Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = Jatropha seed oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4330 KiB  
Article
Transesterification of Crude Rubber Oil Catalyzed by Lipase Extract Powder of Germinated Rubber Kernels for Biodiesel Production
by Moya Joëlle Carole Akossi, Konan Edmond Kouassi, Abollé Abollé, Wennd Kouni Igor Ouedraogo and Kouassi Benjamin Yao
Energies 2025, 18(5), 1252; https://doi.org/10.3390/en18051252 - 4 Mar 2025
Viewed by 859
Abstract
Lipases are essential in many industrial processes. Although microbial lipases are widely used, plant lipases remain more accessible and abundant, particularly in germinated kernels. This study aims to evaluate the catalytic potential of lipase extract powder of germinated rubber kernels in transesterification reaction. [...] Read more.
Lipases are essential in many industrial processes. Although microbial lipases are widely used, plant lipases remain more accessible and abundant, particularly in germinated kernels. This study aims to evaluate the catalytic potential of lipase extract powder of germinated rubber kernels in transesterification reaction. Germinated rubber kernels, lipase extract powder of germinated rubber kernels, and crude oils of palm (PKO), Jatropha curcas (JCO), and rubber (RSO) were characterized. The presence of lipase in the plant extract powder was evidenced by FT-IR and SEM-EDX analyses and hydrolysis reaction. Biodiesel was produced from crude rubber oil. The results showed that germinated rubber kernels have high moisture (33.48%), protein (15.75%), and fat (50.11%) contents. The optimum hydrolytic activities of lipase on PKO, JCO, and RSO were 25.67 U/mL, 26.67 U/mL, and 31 U/mL, respectively, at pH 5. Lipase extract concentration, temperature, and storage time influenced the lipase hydrolytic activity. The optimum biodiesel yield (29.63%) was obtained at 30 °C. The addition of co-solvents (water and n-hexane) to the reaction mixture increased yields from 20.47% (without co-solvent) to 31.06% and 21.85%, respectively. These insights show that germinated rubber seeds are rich in oil and contain lipase with good hydrolytic and catalytic activity. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

32 pages, 4228 KiB  
Article
Jatropha curcas Seed Germination: Effect of Seed Imbibition, Aging, Storage, and Salinity
by Isidro Elias Suarez-Padrón, Marcelo F. Pompelli, Claudia Carlucci, Marvin José Perneth-Montaño, Andrés José Betin Ruiz, Mahmoud F. Seleiman, Majed Alotaibi, Khalid F. Almutairi, Luis Eliécer Oviedo Zumaque, Yirlis Yadeth Pineda-Rodríguez and Luis Alfonso Rodríguez-Paez
Horticulturae 2025, 11(3), 258; https://doi.org/10.3390/horticulturae11030258 - 28 Feb 2025
Viewed by 907
Abstract
Renewable energy sources are essential to mitigating climate change, with biofuels offering a sustainable alternative to fossil fuels by reducing greenhouse gas emissions. Jatropha curcas, the best, non-edible, high-oil-yielding species, is a leading candidate for biodiesel production. However, ensuring a stable seed [...] Read more.
Renewable energy sources are essential to mitigating climate change, with biofuels offering a sustainable alternative to fossil fuels by reducing greenhouse gas emissions. Jatropha curcas, the best, non-edible, high-oil-yielding species, is a leading candidate for biodiesel production. However, ensuring a stable seed supply through effective storage is critical for biodiesel markets stability. This study evaluated the physiological and biochemical viability of J. curcas seeds stored at 4 °C with controlled humidity using 1.5 g of silica gel per gram of seed over 12 months. The results demonstrated that low-temperature, low-humidity storage significantly reduced metabolic activity, embryo respiration, and seed deterioration, preserving high germinability and oil quality. Despite a slight increase in mean germination time, seeds retained resilience in germination potential and viability. Additionally, preliminary assessments of salt tolerance revealed the potential of J. curcas seeds to germinate under saline conditions, supported by analyses of mineral nutrition and salt tolerance-related gene expression. These findings underscore the practicality of optimized storage conditions for maintaining seed quality and economic value, ensuring a consistent supply chain for biodiesel production. This study highlights the importance of integrating storage strategies into biodiesel systems to enhance sustainability and market resilience in the face of fluctuating production demands. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

