5p as differentially expressed between uterine leiomyoma (LM) and leiomyosarcoma (LMS) tissue samples. The present study aimed to characterize these miRNA expression profiles and to assess the functional role [...] Read more.
Background/Objectives: We have previously identified let-7f-5p, miR-10b-5p, miR-34a-5p, miR-181b-5p, and miR-181d-5p as differentially expressed between uterine leiomyoma (LM) and leiomyosarcoma (LMS) tissue samples. The present study aimed to characterize these miRNA expression profiles and to assess the functional role of miR-34a and miR-181b in uterine LM and LMS cells. Methods: All the selected miRNAs showed downregulation in LMS cells compared to LM cells, but only miR-34a and miR-181b expression patterns matched those of patient samples. Therefore, these two miRs were selected for further analyses. Results: Loss of function analysis demonstrated that miR-34a and miR-181b silencing inhibited LM cell proliferation and migration. MiR-34a silencing induced CCND1 and MDM4 expression and inhibited KMT2D, BCL2, and NOTCH2 in LM. Silencing of miR-181b promotes TIMP3 and FGFR1 expression in LM and diminishes BCL2, NOTCH2, ATM, IRS1, and PRLR. Gain of function analysis revealed that the introduction of miR-34a and miR-181b mimics suppressed proliferation and migration in malignant LMS cells. Additionally, transfection with a miR-34a mimic downregulated NOTCH2 and BCL2 expression and enhanced the expression of CCND1, KMT2D, and TP53 in LMS cells. Moreover, miR-181b overexpression decreased TIMP3, NOTCH2, ATM, and IRS1 expression and increased the expression of FGFR1 in this cell. Importantly, the single introduction of either a miR-34a or miR-181b mimic was able to decrease the invasion capacity of LMS cells. Conclusions: Our studies demonstrated that miR-34a or miR-181b may play an anti-oncogenic role in uterine tumors; further studies are needed to better understand the role and regulatory mechanism of these miRNAs in LMS cancer development, which will help provide prognostic and therapeutic options for patients with LMS. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Cancer Progression)
Show Figures

Figure 1

25 pages, 5396 KB  
Article
In Vivo and In Vitro Characterization of the RNA Binding Capacity of SETD1A (KMT2F)
by Harem Muhamad Amin, Beata Szabo, Rawan Abukhairan, Andras Zeke, József Kardos, Eva Schad and Agnes Tantos
Int. J. Mol. Sci. 2023, 24(22), 16032; https://doi.org/10.3390/ijms242216032 - 7 Nov 2023
Cited by 1 | Viewed by 2635
Abstract
For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of [...] Read more.
For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two—SETD1A and SETD1B—contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 2603 KB  
Article
Genetic and Clinical Characteristics of Korean Chronic Lymphocytic Leukemia Patients with High Frequencies of MYD88 Mutations
by Ari Ahn, Hoon Seok Kim, Tong-Yoon Kim, Jong-Mi Lee, Dain Kang, Haein Yu, Chae Yeon Lee, Yonggoo Kim, Ki-Seong Eom and Myungshin Kim
Int. J. Mol. Sci. 2023, 24(4), 3177; https://doi.org/10.3390/ijms24043177 - 6 Feb 2023
Cited by 9 | Viewed by 3531
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. However, CLL is relatively rare in Asia; its genetic features are rarely studied. Here, we aimed to genetically characterize Korean CLL patients and to elucidate the genetic and clinical associations [...] Read more.
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. However, CLL is relatively rare in Asia; its genetic features are rarely studied. Here, we aimed to genetically characterize Korean CLL patients and to elucidate the genetic and clinical associations based on data obtained from 113 patients at a single Korean institute. We used next-generation sequencing to explore the multi-gene mutational data and immunoglobulin heavy chain variable gene clonality with somatic hypermutation (SHM). MYD88 (28.3%), including L265P (11.5%) and V217F (13.3%), was the most frequently mutated gene, followed by KMT2D (6.2%), NOTCH1 (5.3%), SF3B1 (5.3%), and TP53 (4.4%). MYD88-mutated CLL was characterized by SHM and atypical immunophenotype with fewer cytogenetic abnormalities. The 5-year time to treatment (TTT) of the overall cohort was 49.8% ± 8.2% (mean ± standard deviation) and the 5-year overall survival was 86.2% ± 5.8%. Patients with SHM, isolated del(13q), TP53-wild type, and NOTCH1-wild type showed better results than those without these conditions. In the subgroup analyses, patients with SHM and L265P presented shorter TTT than patients with SHM but not L265P. In contrast, V217F was associated with a higher SHM percentage and showed a favorable prognosis. Our study revealed the distinct characteristics of Korean CLL patients with high frequencies of MYD88 mutations and their clinical relevance. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

