Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = KMT2D gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3177 KiB  
Article
The Status of SOX2 Expression in Gastric Cancers with Induction of CDX2 Defines Groups with Different Genomic Landscapes
by Ioannis A. Voutsadakis
Genes 2025, 16(3), 279; https://doi.org/10.3390/genes16030279 - 26 Feb 2025
Viewed by 911
Abstract
Background: Gastric adenocarcinoma is a highly lethal neoplasm with a short survival especially when metastatic. Few effective treatments are available for the control of the disease and palliation of patients with metastatic gastric cancer. Although progress has been made in the elucidation of [...] Read more.
Background: Gastric adenocarcinoma is a highly lethal neoplasm with a short survival especially when metastatic. Few effective treatments are available for the control of the disease and palliation of patients with metastatic gastric cancer. Although progress has been made in the elucidation of molecular pathways invoked in gastric carcinogenesis, this knowledge has not yet led to major breakthroughs, in contrast to several other types of cancer. The role of stem cell transcription factors SOX2 and CDX2 is of particular interest in the pathogenesis of gastric cancer. Methods: The cohort of gastric adenocarcinomas from The Cancer Genome Atlas (TCGA) was interrogated and two groups of gastric cancers, with CDX2 induction and SOX2 suppression on the one hand and with CDX2 induction and SOX2 maintained expression on the other hand were retained. The induction of expression of the two transcription factors was defined as a mRNA expression z score compared with normal samples above zero. The two groups were compared for clinical-pathologic and genomic differences. Results: Among gastric cancers with up-regulated CDX2 mRNA, cancers with suppressed SOX2 mRNA were slightly more numerous (55.9%) than those with a maintained SOX2 expression. The SOX2 suppressed group had a higher prevalence of MSI high cancers (30.9% versus 10%) and of cases with high tumor mutation burden (35% versus 12.4%) than cancers with a SOX2 maintained expression, which presented more frequently high Chromosomal Instability (CIN). The group with SOX2 suppression had higher rates of mutations in many gastric cancer-associated genes such as epigenetic modifiers ARID1A, KMT2D, KMT2C, and KMT2B, as well as higher rates of mutations in genes encoding for receptor tyrosine kinases ERBB4 and FGFR1. On the other hand, TP53 mutations and amplifications in MYC, ERBB2, and CCNE1 were more common in the group with a maintained expression of SOX2, approaching significance for MYC. Conclusions: Notable differences are present in the genomic landscape of CDX2-induced gastric cancer depending on the level of expression of SOX2 mRNA. Despite this, SOX2 mRNA expression levels were not prognostic. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 569 KiB  
Article
Genomic Characterization of Chordoma: Insights from the AACR Project GENIE Database
by Beau Hsia, Gabriel Bitar, Saif A. Alshaka, Jeeho D. Kim, Bastien A. Valencia-Sanchez, Farhoud Faraji, Michael G. Brandel, Mariko Sato, John Ross Crawford, Michael L. Levy, Vijay A. Patel and Sean P. Polster
Cancers 2025, 17(3), 536; https://doi.org/10.3390/cancers17030536 - 5 Feb 2025
Viewed by 1412
Abstract
Background: Chordoma is a rare primary tumor originating from embryonic notochord remnants, with limited systemic therapeutic options due to a poor understanding of its genomic landscape. This study aims to characterize the genetic alterations in chordoma using a large national patient-level genomic repository, [...] Read more.
Background: Chordoma is a rare primary tumor originating from embryonic notochord remnants, with limited systemic therapeutic options due to a poor understanding of its genomic landscape. This study aims to characterize the genetic alterations in chordoma using a large national patient-level genomic repository, the AACR Project GENIE, to identify potential therapeutic targets and improve disease modeling. Methods: A retrospective analysis of chordoma samples was conducted using the AACR Project GENIE database. Targeted sequencing data were analyzed for recurrent somatic mutations, tumor mutational burden, and chromosomal copy number variations, with significance set at p < 0.05. Results: Frequent mutations were observed in genes associated with SWI/SNF complex affecting chromatin remodeling (SETD2, PBRM1, ARID1A). Mutations were also common among the TERT promoter regions, and cell cycle regulation (CDKN2A). Significant co-occurrences were identified among PBRM1, BRCA2, and KMT2D mutations. CDKN2A/B deletions were enriched in metastatic tumors, and pediatric cases demonstrated distinct mutation profiles compared to adults. Conclusions: This study provides a genomic profile of chordoma, identifying key mutations and potential therapeutic targets. These findings highlight the roles of chromatin remodeling and cell cycle pathways in chordoma biology, offering insights for future precision medicine approaches and therapeutic interventions. Full article
(This article belongs to the Special Issue Feature Papers in Section “Cancer Informatics and Big Data”)
Show Figures