13 pages, 3144 KiB  
Article
Functional Characterization of JcSWEET12 and JcSWEET17a from Physic Nut
by Pingzhi Wu, Youting Wu, Zhu Yu, Huawu Jiang, Guojiang Wu and Yaping Chen
Int. J. Mol. Sci. 2024, 25(15), 8183; https://doi.org/10.3390/ijms25158183 - 26 Jul 2024
Cited by 2 | Viewed by 913
Abstract
Physic nut (Jatropha curcas L.) has attracted extensive attention because of its fast growth, easy reproduction, tolerance to barren conditions, and high oil content of seeds. SWEET (Sugar Will Eventually be Exported Transporter) family genes contribute to regulating the distribution of carbohydrates [...] Read more.
Physic nut (Jatropha curcas L.) has attracted extensive attention because of its fast growth, easy reproduction, tolerance to barren conditions, and high oil content of seeds. SWEET (Sugar Will Eventually be Exported Transporter) family genes contribute to regulating the distribution of carbohydrates in plants and have great potential in improving yield and stress tolerance. In this study, we performed a functional analysis of the homology of these genes from physic nut, JcSWEET12 and JcSWEET17a. Subcellular localization indicated that the JcSWEET12 protein is localized on the plasma membrane and the JcSWEET17a protein on the vacuolar membrane. The overexpression of JcSWEET12 (OE12) and JcSWEET17a (OE17a) in Arabidopsis leads to late and early flowering, respectively, compared to the wild-type plants. The transgenic OE12 seedlings, but not OE17a, exhibit increased salt tolerance. In addition, OE12 plants attain greater plant height and greater shoot dry weight than the wild-type plants at maturity. Together, our results indicate that JcSWEET12 and JcSWEET17a play different roles in the regulation of flowering time and salt stress response, providing a novel genetic resource for future improvement in physic nut and other plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 2598 KiB  
Article
Tissue-Specific Accumulation Profiles of Phorbol Esters in Response to Abiotic and Biotic Stresses in Jatropha curcas
by Wei Zhang, Lei Wei, Shijuan Li, Fang Chen and Ying Xu
Seeds 2024, 3(3), 324-340; https://doi.org/10.3390/seeds3030024 - 2 Jul 2024
Cited by 1 | Viewed by 1521
Abstract
Jatropha curcas L. (J. curcas), a shrub plant of the Euphorbiaceae family, has received enormous attention as a promising biofuel plant for the production of biodiesel and medical potential in ethnopharmacology. However, the tumor-promoter toxin phorbol esters present in J. curcas [...] Read more.
Jatropha curcas L. (J. curcas), a shrub plant of the Euphorbiaceae family, has received enormous attention as a promising biofuel plant for the production of biodiesel and medical potential in ethnopharmacology. However, the tumor-promoter toxin phorbol esters present in J. curcas raise concerns for health and environmental risk as its large-scale cultivation limits the use of meal obtained after oil extraction for animal feed. Here, we determined the variation of phorbol ester profiles and contents in eight J. curcas tissues by high-performance liquid chromatography (HPLC) and found phorbol esters present in all parts of the plant except the seed shell. We showed tissue-specific patterns of accumulation of phorbol esters and associated terpenoids at the transcriptional level with high transcript levels in reproductive and young tissues. Genes involved in the same module of terpenoids biosynthesis were positively correlated. We further present diverse abiotic and biotic stresses that had different effects on the accumulation of transcripts in terpenoids shared and branched terpenoid pathways in plant seedlings. The fine-tuning of terpenoids biosynthesis may link with ecological functions in plants under extreme environments and defense against pathogens. Full article
Show Figures

