Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = JIP test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3553 KiB  
Article
In-Depth Analysis of Chlorophyll Fluorescence Rise Kinetics Reveals Interference Effects of a Radiofrequency Electromagnetic Field (RF-EMF) on Plant Hormetic Responses to Drought Stress
by Julian Keller, Uwe Geier and Nam Trung Tran
Int. J. Mol. Sci. 2025, 26(15), 7038; https://doi.org/10.3390/ijms26157038 - 22 Jul 2025
Viewed by 202
Abstract
The proliferation of telecommunication devices in recent decades has resulted in a substantial increase in exposure risk to manmade radiofrequency electromagnetic fields (RF-EMFs) for both animals and plants. The physiological effects of these exposures remain to be fully elucidated. In this study, we [...] Read more.
The proliferation of telecommunication devices in recent decades has resulted in a substantial increase in exposure risk to manmade radiofrequency electromagnetic fields (RF-EMFs) for both animals and plants. The physiological effects of these exposures remain to be fully elucidated. In this study, we measured and analyzed the chlorophyll fluorescence rise kinetics of lettuce plants in the presence of RF-EMFs and after a short drought treatment. The analysis of the fluorescence data was conducted using two different strategies: a conventional JIP test and a novel machine learning-assisted anomaly-detection approach. Our results suggest that exposure to RF-EMFs weakens the plant’s hormetic responses induced by drought treatment, both in terms of the response’s magnitude and its extent. These findings provide further evidence supporting the hypothesis that RF-EMFs interfere with plant stress responses. Full article
(This article belongs to the Special Issue New Insights into Plant Stress)
Show Figures

Figure 1

26 pages, 2424 KiB  
Article
BPM Proteins Modulate Heat Stress Response in Arabidopsis thaliana Seedlings
by Sandra Vitko, Dunja Leljak-Levanić, Nataša Bauer and Željka Vidaković-Cifrek
Plants 2025, 14(13), 1969; https://doi.org/10.3390/plants14131969 - 27 Jun 2025
Viewed by 419
Abstract
Plant responses to heat stress include complex transcriptional networks and protein regulations in which BTB/POZ-MATH (BPM) proteins participate as a part of ubiquitin-mediated protein degradation. Arabidopsis thaliana contains six BPM genes involved in responses to environmental changes, including heat. Seedlings overexpressing BPM1 ( [...] Read more.
Plant responses to heat stress include complex transcriptional networks and protein regulations in which BTB/POZ-MATH (BPM) proteins participate as a part of ubiquitin-mediated protein degradation. Arabidopsis thaliana contains six BPM genes involved in responses to environmental changes, including heat. Seedlings overexpressing BPM1 (oeBPM1), seedlings with downregulation of BPM1, 4, 5, and 6 (amiR-bpm) and wild type were exposed to 37 °C for 6 h. Treatment caused stronger decline of photosynthesis in oeBPM1 than in amiR-bpm and wild type, although all seedlings recovered after 24 h at 24 °C. The activity of the antioxidant enzymes catalase, guaiacol peroxidase, and ascorbate peroxidase remained unchanged in oeBPM1, but increased in amiR-bpm and wild type. Heat stress induced HSP70 and HSP90 in all seedlings but expression remained notably higher in amiR-bpm after recovery. DREB2A and HSFA3 expression increased in all seedlings immediately after stress, with the strongest induction in amiR-bpm. In amiR-bpm and wild type, BPM2 expression was induced immediately after exposure, while BPM1, BPM3, BPM4, and BPM6 were upregulated in wild type after recovery. In oeBPM1 seedlings, BPM4 expression decreased and BPM6 expression increased immediately after treatment at 37 °C for 6 h. The results suggest that BPM proteins modulate heat stress response by influencing photosynthesis, activation of antioxidant enzymes, accumulation of HSPs, and expression of heat-responsive genes, thus contributing to the different physiological strategies observed in A. thaliana lines with altered expression of BPM genes. Full article
Show Figures