Figure 1

17 pages, 672 KiB  
Review
Early Detection of the Pathogenetic Variants of Homologous Recombination Repair Genes in Prostate Cancer: Critical Analysis and Experimental Design
by Irene Bottillo, Alessandro Sciarra, Giulio Bevilacqua, Alessandro Gentilucci, Beatrice Sciarra, Valerio Santarelli, Stefano Salciccia, Francesca Bacigalupo, Francesco Pastacaldi, Maria Pia Ciccone, Laura De Marchis, Daniele Santini, Fabio Massimo Magliocca, Elisabetta Merenda, Flavio Forte and Paola Grammatico
Biology 2025, 14(2), 117; https://doi.org/10.3390/biology14020117 - 23 Jan 2025
Cited by 1 | Viewed by 1549
Abstract
It has been shown that the pathogenic variants (PVs) of the DNA Damage Response (DDR) genes, whether of a germinal or somatic nature, represent a predictive biomarker of high sensitivity to treatment with inhibitors of the enzyme poly-ADP-ribose polymerase (PARP) in patients with [...] Read more.
It has been shown that the pathogenic variants (PVs) of the DNA Damage Response (DDR) genes, whether of a germinal or somatic nature, represent a predictive biomarker of high sensitivity to treatment with inhibitors of the enzyme poly-ADP-ribose polymerase (PARP) in patients with hormone-resistant metastatic prostate cancer (HRPCa). Moreover, the detection of PVs of the Homologous Recombination Repair (HRR) genes in PCa patients can help to define the patient’s prognosis and the choice of the therapeutic procedure. Among men with metastatic PCa, the frequency of PVs in HRR genes ranges from 11% to 33%, which is a significantly higher rate compared to non-metastatic PCa, where the incidence is between 5% and 10%. Next-Generation Sequencing (NGS) results were more commonly obtained from newly acquired somatic samples compared to archived samples (prostate biopsy or prostatectomy). We developed an experimental multidisciplinary prospective study in patients with a new diagnosis of high-risk PCa at biopsy. The aim was to evaluate the presence of PVs of different HRR genes in patients with the first diagnosis of PCa in relation to a metastatic or non-metastatic stage, tumor aggressiveness, and early risk of progression. Among 43 initial tumor samples from 22 patients, 25 samples from 12 patients were selected for library preparation based on their DNA concentration and quality. After the NGS, 14 different DNA variants were prioritized. Oncogenetic and likely oncogenetic variants were found in the ATM, BRCA1, PTEN, KMT2D, and CDH1 genes. Moreover, variants of uncertain significance were found in ATM, DDR2, FANCA, FOXA1, PLCB4, PTCH1, and RB1. Full article
(This article belongs to the Special Issue New Sight in Cancer Genetics)
Show Figures