Figure 1

23 pages, 9157 KiB  
Article
Experimental Investigation of the Effect of Surfactant–Polymer Flooding on Enhanced Oil Recovery for Medium Crude Oil
by Oluwasanmi Olabode, Humphrey Dike, Damilola Olaniyan, Babalola Oni and Michael Faleye
Polymers 2024, 16(12), 1674; https://doi.org/10.3390/polym16121674 - 12 Jun 2024
Cited by 9 | Viewed by 1859
Abstract
High technical and financial risks are involved in exploring and exploiting new fields; hence, greater focus has placed on the development of environmentally friendly, cost-effective, and enhanced oil recovery (EOR) options for existing fields. For reservoirs producing high-density crudes and those with high [...] Read more.
High technical and financial risks are involved in exploring and exploiting new fields; hence, greater focus has placed on the development of environmentally friendly, cost-effective, and enhanced oil recovery (EOR) options for existing fields. For reservoirs producing high-density crudes and those with high interfacial tensions, water flooding is usually less effective due to density differences—hence the advent of polymer and surfactant flooding. For cost-effective and eco-friendly EOR solutions, a biopolymer and a surfactant synthesized from Jatropha seeds are used in this study to determine their effectiveness in increasing the oil recovery during core flooding analysis. The experiment involved an initial water flooding that served as the base cases of three weight percentages of polymers and polymeric surfactant solutions. The results for the polymer flooding of 1 wt%, 1.5 wt%, and 2 wt% showed an incremental oil recovery in comparison to water flooding of 16.8%, 17%, and 26%, while the polymeric surfactant mixtures of 5 wt% of surfactant and 1 wt%, 1.5 wt%, and 2 wt% of a polymer recorded 16.5%, 22.3%, and 28.8%, and 10 wt% of surfactant and 1 wt%, 1.5 wt%, and 2 wt% of a polymer recorded incremental oil recoveries of 20%, 32.9%, and 38.8%, respectively. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

20 pages, 1346 KiB  
Article
Non-Conventional Oilseeds: Unlocking the Global Potential for Sustainable Biofuel Production
by Bushra Ahmed Alhammad, Aftab Jamal, Claudia Carlucci, Muhammad Farhan Saeed, Mahmoud F. Seleiman and Marcelo F. Pompelli
Catalysts 2023, 13(9), 1263; https://doi.org/10.3390/catal13091263 - 31 Aug 2023
Cited by 5 | Viewed by 2682
Abstract
Renewable energy sources have become an urgent worldwide concern due to the impacts of global warming. Globally, biofuels can significantly reduce greenhouse gas emissions, which are major contributors to global warming. The use of biofuels has the potential to transform the energy landscape [...] Read more.
Renewable energy sources have become an urgent worldwide concern due to the impacts of global warming. Globally, biofuels can significantly reduce greenhouse gas emissions, which are major contributors to global warming. The use of biofuels has the potential to transform the energy landscape while mitigating the adverse effects of traditional fossil fuels. This study examines the water features, biochemical compositions, and fatty acid profiles among various plant species. The results reveal significant variations in water features as a consequence of the relative water content and water potential of each seed. Also, we note that some non-edible species like A. blanchetii, C. procera, E. oleracea, P. juliflora, M. oleifera, and J. curcas have good attributes that confer a biofuel-like species. These attributes are high in oil content and have a good profile content of long-chain polyunsaturated fatty acids (LC-PUFAs), ranging from 35% to 80% among the different oilseeds. Fatty acid profiling reveals distinct compositions among the plant species. Stearic acid (C18:0), oleic acid (C18:1), and linoleic acid (C18:2) were the principal oils in A. blanchetii, J. curcas, P. juliflora, M. oleifera, and S. tuberosa compared to other species. M. oleifera stands out with a high linoleic acid (C18:1) content, while C. maxima, J. curcas, and P. juliflora are even higher (C18:2). A principal component analysis (PCA) and Pearson correlations analysis also confirmed that alternative oilseeds exhibited similarities to standard oilseeds and have the potential to replace them for biofuel production. These findings demonstrate the potential of non-conventional oilseeds for sustainable biofuel production. By unlocking their global potential, we can advance towards mitigating environmental impacts and fostering a sustainable biofuel industry. Full article
Show Figures