9 pages, 1241 KB  
Brief Report
Distinct Roles of Histone Lysine Demethylases and Methyltransferases in Developmental Eye Disease
by Linda M. Reis, Huban Atilla, Peter Kannu, Adele Schneider, Samuel Thompson, Tanya Bardakjian and Elena V. Semina
Genes 2023, 14(1), 216; https://doi.org/10.3390/genes14010216 - 14 Jan 2023
Cited by 10 | Viewed by 3714
Abstract
Histone lysine methyltransferase and demethylase enzymes play a central role in chromatin organization and gene expression through the dynamic regulation of histone lysine methylation. Consistent with this, genes encoding for histone lysine methyltransferases (KMTs) and demethylases (KDMs) are involved in complex human syndromes, [...] Read more.
Histone lysine methyltransferase and demethylase enzymes play a central role in chromatin organization and gene expression through the dynamic regulation of histone lysine methylation. Consistent with this, genes encoding for histone lysine methyltransferases (KMTs) and demethylases (KDMs) are involved in complex human syndromes, termed congenital regulopathies. In this report, we present several lines of evidence for the involvement of these genes in developmental ocular phenotypes, suggesting that individuals with structural eye defects, especially when accompanied by craniofacial, neurodevelopmental and growth abnormalities, should be examined for possible variants in these genes. We identified nine heterozygous damaging genetic variants in KMT2D (5) and four other histone lysine methyltransferases/demethylases (KMT2C, SETD1A/KMT2F, KDM6A and KDM5C) in unrelated families affected with developmental eye disease, such as Peters anomaly, sclerocornea, Axenfeld-Rieger spectrum, microphthalmia and coloboma. Two families were clinically diagnosed with Axenfeld-Rieger syndrome and two were diagnosed with Peters plus-like syndrome; others received no specific diagnosis prior to genetic testing. All nine alleles were novel and five of them occurred de novo; five variants resulted in premature truncation, three were missense changes and one was an in-frame deletion/insertion; and seven variants were categorized as pathogenic or likely pathogenic and two were variants of uncertain significance. This study expands the phenotypic spectra associated with KMT and KDM factors and highlights the importance of genetic testing for correct clinical diagnosis. Full article
(This article belongs to the Special Issue Feature Papers in Human Genomics and Genetic Diseases)
Show Figures

Figure 1

22 pages, 2935 KB  
Article
Systematic Discovery of FBXW7-Binding Phosphodegrons Highlights Mitogen-Activated Protein Kinases as Important Regulators of Intracellular Protein Levels
by Neha Singh, András Zeke and Attila Reményi
Int. J. Mol. Sci. 2022, 23(6), 3320; https://doi.org/10.3390/ijms23063320 - 19 Mar 2022
Cited by 11 | Viewed by 5372
Abstract
A FBXW7 is an F-box E3 ubiquitin-ligase affecting cell growth by controlling protein degradation. Mechanistically, its effect on its substrates depends on the phosphorylation of degron motifs, but the abundance of these phosphodegrons has not been systematically explored. We used a ratiometric protein [...] Read more.
A FBXW7 is an F-box E3 ubiquitin-ligase affecting cell growth by controlling protein degradation. Mechanistically, its effect on its substrates depends on the phosphorylation of degron motifs, but the abundance of these phosphodegrons has not been systematically explored. We used a ratiometric protein degradation assay geared towards the identification of FBXW7-binding degron motifs phosphorylated by mitogen-activated protein kinases (MAPKs). Most of the known FBXW7 targets are localized in the nucleus and function as transcription factors. Here, in addition to more transcription affecting factors (ETV5, KLF4, SP5, JAZF1, and ZMIZ1 CAMTA2), we identified phosphodegrons located in proteins involved in chromatin regulation (ARID4B, KMT2E, KMT2D, and KAT6B) or cytoskeletal regulation (MAP2, Myozenin-2, SMTL2, and AKAP11), and some other proteins with miscellaneous functions (EIF4G3, CDT1, and CCAR2). We show that the protein level of full-length ARID4B, ETV5, JAZF1, and ZMIZ1 are affected by different MAPKs since their FBXW7-mediated degradation was diminished in the presence of MAPK-specific inhibitors. Our results suggest that MAPK and FBXW7 partnership plays an important cellular role by directly affecting the level of key regulatory proteins. The data also suggest that the p38α-controlled phosphodegron in JAZF1 may be responsible for the pathological regulation of the cancer-related JAZF1-SUZ12 fusion construct implicated in endometrial stromal sarcoma. Full article
(This article belongs to the Special Issue MAPK in Health and Disease)
Show Figures