Figure 1

22 pages, 2639 KiB  
Article
Overlapping Gene Expression and Molecular Features in High-Grade B-Cell Lymphoma
by Katharina D. Faißt, Cora C. Husemann, Karsten Kleo, Monika Twardziok and Michael Hummel
J. Mol. Pathol. 2024, 5(4), 415-436; https://doi.org/10.3390/jmp5040028 - 30 Sep 2024
Viewed by 2371
Abstract
Aggressive B-cell lymphoma encompasses Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and, as per the 2016 WHO classification, high-grade B-cell lymphoma (HGBL) not otherwise specified (NOS) and HGBL double/triple hit (DH/TH). However, the diagnostic distinction of HGBL from BL and DLBCL is [...] Read more.
Aggressive B-cell lymphoma encompasses Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and, as per the 2016 WHO classification, high-grade B-cell lymphoma (HGBL) not otherwise specified (NOS) and HGBL double/triple hit (DH/TH). However, the diagnostic distinction of HGBL from BL and DLBCL is difficult by means of histology/immunostaining in a substantial number of patients. This study aimed to improve subtyping by the identification of molecular features of aggressive B-cell lymphomas, with a specific focus on HGBL. To this end, we performed a comprehensive gene expression and mutational pattern analysis as well as the detection of B-cell clonality of 34 cases diagnosed with BL (n = 4), DLBCL (n = 16), HGBL DH (n = 8), and HGBL NOS (n = 6). Three distinct molecular subgroups were identified based on gene expression, primarily influenced by MYC expression/translocation and cell proliferation. In HGBL, compared to BL, there was an upregulation of PRKAR2B and TERT. HGBL DH exhibited elevated expression of GAMT and SMIM14, while HGBL NOS showed increased expression of MIR155HG and LZTS1. Our gene mutation analysis revealed MYC, ARID1A, BCL2, KMT2D, and PIM1 as the most affected genes in B-cell lymphoma, with BCL2 and CREBBP predominant in HGBL DH, and MYC and PIM1 in HGBL NOS. Clonality analysis of immunoglobulin heavy and light chain rearrangements did not show distinguishable V- or J-usage between the diagnostic subgroups. Full article
Show Figures

Figure 1

30 pages, 1570 KiB  
Review
Trigger Warning: How Modern Diet, Lifestyle, and Environment Pull the Trigger on Autosomal Dominant Polycystic Kidney Disease Progression
by Melina Messing, Jacob A. Torres, Nickolas Holznecht and Thomas Weimbs
Nutrients 2024, 16(19), 3281; https://doi.org/10.3390/nu16193281 - 27 Sep 2024
Cited by 2 | Viewed by 7454
Abstract
Understanding chronic kidney disease (CKD) through the lens of evolutionary biology highlights the mismatch between our Paleolithic-optimized genes and modern diets, which led to the dramatically increased prevalence of CKD in modern societies. In particular, the Standard American Diet (SAD), high in carbohydrates [...] Read more.
Understanding chronic kidney disease (CKD) through the lens of evolutionary biology highlights the mismatch between our Paleolithic-optimized genes and modern diets, which led to the dramatically increased prevalence of CKD in modern societies. In particular, the Standard American Diet (SAD), high in carbohydrates and ultra-processed foods, causes conditions like type 2 diabetes (T2D), chronic inflammation, and hypertension, leading to CKD. Autosomal dominant polycystic kidney disease (ADPKD), a genetic form of CKD, is characterized by progressive renal cystogenesis that leads to renal failure. This review challenges the fatalistic view of ADPKD as solely a genetic disease. We argue that, just like non-genetic CKD, modern dietary practices, lifestyle, and environmental exposures initiate and accelerate ADPKD progression. Evidence shows that carbohydrate overconsumption, hyperglycemia, and insulin resistance significantly impact renal health. Additionally, factors like dehydration, electrolyte imbalances, nephrotoxin exposure, gastrointestinal dysbiosis, and renal microcrystal formation exacerbate ADPKD. Conversely, carbohydrate restriction, ketogenic metabolic therapy (KMT), and antagonizing the lithogenic risk show promise in slowing ADPKD progression. Addressing disease triggers through dietary modifications and lifestyle changes offers a conservative, non-pharmacological strategy for disease modification in ADPKD. This comprehensive review underscores the urgency of integrating diet and lifestyle factors into the clinical management of ADPKD to mitigate disease progression, improve patient outcomes, and offer therapeutic choices that can be implemented worldwide at low or no cost to healthcare payers and patients. Full article
Show Figures