Figure 1

26 pages, 3680 KiB  
Review
A Systematic Review of the Bioactivity of Jatropha curcas L. (Euphorbiaceae) Extracts in the Control of Insect Pests
by Armando Valdez-Ramirez, Antonio Flores-Macias, Rodolfo Figueroa-Brito, Maria E. de la Torre-Hernandez, Miguel A. Ramos-Lopez, Saul A. Beltran-Ontiveros, Delia M. Becerril-Camacho and Daniel Diaz
Sustainability 2023, 15(15), 11637; https://doi.org/10.3390/su151511637 - 27 Jul 2023
Cited by 6 | Viewed by 5947
Abstract
The use of botanical extracts of the plant Jatropha curcas (Euphorbiaceae) represents a valuable alternative to control insect pests and avoid the detrimental effects on the environment and health that arise due to synthetic chemical insecticides. Thus, we conducted a systematic review to [...] Read more.
The use of botanical extracts of the plant Jatropha curcas (Euphorbiaceae) represents a valuable alternative to control insect pests and avoid the detrimental effects on the environment and health that arise due to synthetic chemical insecticides. Thus, we conducted a systematic review to summarize the published evidence on the bioactivity of J. curcas against insect pests. Electronic databases were searched to identify studies that assessed J. curcas extracts against insect pests in various types of crops. We included 39 articles that reported the insecticidal and insectistatic activity of several botanical extracts from J. curcas against insects of eight different taxonomic orders. The evidence demonstrates that aqueous and methanolic extracts from seeds and leaves, seed oil, and petroleum ether seed extracts were effective against insect pests of stored grains, aphids of cabbage and sorghum, fruit flies, and desert locusts. The extracts caused high mortality, controlled the populations, reduced oviposition, diminished hatchability, and increased the antifeedant effect. However, the type of solvent used to obtain the botanical extract and the method of application (contact or food) are fundamental to increase its bioactivity. Therefore, botanical extracts from seeds and leaves of J. curcas should be considered as an alternative against insect pests and may be incorporated into integrative and sustainable management for insect control. Full article
(This article belongs to the Special Issue Sustainable Integrated Pest Management: Achievements and Challenges)
Show Figures

Figure 1

20 pages, 7285 KiB  
Article
Aqueous Extracts of Fermented Macrofungi Cultivated in Oilseed Cakes as a Carbon Source for Probiotic Bacteria and Potential Antibacterial Activity
by Joice Raísa Barbosa Cunha, Daiana Wischral, Rubén Darío Romero Peláez, Pérola De Oliveira Magalhães, Marina Borges Guimarães, Maria Aparecida de Jesus, Ceci Sales-Campos, Thais Demarchi Mendes, Eustáquio Souza Dias, Simone Mendonça and Félix Gonçalves de Siqueira
Metabolites 2023, 13(7), 854; https://doi.org/10.3390/metabo13070854 - 18 Jul 2023
Viewed by 1686
Abstract
Plant biomass colonized by macrofungi can contain molecules with bioactive properties with applications to human/animal health. This work aimed to verify antibacterial activities from aqueous extracts from oil seed cakes of Jatropha curcas (JSC) and cottonseed (CSC), fermented by macrofungi for probiotic bacteria [...] Read more.
Plant biomass colonized by macrofungi can contain molecules with bioactive properties with applications to human/animal health. This work aimed to verify antibacterial activities from aqueous extracts from oil seed cakes of Jatropha curcas (JSC) and cottonseed (CSC), fermented by macrofungi for probiotic bacteria cultivation. Coriolopsis sp., Tyromyces sp., Panus lecomtei, and Pleurotus pulmonarius were cultivated in solid and submerged media. The aqueous extract of unfermented JSC was more efficient than glucose for the growth of all probiotic bacteria. Extracts from four macrofungi fermented in CSC favored Lactobacillus acidophilus growth. In solid fermentation, macrofungi extracts cultivated in JSC favored Bifidobacterium lactis growth. All fungi extracts showed more significant growth than carbohydrates among the four probiotic bacteria evaluated. Regarding antimicrobial activities, no fungal extract or bacterial supernatant showed a more significant inhibition halo for enteropathogenic bacteria than ampicillin (control). Extracts from P. lecomtei and Coriolopsis sp. in CSC showed inhibition halos for Salmonella enterica. Supernatants from L. acidophilus, B. lactis, and Lactobacillus rhamnosus resulted in more significant inhibition of Staphylococcus aureus than the control, which indicates possible antimicrobial activity. Unfermented JSC supernatant showed better results for bacterial growth, while supernatants and aqueous extracts from CSC fermentation can be used for probiotic bacteria culture. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