Figure 1

37 pages, 4654 KiB  
Article
Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency
by Vesna Peršić, Anja Melnjak, Lucija Domjan, Günther Zellnig and Jasenka Antunović Dunić
Plants 2025, 14(13), 1907; https://doi.org/10.3390/plants14131907 - 20 Jun 2025
Viewed by 552
Abstract
Spirodela polyrhiza is a suitable model organism for investigating plant developmental influences due to its intracolonial variations in response to various environmental fluctuations, like nutrient deficiency. In this study, transmission electron microscopy was used to examine age-dependent variation in chloroplast ultrastructure, while pigment [...] Read more.
Spirodela polyrhiza is a suitable model organism for investigating plant developmental influences due to its intracolonial variations in response to various environmental fluctuations, like nutrient deficiency. In this study, transmission electron microscopy was used to examine age-dependent variation in chloroplast ultrastructure, while pigment levels (chlorophyll and anthocyanins), starch accumulation, and metabolic activity (photosynthetic and respiratory rates) were measured to determine metabolic responses to sulfur deficiency. For a comprehensive insight into electron transport efficiency and the redox states of the photosynthetic apparatus, rapid light curves, chlorophyll fluorescence (JIP test parameters), and modulated reflection at 820 nm were analyzed. Under S deficit, mother fronds relied on stored reserves to maintain functional PSII but accumulated reduced PQ pools, slowing electron flow beyond PSII. The first-generation daughter fronds, despite having higher baseline photosynthetic capacity, exhibited the largest decline in photosynthetic indicators (e.g., rETR fell about 50%), limitations in the water-splitting complex, and reduced PSI end-acceptor capacity that resulted in donor- and acceptor-side bottlenecks of electron transport. The youngest granddaughter fronds avoided these bottlenecks by absorbing less light per PSII, channeling electrons through the alternative pathway to balance PQ pools and redox-stable PSI while diverting more carbon into starch and anthocyanin production up to 5-fold for both. These coordinated and age-specific adjustments that provide response flexibility may help maintain photosynthetic function of the colony and facilitate rapid recovery when sulfur becomes available again. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications—2nd Edition)
Show Figures

Figure 1

18 pages, 2368 KiB  
Article
The Role of Light-Harvesting Complex II Organization in the Efficiency of Light-Dependent Reactions in the Photosynthetic Apparatus of Pisum sativum L.
by Georgi D. Rashkov, Martin A. Stefanov, Amarendra N. Misra and Emilia L. Apostolova
Plants 2025, 14(12), 1846; https://doi.org/10.3390/plants14121846 - 16 Jun 2025
Viewed by 480
Abstract
In this study, the functions of the photosynthetic machinery were evaluated using chlorophyll a fluorescence technique (PAM and JIP test) in pea plants (Pisum sativum L. cv Borec) and its LHC II oligomerization variants (mutants Costata 2/133 and Coeruleovireus 2 [...] Read more.
In this study, the functions of the photosynthetic machinery were evaluated using chlorophyll a fluorescence technique (PAM and JIP test) in pea plants (Pisum sativum L. cv Borec) and its LHC II oligomerization variants (mutants Costata 2/133 and Coeruleovireus 2/16). The oligomeric forms of LHCII increased in the following order: Costata 2/133 < Borec wt < Coeruleovireus 2/16. Data revealed that the mutant with higher LHCII oligomerization (Coeruleovireus 2/16) at low light intensity (LL, 150 µmol photons/m2·s) exhibited the following: (i) decreased energy dissipation and increased electron transport efficiency; (ii) higher reaction center density; (iii) increased amounts of the open reaction centers (qp) and their excitation efficiency (Φexc); and (iv) influenced the reoxidation of QA, alleviating its interaction with plastoquinone. These effects enhanced photosynthetic performance related to PSII photochemistry (PIABS) and overall photosynthetic efficiency (PItotal). High light intensity (HL, 500 µmol photons/m2·s) caused a reduction in open reaction centers (qp), excitation efficiency (Φexc), photochemical energy conversion of PSII (ΦPSII), maximum efficiency of PSII photochemistry in light (Fv′/Fm′), and linear electron transport via PSII, with more pronounced effects observed in membranes with a lower degree of LHCII oligomerization (Costata 2/133). This study provides novel experimental evidence for the pivotal role of the LHCII structural organization in determining the efficiency of light-dependent reactions of photosynthesis. Full article
Show Figures