Graphical abstract

13 pages, 2378 KiB  
Article
Characterizing the Mutational Landscape of Diffuse Large B-Cell Lymphoma in a Prospective Cohort of Mexican Patients
by Myrna Candelaria, Dennis Cerrato-Izaguirre, Olga Gutierrez, Jose Diaz-Chavez, Alejandro Aviles, Alfonso Dueñas-Gonzalez and Luis Malpica
Int. J. Mol. Sci. 2024, 25(17), 9328; https://doi.org/10.3390/ijms25179328 - 28 Aug 2024
Cited by 2 | Viewed by 1539
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy worldwide. Molecular classifications have tried to improve cure rates. We prospectively examined and correlated the mutational landscape with the clinical features and outcomes of 185 Mexican patients (median age 59.3 years, 50% [...] Read more.
Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy worldwide. Molecular classifications have tried to improve cure rates. We prospectively examined and correlated the mutational landscape with the clinical features and outcomes of 185 Mexican patients (median age 59.3 years, 50% women) with newly diagnosed DLBCL. A customized panel of 79 genes was designed, based on previous international series. Most patients had ECOG performance status (PS) < 2 (69.2%), advanced-stage disease (72.4%), germinal-center phenotype (68.1%), and double-hit lymphomas (14.1%). One hundred and ten (59.5%) patients had at least one gene with driver mutations. The most common mutated genes were as follows: TP53, EZH2, CREBBP, NOTCH1, and KMT2D. The median follow-up was 42 months, and the 5-year relapse-free survival (RFS) and overall survival (OS) rates were 70% and 72%, respectively. In the multivariate analysis, both age > 50 years and ECOG PS > 2 were significantly associated with a worse OS. Our investigation did not reveal any discernible correlation between the presence of a specific mutation and survival. In conclusion, using a customized panel, we characterized the mutational landscape of a large cohort of Mexican DLBCL patients. These results need to be confirmed in further studies. Full article
(This article belongs to the Special Issue B Cell Lymphoma: From Pathogenesis to Treatment)
Show Figures

Figure 1

12 pages, 651 KiB  
Review
Mutational Landscapes of Normal Skin and Their Potential Implications in the Development of Skin Cancer: A Comprehensive Narrative Review
by Tae-Ryong Riew and Yoon-Seob Kim
J. Clin. Med. 2024, 13(16), 4815; https://doi.org/10.3390/jcm13164815 - 15 Aug 2024
Viewed by 1785
Abstract
Recent evidence suggests that physiologically normal skin harbors pervasive mutant clones with cancer drivers. Normal skin has the highest burden of somatic mutations due to persistent ultraviolet exposure throughout life. The mutation burden exponentially increases with age and is further modified by skin [...] Read more.
Recent evidence suggests that physiologically normal skin harbors pervasive mutant clones with cancer drivers. Normal skin has the highest burden of somatic mutations due to persistent ultraviolet exposure throughout life. The mutation burden exponentially increases with age and is further modified by skin site, sun-damage history, and skin phototype. Driver gene profiles in normal skin are similar to those in cutaneous squamous cell carcinoma where NOTCH family, FAT family, and TP53 are consistently reported, while other reported profiles include PPM1D, KMT2D, ASXL1, and RBM10. Normal skin seldom harbors canonical hotspot mutations with therapeutic relevance. The pathologic role of mutant clones with cancer drivers in normal skin is classically considered precursors for skin cancer; however, recent evidence also suggests their putative cancer-protective role. Copy number alterations and other structural variants are rare in normal skin with loss in 9q region encompassing NOTCH1 being the most common. Study methodologies should be carefully designed to obtain an adequate number of cells for sequencing, and a comparable number of cells and read depth across samples. In conclusion, this review provides mutational landscapes of normal skin and discusses their potential implications in the development of skin cancer, highlighting the role of driver genes in early malignant progression. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

16 pages, 3169 KiB  
Article
PI 3-Kinase and the Histone Methyl-Transferase KMT2D Collaborate to Induce Arp2/3-Dependent Migration of Mammary Epithelial Cells
by Karina D. Rysenkova, Julia Gaboriaud, Artem I. Fokin, Raphaëlle Toubiana, Alexandre Bense, Camil Mirdass, Mélissa Jin, Minh Chau N. Ho, Elizabeth Glading, Sophie Vacher, Laura Courtois, Ivan Bièche and Alexis M. Gautreau
Cells 2024, 13(10), 876; https://doi.org/10.3390/cells13100876 - 19 May 2024
Viewed by 1839
Abstract
Breast cancer develops upon sequential acquisition of driver mutations in mammary epithelial cells; however, how these mutations collaborate to transform normal cells remains unclear in most cases. We aimed to reconstitute this process in a particular case. To this end, we combined the [...] Read more.
Breast cancer develops upon sequential acquisition of driver mutations in mammary epithelial cells; however, how these mutations collaborate to transform normal cells remains unclear in most cases. We aimed to reconstitute this process in a particular case. To this end, we combined the activated form of the PI 3-kinase harboring the H1047R mutation with the inactivation of the histone lysine methyl-transferase KMT2D in the non-tumorigenic human mammary epithelial cell line MCF10A. We found that PI 3-kinase activation promoted cell-cycle progression, especially when growth signals were limiting, as well as cell migration, both in a collective monolayer and as single cells. Furthermore, we showed that KMT2D inactivation had relatively little influence on these processes, except for single-cell migration, which KMT2D inactivation promoted in synergy with PI 3-kinase activation. The combination of these two genetic alterations induced expression of the ARPC5L gene that encodes a subunit of the Arp2/3 complex. ARPC5L depletion fully abolished the enhanced migration persistence exhibited by double-mutant cells. Our reconstitution approach in MCF10A has thus revealed both the cell function and the single-cell migration, and the underlying Arp2/3-dependent mechanism, which are synergistically regulated when KMT2D inactivation is combined with the activation of the PI 3-kinase. Full article
(This article belongs to the Special Issue Cytoskeletal Remodeling in Health and Disease)
Show Figures