25 pages, 2423 KiB  
Review
A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?
by Anderson Breno Souza, Alvaro Antonio Villa Ochoa, José Ângelo Peixoto da Costa, Gustavo de Novaes Pires Leite, Héber Claudius Nunes Silva, Andrezza Carolina Carneiro Tómas, David Campos Barbosa and Paula Suemy Arruda Michima
Energies 2023, 16(9), 3736; https://doi.org/10.3390/en16093736 - 27 Apr 2023
Cited by 3 | Viewed by 2376
Abstract
In this article, the most important publications on the subject are compiled to highlight the progress in biodiesel production from tropical cultivars, including energy and environmental potential, raw materials, and the advantages and disadvantages of this biofuel. A critical and objective review of [...] Read more.
In this article, the most important publications on the subject are compiled to highlight the progress in biodiesel production from tropical cultivars, including energy and environmental potential, raw materials, and the advantages and disadvantages of this biofuel. A critical and objective review of biodiesel production as an alternative fuel for power generation systems and its importance in the energy matrix was conducted. A survey of real applications, new computational and experimental trends, and proposals in internal combustion engines employing organic biofuel was performed. The main findings were as follows: (i) there is the possibility of integration and support in the energy matrix of different countries, as well as the competing with and complementing, energetically, other renewable energy sources, such as solar and wind; (ii) Jatropha curcas, sunflowers, soybean, Moringa oleifera, palm, cottonseed, castor, rubber seed, and coconut are tropical cultivars used to obtained oils into biodiesel; (iii) the findings can be utilized as a theoretical basis for future policies influencing the energy sector through regulatory measures. Full article
(This article belongs to the Special Issue Recent Progress in Biodiesel and IC Engines)
Show Figures