Figure 1

19 pages, 7245 KiB  
Article
Nitrogen Immobilization by Wood Fiber Substrates Strongly Affects the Photosynthetic Performance of Lettuce
by Lingyi Wu, Ruohan Li, Juncheng Liu, Wenzhong Cui, Zhiyong Qi and Wanlai Zhou
Plants 2025, 14(10), 1518; https://doi.org/10.3390/plants14101518 - 19 May 2025
Cited by 1 | Viewed by 537
Abstract
Wood fiber substrates are widely used as peat substitutes in horticulture, but the impact of their high carbon-to-nitrogen ratio on nitrogen immobilization and crop photosynthetic performance remains unclear. This study systematically examined the effects of wood fiber substrates on lettuce photosynthetic performance and [...] Read more.
Wood fiber substrates are widely used as peat substitutes in horticulture, but the impact of their high carbon-to-nitrogen ratio on nitrogen immobilization and crop photosynthetic performance remains unclear. This study systematically examined the effects of wood fiber substrates on lettuce photosynthetic performance and underlying physiological mechanisms using pot experiments. Two substrate treatments—peat (control) and wood fiber—were combined with three nitrogen levels: low, medium, and high (63, 127, and 210 mg N·L−1). Results indicated that wood fiber substrates significantly reduced the availability of fast-acting nitrogen, leading to a substantial decrease in lettuce biomass (39.0–56.8%), total nitrogen content (7.2–39.9%), and chlorophyll content (13.7–36.2%). Chlorophyll fluorescence kinetics analysis revealed that wood fiber substrates impair photosystem function through multiple pathways. At the early stage (15 days), key effects included structural damage to the donor side of PSII(Photosystem II), indicated by L and K peaks, and inhibited electron transfer on the PSI(Photosystem I) acceptor side (δRo decreased by 15.08–27.90%, along with a reduction in WOI amplitude). The findings provide an important theoretical basis for optimising nitrogen management strategies for wood fibre substrates. Full article
Show Figures

Figure 1

13 pages, 1714 KiB  
Article
Screening Genipa americana Progenies for Their Ability to Maintain Leaf Vitality Under Severe Dehydration Using Chlorophyll Fluorescence
by Catriane Sousa-Santos, Junior Pastor Pérez-Molina, Amanda Freitas Cerqueira, Ândrea Carla Dalmolin, Álvaro Alves de Almeida, Martielly Santana dos Santos and Marcelo Schramm Mielke
Forests 2025, 16(5), 770; https://doi.org/10.3390/f16050770 - 30 Apr 2025
Viewed by 376
Abstract
Damage to the photosynthetic apparatus during leaf dehydration is an indicator of the maintenance of leaf vitality and the resilience of tree seedlings to severe drought. Genipa americana is a tree widely distributed in the neotropical region but with great ecological and sociocultural [...] Read more.
Damage to the photosynthetic apparatus during leaf dehydration is an indicator of the maintenance of leaf vitality and the resilience of tree seedlings to severe drought. Genipa americana is a tree widely distributed in the neotropical region but with great ecological and sociocultural importance in the south of the state of Bahia, Brazil, where its fruits are harvested from subspontaneous trees. This study aimed to compare the feasibility of the maximum quantum efficiency of photosystem II (Fv/Fm) and performance indexes derived from the JIP test, i.e., performance index on absorption basis (PIabs) and total performance index (PItotal), for screening G. americana seedlings from different mother plants for leaf damage caused by dehydration. From leaf dehydration curves, we calculated the values of relative water content (RWC) in which Fv/Fm, PIabs, and PItotal reach a loss of 10% and 50% in relation to the values of fully hydrated leaves. PItotal was the only parameter that revealed consistent significant differences between progenies for RWC at 50% of percentage loss. Significant differences were observed among progenies for leaf traits; however, no correlation was detected between these traits and chlorophyll fluorescence parameters. Monitoring the PItotal values during leaf dehydration is a useful tool for screening G. americana progenies in relation to their capacity to maintain leaf vitality under occasional severe droughts. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