Figure 1

20 pages, 1080 KiB  
Review
Unveiling the Molecular Landscape of Pancreatic Ductal Adenocarcinoma: Insights into the Role of the COMPASS-like Complex
by Marzieh Jamali, Erfaneh Barar and Jiaqi Shi
Int. J. Mol. Sci. 2024, 25(10), 5069; https://doi.org/10.3390/ijms25105069 - 7 May 2024
Cited by 1 | Viewed by 2138
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC. Full article
(This article belongs to the Special Issue Pancreatic Disease: From Molecular Basis to Novel Therapies)
Show Figures

Figure 1

11 pages, 1112 KiB  
Brief Report
Illuminating the Genetic Basis of Congenital Heart Disease in Patients with Kabuki Syndrome
by Chung-Lin Lee, Chih-Kuang Chuang, Ming-Ren Chen, Ju-Li Lin, Huei-Ching Chiu, Ya-Hui Chang, Yuan-Rong Tu, Yun-Ting Lo, Hsiang-Yu Lin and Shuan-Pei Lin
Diagnostics 2024, 14(8), 846; https://doi.org/10.3390/diagnostics14080846 - 19 Apr 2024
Viewed by 2667
Abstract
Congenital heart defects (CHDs) affect a substantial proportion of patients with Kabuki syndrome. However, the prevalence and type of CHD and the genotype–phenotype correlations in Asian populations are not fully elucidated. This study performed a retrospective analysis of 23 Taiwanese patients with molecularly [...] Read more.
Congenital heart defects (CHDs) affect a substantial proportion of patients with Kabuki syndrome. However, the prevalence and type of CHD and the genotype–phenotype correlations in Asian populations are not fully elucidated. This study performed a retrospective analysis of 23 Taiwanese patients with molecularly confirmed Kabuki syndrome. Twenty-two patients presented with pathogenic variants in the KMT2D gene. Comprehensive clinical assessments were performed. A literature review was conducted to summarize the spectrum of CHDs in patients with Kabuki syndrome. In total, 16 (73.9%) of 22 patients with pathogenic KMT2D variants had CHDs. The most common types of CHD were atrial septal defects (37.5%), ventricular septal defects (18.8%), coarctation of the aorta (18.8%), bicuspid aortic valve (12.5%), persistent left superior vena cava (12.5%), mitral valve prolapse (12.5%), mitral regurgitation (12.5%), and patent ductus arteriosus (12.5%). Other cardiac abnormalities were less common. Further, there were no clear genotype–phenotype correlations found. A literature review revealed similar patterns of CHDs, with a predominance of left-sided obstructive lesions and septal defects. In conclusion, the most common types of CHDs in Taiwanese patients with Kabuki syndrome who presented with KMT2D mutations are left-sided obstructive lesions and septal defects. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