Figure 1

14 pages, 4784 KiB  
Article
Characterization of Malaysian Jatropha Seed Oil and Discovering the Process of Powdered Jatropha Leaves
by Amni Haslinda Alpandi, Hazlina Husin, Akhmal Sidek and Muslim Abdurrahman
Processes 2022, 10(12), 2577; https://doi.org/10.3390/pr10122577 - 3 Dec 2022
Cited by 2 | Viewed by 3505
Abstract
Wax deposition is the main flow assurance problem that affects the oil and gas industry at various points of oil transport, hence a solution is being sought. The aim of this paper is to establish a solution using Jatropha curcas seed oil (JSO) [...] Read more.
Wax deposition is the main flow assurance problem that affects the oil and gas industry at various points of oil transport, hence a solution is being sought. The aim of this paper is to establish a solution using Jatropha curcas seed oil (JSO) from Malaysia and its sustainability as a wax inhibitor component. Extraction of JSO was carried out using a Soxhlet extractor and n-Hexane solvent. Characterization of JSO by gas chromatography–mass spectrometry (GC–MS) and Fourier transform infrared spectroscopy (FTIR) was performed to identify the components of JSO and their functional groups. GC–MS analysis showed that oleic acid was the major component of JSO with 44.91%. FTIR analysis showed the presence of ester fatty acid groups at a peak of 1746.48 cm−1. The analysis revealed that the high content of oleic acid in JSO has great potential as a wax inhibitor to mitigate paraffin wax deposition and improve the flowability of crude oil. This research was extended by the discovery of the process of powdered Jatropha leaves, which have the potential as a wax inhibitor. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 3425 KiB  
Article
Thermal and Thermomechanical Characterization of Polypropylene-Seed Shell Particles Composites
by José Luis Rivera-Armenta, Beatriz Adriana Salazar-Cruz, Ana Cecilia Espindola-Flores, Diana Samantha Villarreal-Lucio, Claudia María De León-Almazán and Jorge Estrada-Martinez
Appl. Sci. 2022, 12(16), 8336; https://doi.org/10.3390/app12168336 - 20 Aug 2022
Cited by 11 | Viewed by 2339
Abstract
The use of plant waste, such ashusks, fibers, and bagasse, as additives in polymeric matrices generated great interest recently, since they became an option to be used as additives, reinforcers, or only as fillers. The pistachio is a seed for human consumption, while [...] Read more.
The use of plant waste, such ashusks, fibers, and bagasse, as additives in polymeric matrices generated great interest recently, since they became an option to be used as additives, reinforcers, or only as fillers. The pistachio is a seed for human consumption, while the Jatropha curcas (JC) is a seed from which oils are extracted, and are used to obtain biofuels; however, their shells are not used when discardedbecause no useful application is known.An interesting application for this waste material is to use it as a bioadditive in polymeric matrix. The objective of the present work is to prepare polymer composites with polypropylene (PP) as a matrix and as a bio-additive particle inseed shells, in this case Jatropha curcas shell particles (JA) and pistachio shell particles (PI), in different content from 2 to 10 phr. The composites were characterized by techniques such as differential scanning calorimetry (DSC) and X-ray diffraction (XRD) to evaluate crystallinity; by using thermogravimetric analysis (TGA), the thermal stability was studied, and by using dynamic mechanical analysis (DMA) the viscoelastic behavior of composites was evaluated. According to DSC, results suggest that a nucleating effect occurs with the addition of the JA and PI, which was reflected in an increase in thepercent of crystallinity of the composites. The TGA results show that thermal stability of the composites was modified with the presence of JA and PI, compared with that PP pristine.In addition, dynamic mechanical analysis (DMA) reported that the viscoelastic behavior was modified, findinga higher capacity to dissipate energy for composites, PI being the one that presented a greater effect on them. Full article
Show Figures

Graphical abstract

19 pages, 1533 KiB  
Article
Bioactives and Extracellular Enzymes Obtained from Fermented Macrofungi Cultivated in Cotton and Jatropha Seed Cakes
by Joice Raísa Barbosa Cunha, Daiana Wischral, Ruben Darío Romero Pelaez, Maria Aparecida de Jesus, Ceci Sales-Campos, Raquel Bombarda Campanha, Thais Demarchi Mendes, Simone Mendonça, Eustáquio Souza Dias and Félix Gonçalves de Siqueira
Microorganisms 2022, 10(8), 1670; https://doi.org/10.3390/microorganisms10081670 - 19 Aug 2022
Cited by 4 | Viewed by 2221
Abstract
This work focused on obtaining fermented oil cake (cotton or Jatropha) via macrofungi growth with potential characteristics for animal feed formulations, such as the presence of extracellular enzymes, bioactive (ergosterol and antioxidants), and detoxification of antinutritional compounds. The concentration of phorbol esters [...] Read more.
This work focused on obtaining fermented oil cake (cotton or Jatropha) via macrofungi growth with potential characteristics for animal feed formulations, such as the presence of extracellular enzymes, bioactive (ergosterol and antioxidants), and detoxification of antinutritional compounds. The concentration of phorbol esters was reduced by four macrofungi in Jatropha seed cake (JSC) to non-toxic levels. At least two macrofungi efficiently degraded free gossypol in cottonseed cake (CSC). Fermentation with Coriolopsis sp. INPA1646 and Tyromyces sp. INPA1696 resulted in increased ergosterol concentrations, antioxidant activity reduction, and high activity of laccases and proteases. Bromatological analysis indicated high crude protein concentrations, with partial solubilization by fungal proteases. Fermented products from Coriolopsis sp. and Tyromyces sp. in JSC or CSC can be considered important biological inputs for monogastric and polygastric animal feed. Full article
(This article belongs to the Special Issue Fungal Biology and Interactions)
Show Figures