Figure 1

14 pages, 2052 KB  
Article
OKN-007 Alters Protein Expression Profiles in High-Grade Gliomas: Mass Spectral Analysis of Blood Sera
by Rheal A. Towner, James Hocker, Nataliya Smith, Debra Saunders, James Battiste and Jay Hanas
Brain Sci. 2022, 12(1), 100; https://doi.org/10.3390/brainsci12010100 - 12 Jan 2022
Cited by 6 | Viewed by 3594
Abstract
Current therapies for high-grade gliomas, particularly glioblastomas (GBM), do not extend patient survival beyond 16–22 months. OKN-007 (OKlahoma Nitrone 007), which is currently in phase II (multi-institutional) clinical trials for GBM patients, and has demonstrated efficacy in several rodent and human xenograft glioma [...] Read more.
Current therapies for high-grade gliomas, particularly glioblastomas (GBM), do not extend patient survival beyond 16–22 months. OKN-007 (OKlahoma Nitrone 007), which is currently in phase II (multi-institutional) clinical trials for GBM patients, and has demonstrated efficacy in several rodent and human xenograft glioma models, shows some promise as an anti-glioma therapeutic, as it affects most aspects of tumorigenesis (tumor cell proliferation, angiogenesis, migration, and apoptosis). Combined with the chemotherapeutic agent temozolomide (TMZ), OKN-007 is even more effective by affecting chemo-resistant tumor cells. In this study, mass spectrometry (MS) methodology ESI-MS, mass peak analysis (Leave One Out Cross Validation (LOOCV) and tandem MS peptide sequence analyses), and bioinformatics analyses (Ingenuity® Pathway Analysis (IPA®)), were used to identify up- or down-regulated proteins in the blood sera of F98 glioma-bearing rats, that were either untreated or treated with OKN-007. Proteins of interest identified by tandem MS-MS that were decreased in sera from tumor-bearing rats that were either OKN-007-treated or untreated included ABCA2, ATP5B, CNTN2, ITGA3, KMT2D, MYCBP2, NOTCH3, and VCAN. Conversely, proteins of interest in tumor-bearing rats that were elevated following OKN-007 treatment included ABCA6, ADAMTS18, VWA8, MACF1, and LAMA5. These findings, in general, support our previous gene analysis, indicating that OKN-007 may be effective against the ECM. These findings also surmise that OKN-007 may be more effective against oligodendrogliomas, other brain tumors such as medulloblastoma, and possibly other types of cancers. Full article
(This article belongs to the Section Neuro-oncology)
Show Figures