28 pages, 3679 KiB  
Article
Design of Inhibitors That Target the Menin–Mixed-Lineage Leukemia Interaction
by Moses N. Arthur, Kristeen Bebla, Emmanuel Broni, Carolyn Ashley, Miriam Velazquez, Xianin Hua, Ravi Radhakrishnan, Samuel K. Kwofie and Whelton A. Miller
Computation 2024, 12(1), 3; https://doi.org/10.3390/computation12010003 - 27 Dec 2023
Cited by 5 | Viewed by 3201
Abstract
The prognosis of mixed-lineage leukemia (MLL) has remained a significant health concern, especially for infants. The minimal treatments available for this aggressive type of leukemia has been an ongoing problem. Chromosomal translocations of the KMT2A gene are known as MLL, which expresses MLL [...] Read more.
The prognosis of mixed-lineage leukemia (MLL) has remained a significant health concern, especially for infants. The minimal treatments available for this aggressive type of leukemia has been an ongoing problem. Chromosomal translocations of the KMT2A gene are known as MLL, which expresses MLL fusion proteins. A protein called menin is an important oncogenic cofactor for these MLL fusion proteins, thus providing a new avenue for treatments against this subset of acute leukemias. In this study, we report results using the structure-based drug design (SBDD) approach to discover potential novel MLL-mediated leukemia inhibitors from natural products against menin. The three-dimensional (3D) protein model was derived from Protein Databank (Protein ID: 4GQ4), and EasyModeller 4.0 and I-TASSER were used to fix missing residues during rebuilding. Out of the ten protein models generated (five from EasyModeller and I-TASSER each), one model was selected. The selected model demonstrated the most reasonable quality and had 75.5% of residues in the most favored regions, 18.3% of residues in additionally allowed regions, 3.3% of residues in generously allowed regions, and 2.9% of residues in disallowed regions. A ligand library containing 25,131 ligands from a Chinese database was virtually screened using AutoDock Vina, in addition to three known menin inhibitors. The top 10 compounds including ZINC000103526876, ZINC000095913861, ZINC000095912705, ZINC000085530497, ZINC000095912718, ZINC000070451048, ZINC000085530488, ZINC000095912706, ZINC000103580868, and ZINC000103584057 had binding energies of −11.0, −10.7, −10.6, −10.2, −10.2, −9.9, −9.9, −9.9, −9.9, and −9.9 kcal/mol, respectively. To confirm the stability of the menin–ligand complexes and the binding mechanisms, molecular dynamics simulations including molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) computations were performed. The amino acid residues that were found to be potentially crucial in ligand binding included Phe243, Met283, Cys246, Tyr281, Ala247, Ser160, Asn287, Asp185, Ser183, Tyr328, Asn249, His186, Leu182, Ile248, and Pro250. MI-2-2 and PubChem CIDs 71777742 and 36294 were shown to possess anti-menin properties; thus, this justifies a need to experimentally determine the activity of the identified compounds. The compounds identified herein were found to have good pharmacological profiles and had negligible toxicity. Additionally, these compounds were predicted as antileukemic, antineoplastic, chemopreventive, and apoptotic agents. The 10 natural compounds can be further explored as potential novel agents for the effective treatment of MLL-mediated leukemia. Full article
(This article belongs to the Special Issue 10th Anniversary of Computation—Computational Biology)
Show Figures

Figure 1

23 pages, 5152 KiB  
Article
Establishment and Thorough Characterization of Xenograft (PDX) Models Derived from Patients with Pancreatic Cancer for Molecular Analyses and Chemosensitivity Testing
by Diana Behrens, Ulrike Pfohl, Theresia Conrad, Michael Becker, Bernadette Brzezicha, Britta Büttner, Silvia Wagner, Cora Hallas, Rita Lawlor, Vladimir Khazak, Michael Linnebacher, Thomas Wartmann, Iduna Fichtner, Jens Hoffmann, Mathias Dahlmann and Wolfgang Walther
Cancers 2023, 15(24), 5753; https://doi.org/10.3390/cancers15245753 - 8 Dec 2023
Cited by 2 | Viewed by 2731
Abstract
Patient-derived xenograft (PDX) tumor models are essential for identifying new biomarkers, signaling pathways and novel targets, to better define key factors of therapy response and resistance mechanisms. Therefore, this study aimed at establishing pancreas carcinoma (PC) PDX models with thorough molecular characterization, and [...] Read more.
Patient-derived xenograft (PDX) tumor models are essential for identifying new biomarkers, signaling pathways and novel targets, to better define key factors of therapy response and resistance mechanisms. Therefore, this study aimed at establishing pancreas carcinoma (PC) PDX models with thorough molecular characterization, and the identification of signatures defining responsiveness toward drug treatment. In total, 45 PC-PDXs were generated from 120 patient tumor specimens and the identity of PDX and corresponding patient tumors was validated. The majority of engrafted PDX models represent ductal adenocarcinomas (PDAC). The PDX growth characteristics were assessed, with great variations in doubling times (4 to 32 days). The mutational analyses revealed an individual mutational profile of the PDXs, predominantly showing alterations in the genes encoding KRAS, TP53, FAT1, KMT2D, MUC4, RNF213, ATR, MUC16, GNAS, RANBP2 and CDKN2A. Sensitivity of PDX toward standard of care (SoC) drugs gemcitabine, 5-fluorouracil, oxaliplatin and abraxane, and combinations thereof, revealed PDX models with sensitivity and resistance toward these treatments. We performed correlation analyses of drug sensitivity of these PDX models and their molecular profile to identify signatures for response and resistance. This study strongly supports the importance and value of PDX models for improvement in therapies of PC. Full article
Show Figures