Figure 1

22 pages, 3005 KiB  
Review
Salinity in Jatropha curcas: A Review of Physiological, Biochemical, and Molecular Factors Involved
by Marcelo F. Pompelli, Alfredo Jarma-Orozco and Luis Alfonso Rodríguez-Páez
Agriculture 2022, 12(5), 594; https://doi.org/10.3390/agriculture12050594 - 23 Apr 2022
Cited by 16 | Viewed by 6690
Abstract
Jatropha curcas is a woody-shrub species of the Euphorbiaceae family that is widely distributed in tropical and subtropical areas. The great interest in its cultivation lies in the potential for achieving elevated yields of a high-quality oil. Another characteristic that makes J. curcas [...] Read more.
Jatropha curcas is a woody-shrub species of the Euphorbiaceae family that is widely distributed in tropical and subtropical areas. The great interest in its cultivation lies in the potential for achieving elevated yields of a high-quality oil. Another characteristic that makes J. curcas promising is its ability to produce green energy even in high-salinity soils. For a commercial cultivation to be considered effectively competent to withstand these conditions, it must produce enough to offset production costs. There is no doubt that J. curcas is considered promising, but numerous pilot projects for the commercial planting of J. curcas have failed worldwide, mainly due to a lack of reliable scientific knowledge about the species, its food security, and (mainly) its instability in commercial fruit production. The main goal of this review was to compile published results on tolerance/resistance or sensitivity to salt stress in J. curcas. Updating the knowledge on this theme may allow for researchers to trace strategies for future studies of stress physiology in this promising oil seed species. Full article
(This article belongs to the Topic Plant Responses and Tolerance to Salinity Stress)
Show Figures

Figure 1

21 pages, 2611 KiB  
Article
Heterologous Expression of Jatropha curcas Fatty Acyl-ACP Thioesterase A (JcFATA) and B (JcFATB) Affects Fatty Acid Accumulation and Promotes Plant Growth and Development in Arabidopsis
by Ying Liu, Jing Han, Zhijie Li, Zuojie Jiang, Liangfeng Luo, Yingzhe Zhang, Minghao Chen, Yuesheng Yang and Zhenlan Liu
Int. J. Mol. Sci. 2022, 23(8), 4209; https://doi.org/10.3390/ijms23084209 - 11 Apr 2022
Cited by 12 | Viewed by 2406
Abstract
Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in [...] Read more.
Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

5 pages, 1882 KiB  
Proceeding Paper
Jatropha Farm: A Circular Economy Proposal for the Non-Toxic Physic Nut Crop in Mexico
by Humberto Peralta, Daniel Itzamná Avila-Ortega and José Carmen García-Flores
Environ. Sci. Proc. 2022, 15(1), 10; https://doi.org/10.3390/environsciproc2022015010 - 6 Apr 2022
Viewed by 1917
Abstract
Jatropha curcas (physic nut) is a promising crop in tropical countries because its seeds have a high oil content that can be easily transformed into biodiesel. The oil can also serve to obtain other bioproducts. However, several obstacles hinder the extensive application of [...] Read more.
Jatropha curcas (physic nut) is a promising crop in tropical countries because its seeds have a high oil content that can be easily transformed into biodiesel. The oil can also serve to obtain other bioproducts. However, several obstacles hinder the extensive application of the crop, for example, the relative low prices of petroleum and oil, the toxicity of the seeds, low crop yields and rusticity of the plant. We propose a model in which several biotechnological strategies are applied to increase the crop value of Jatropha, while maintaining the fertility characteristics of the soil, and reducing its carbon and water footprints. Full article
(This article belongs to the Proceedings of The 9th International Conference on Sustainable Development)
Show Figures

Figure 1

Back to TopTop