Graphical abstract

20 pages, 2396 KB  
Article
Comparative Mutational Profiling of Hematopoietic Progenitor Cells and Circulating Endothelial Cells (CECs) in Patients with Primary Myelofibrosis
by Mirko Farina, Simona Bernardi, Nicola Polverelli, Mariella D’Adda, Michele Malagola, Katia Bosio, Federica Re, Camillo Almici, Andrew Dunbar, Ross L. Levine and Domenico Russo
Cells 2021, 10(10), 2764; https://doi.org/10.3390/cells10102764 - 15 Oct 2021
Cited by 11 | Viewed by 3502
Abstract
A role of endothelial cells (ECs) in Primary Myelofibrosis (PMF) was supposed since JAK2 mutation was found in endothelial precursor cells (EPCs) and in ECs captured by laser microdissection. By Cell Search method, the circulating endothelial cells (CECs) from 14 PMF patients and [...] Read more.
A role of endothelial cells (ECs) in Primary Myelofibrosis (PMF) was supposed since JAK2 mutation was found in endothelial precursor cells (EPCs) and in ECs captured by laser microdissection. By Cell Search method, the circulating endothelial cells (CECs) from 14 PMF patients and 5 healthy controls have been isolated and compared by NGS with CD34+Hematopoietic stem and progenitors cells (HSPCs) for panel of 54 myeloid-associated mutations. PMF patients had higher levels of CECs. No mutation was found in HSPCs and CECs from controls, while CECs from PMF patients presented several somatic mutations. 72% of evaluable patients shared at least one mutation between HSPCs and CECs. 2 patients shared the JAK2 mutation, together with ABL1, IDH1, TET2 and ASXL1, KMT2A, respectively. 6 out of 8 shared only NON MPN-driver mutations: TET2 and NOTCH1 in one case; individual paired mutations in TP53, KIT, SRSF2, NOTCH1 and WT1, in the other cases. In conclusion, 70% of PMF patients shared at least one mutation between HSPCs and CECs. These latter harbored several myeloid-associated mutations, besides JAK2V617F mutation. Our results support a primary involvement of EC in PMF and provide a new methodological approach for further studies exploring the role of the “neoplastic” vascular niche. Full article
Show Figures

Figure 1

20 pages, 2038 KB  
Article
Virulence Determinants and Antimicrobial Profiles of Pasteurella multocida Isolated from Cattle and Humans in Egypt
by Mohamed Sabry Abd Elraheam Elsayed, Samah Mahmoud Eldsouky, Tamer Roshdy, Lamia Said, Nahed Thabet, Tamer Allam, A. B. Abeer Mohammed, Ghada M. Nasr, Mohamed S. M. Basiouny, Behairy A. Akl, Maha M. Nader, Al Shaimaa Hasan and Ahmed Salah
Antibiotics 2021, 10(5), 480; https://doi.org/10.3390/antibiotics10050480 - 22 Apr 2021
Cited by 18 | Viewed by 4497
Abstract
Pasteurella multocida is a Gram-negative bacterium that causes drastic infections in cattle and humans. In this study, 55 isolates were recovered from 115 nasal swabs from apparently healthy and diseased cattle and humans in Minufiya and Qalyubia, Egypt. These isolates were confirmed by [...] Read more.
Pasteurella multocida is a Gram-negative bacterium that causes drastic infections in cattle and humans. In this study, 55 isolates were recovered from 115 nasal swabs from apparently healthy and diseased cattle and humans in Minufiya and Qalyubia, Egypt. These isolates were confirmed by kmt1 existence, and molecular classification of the capsular types showed that types B, D, and E represented 23/55 (41.8%), 21/55 (38.1%), and 11/55 (20.0%), respectively. The isolates were screened for five virulence genes with hgbA, hgbB, and ptfA detected in 28/55 (50.9%), 30/55 (54.5%), and 25/55 (45.5%), respectively. We detected 17 capsular and virulence gene combinations with a discriminatory power (DI) of 0.9286; the most prevalent profiles were dcbF type D and dcbF type D, hgbA, hgbB, and ptfA, which represented 8/55 (14.5%) each. These strains exhibited high ranges of multiple antimicrobial resistance indices; the lowest resistances were against chloramphenicol, ciprofloxacin, amoxicillin/clavulanic acid, and levofloxacin. The macrolide–lincosamide–streptogramin B methylase gene erm(Q), with erm(42) encoding MLSB monomethyltransferase, mph(E) encoding a macrolide efflux pump, and msr(E) encoding macrolide-inactivating phosphotransferase were present. The class 1 and 2 integrons and extended-spectrum β-lactamase genes intl1, intl2, blaCTX-M, blaCTX-M-1, and blaTEM were detected. It is obvious to state that co-occurrence of resistance genes resulted in multiple drug-resistant phenotypes. The identified isolates were virulent, genetically diverse, and resistant to antimicrobials, highlighting the potential risk to livestock and humans. Full article
Show Figures

Figure 1

Back to TopTop