Figure 1

16 pages, 2744 KiB  
Article
Brazilian Clinical Strains of Actinobacillus pleuropneumoniae and Pasteurella multocida: Capsular Diversity, Antimicrobial Susceptibility (In Vitro) and Proof of Concept for Prevention of Natural Colonization by Multi-Doses Protocol of Tildipirosin
by Suzana Satomi Kuchiishi, Simone Ramos Prigol, Eduarda Bresolin, Bianca Fernandes Lenhard, Caroline Pissetti, María-José García-Iglesias, César-Bernardo Gutiérrez-Martín, Sonia Martínez-Martínez, Luiz Carlos Kreutz and Rafael Frandoloso
Antibiotics 2023, 12(12), 1658; https://doi.org/10.3390/antibiotics12121658 - 25 Nov 2023
Viewed by 2161
Abstract
One hundred Actinobacillus pleuropneumoniae (App) and sixty Pasteurella multocida subsp. multocida serogroup A (PmA) isolates were recovered from porcine pneumonic lungs collected from eight central or southern states of Brazil between 2014 and 2018 (App) or between 2017 and 2021 (PmA). A. pleuropneumoniae [...] Read more.
One hundred Actinobacillus pleuropneumoniae (App) and sixty Pasteurella multocida subsp. multocida serogroup A (PmA) isolates were recovered from porcine pneumonic lungs collected from eight central or southern states of Brazil between 2014 and 2018 (App) or between 2017 and 2021 (PmA). A. pleuropneumoniae clinical isolates were typed by multiplex PCR and the most prevalent serovars were 8, 7 and 5 (43, 25% and 18%, respectively). In addition, three virulence genes were assessed in P. multocida isolates, all being positive to capA (PmA) and kmt1 genes, all negative to capD and toxA, and most of them (85%) negative to pfhA gene. The susceptibility of both pathogens to tildipirosin was investigated using a broth microdilution assay. The percentage of isolates susceptible to tildipirosin was 95% for App and 73.3% for PmA. The MIC50 values were 0.25 and 1 μg/mL and the MIC90 values were 4 and >64 μg/mL for App and PmA, respectively. Finally, a multiple-dose protocol of tildipirosin was tested in suckling piglets on a farm endemic for both pathogens. Tildipirosin was able to prevent the natural colonization of the tonsils by App and PmA and significantly (p < 0.0001) reduced the burden of Glaesserella parasuis in this tissue. In summary, our results demonstrate that: (i) tildipirosin can be included in the list of antibiotics to control outbreaks of lung disease caused by App regardless of the capsular type, and (ii) in the case of clinical strains of App and PmA that are sensitive to tildipirosin based on susceptibility testing, the use of this antibiotic in eradication programs for A. pleuropneumoniae and P. multocida can be strongly recommended. Full article
(This article belongs to the Special Issue Colonization and Infection of Multi-Drug Resistant Organisms)
Show Figures

Figure 1

32 pages, 9199 KiB  
Article
Lymphoma in Border Collies: Genome-Wide Association and Pedigree Analysis
by Pamela Xing Yi Soh, Mehar Singh Khatkar and Peter Williamson
Vet. Sci. 2023, 10(9), 581; https://doi.org/10.3390/vetsci10090581 - 19 Sep 2023
Cited by 3 | Viewed by 4804
Abstract
There has been considerable interest in studying cancer in dogs and its potential as a model system for humans. One area of research has been the search for genetic risk variants in canine lymphoma, which is amongst the most common canine cancers. Previous [...] Read more.
There has been considerable interest in studying cancer in dogs and its potential as a model system for humans. One area of research has been the search for genetic risk variants in canine lymphoma, which is amongst the most common canine cancers. Previous studies have focused on a limited number of breeds, but none have included Border Collies. The aims of this study were to identify relationships between Border Collie lymphoma cases through an extensive pedigree investigation and to utilise relationship information to conduct genome-wide association study (GWAS) analyses to identify risk regions associated with lymphoma. The expanded pedigree analysis included 83,000 Border Collies, with 71 identified lymphoma cases. The analysis identified affected close relatives, and a common ancestor was identified for 54 cases. For the genomic study, a GWAS was designed to incorporate lymphoma cases, putative “carriers”, and controls. A case-control GWAS was also conducted as a comparison. Both analyses showed significant SNPs in regions on chromosomes 18 and 27. Putative top candidate genes from these regions included DLA-79, WNT10B, LMBR1L, KMT2D, and CCNT1. Full article
(This article belongs to the Special Issue Advances in Canine and Feline Lymphoma)
Show Figures

Figure 1

17 pages, 6326 KiB  
Article
Cell-Free DNA Extracted from CSF for the Molecular Diagnosis of Pediatric Embryonal Brain Tumors
by Mathieu Chicard, Yasmine Iddir, Julien Masliah Planchon, Valérie Combaret, Valéry Attignon, Alexandra Saint-Charles, Didier Frappaz, Cécile Faure-Conter, Kévin Beccaria, Pascale Varlet, Birgit Geoerger, Sylvain Baulande, Gaelle Pierron, Yassine Bouchoucha, François Doz, Olivier Delattre, Joshua J. Waterfall, Franck Bourdeaut and Gudrun Schleiermacher
Cancers 2023, 15(13), 3532; https://doi.org/10.3390/cancers15133532 - 7 Jul 2023
Cited by 4 | Viewed by 2743
Abstract
Background: Liquid biopsies are revolutionary tools used to detect tumor-specific genetic alterations in body fluids, including the use of cell-free DNA (cfDNA) for molecular diagnosis in cancer patients. In brain tumors, cerebrospinal fluid (CSF) cfDNA might be more informative than plasma cfDNA. Here, [...] Read more.
Background: Liquid biopsies are revolutionary tools used to detect tumor-specific genetic alterations in body fluids, including the use of cell-free DNA (cfDNA) for molecular diagnosis in cancer patients. In brain tumors, cerebrospinal fluid (CSF) cfDNA might be more informative than plasma cfDNA. Here, we assess the use of CSF cfDNA in pediatric embryonal brain tumors (EBT) for molecular diagnosis. Methods: The CSF cfDNA of pediatric patients with medulloblastoma (n = 18), ATRT (n = 3), ETMR (n = 1), CNS NB FOXR2 (n = 2) and pediatric EBT NOS (n = 1) (mean cfDNA concentration 48 ng/mL; range 4–442 ng/mL) and matched tumor genomic DNA were sequenced by WES and/or a targeted sequencing approach to determine single-nucleotide variations (SNVs) and copy number alterations (CNA). A specific capture covering transcription start sites (TSS) of genes of interest was also used for nucleosome footprinting in CSF cfDNA. Results: 15/25 CSF cfDNA samples yielded informative results, with informative CNA and SNVs in 11 and 15 cases, respectively. For cases with paired tumor and CSF cfDNA WES (n = 15), a mean of 83 (range 1–160) shared SNVs were observed, including SNVs in classical medulloblastoma genes such as SMO and KMT2D. Interestingly, tumor-specific SNVs (mean 18; range 1–62) or CSF-specific SNVs (mean 5; range 0–25) were also observed, suggesting clonal heterogeneity. The TSS panel resulted in differential coverage profiles across all 112 studied genes in 7 cases, indicating distinct promoter accessibility. Conclusion: CSF cfDNA sequencing yielded informative results in 60% (15/25) of all cases, with informative results in 83% (15/18) of all cases analyzed by WES. These results pave the way for the implementation of these novel approaches for molecular diagnosis and minimal residual disease monitoring. Full article
(This article belongs to the Topic Biomarker Development and Application)
Show Figures

Figure 1

Back to TopTop