17 pages, 1612 KiB  
Article
Resilience of Chlorella vulgaris to Simulated Atmospheric Gas Compositions of Mars, Jupiter, and Titan
by Ariela Likai, Aikaterini Papazi and Kiriakos Kotzabasis
Life 2025, 15(1), 117; https://doi.org/10.3390/life15010117 - 17 Jan 2025
Viewed by 1407
Abstract
This study investigates the resilience of the unicellular green microalga Chlorella vulgaris to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism’s photosynthetic efficiency, oxygen [...] Read more.
This study investigates the resilience of the unicellular green microalga Chlorella vulgaris to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism’s photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements. Despite the extreme atmospheric compositions—ranging from the CO2-rich, low-pressure Martian atmosphere to the anoxic atmospheres of Jupiter and Titan—C. vulgaris demonstrated resilience and a functional photosynthetic apparatus, maintaining growth and oxygen production. Notably, the Martian atmosphere enhanced photosynthetic performance, with fluorescence curves and Fv/Fm ratios surpassing Earth-like conditions, likely due to elevated CO2 and low pressure. Under mixotrophic conditions, the addition of glucose further enhanced metabolic activity and biomass growth across all atmospheres. These findings highlight the potential of C. vulgaris for bioregenerative life support systems, enabling oxygen production, CO2 sequestration, and resource cultivation in extraterrestrial habitats. The study showcases the organism’s adaptability to extreme environments, with implications for astrobiology, space exploration, and sustainable extraterrestrial ecosystems. These findings expand habitability criteria and explore extremophiles’ potential to support life beyond Earth. Full article
Show Figures

Figure 1

20 pages, 4124 KiB  
Article
The Effect of Exogenous Melatonin on the Photosynthetic Characteristics of Rhododendron simsii Under Cadmium Stress
by Haochen Di, Ying Liang, Yuting Gong, Songheng Jin and Yanxia Xu
Plants 2025, 14(1), 125; https://doi.org/10.3390/plants14010125 - 3 Jan 2025
Cited by 1 | Viewed by 1115
Abstract
Rhododendron simsii (R. simsii), a significant ornamental plant species, is adversely affected by the severe soil heavy metal pollution resulting from rapid industrialization, particularly in terms of its growth environment. Cadmium (Cd), a representative heavy metal pollutant, poses a significant threat [...] Read more.
Rhododendron simsii (R. simsii), a significant ornamental plant species, is adversely affected by the severe soil heavy metal pollution resulting from rapid industrialization, particularly in terms of its growth environment. Cadmium (Cd), a representative heavy metal pollutant, poses a significant threat to plant growth and photosynthetic physiology. Despite the importance of understanding Cd stress resistance in rhododendrons, research in this area is limited. This study focused on the role of exogenous melatonin (MT) in mitigating Cd-induced stress, emphasizing its impact on photosynthetic physiology. Gas exchange parameters, prompt and delayed fluorescence (DF), 820 nm modulated reflectance (Mr820), and antioxidant enzyme activity, were measured. The findings revealed that under Cd stress, MT-free treatment imposed a more severe limitation on both stomatal and non-stomatal processes in R. simsii leaves, significantly reducing the net photosynthetic rate. In contrast, exogenous MT improved photosynthetic efficiency by increasing the maximum photochemical efficiency of photosystem II, the quantum yield of electron transport, and the photosynthetic performance index. DF and Mr820 analysis demonstrated that MT provided robust protection to both the donor and receptor sides of photosystems I and II. Furthermore, MT significantly decreased malondialdehyde (MDA) content, a marker of oxidative stress, and enhanced the activity of antioxidant enzymes, including superoxide dismutase (SOD) and guaiacol peroxidase (POD). In conclusion, exogenous MT plays a critical role in alleviating Cd-induced stress by enhancing antioxidant defense mechanisms and safeguarding the photosynthetic apparatus, thereby improving the Cd tolerance of R. simsii. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
Show Figures

Graphical abstract

10 pages, 660 KiB  
Article
BioFire® Joint Infection Panel for Samples Other than Synovial Fluid
by Nicola Benvenuto, Stefano Di Bella, Luigi Principe, Diego Luppino, Jacopo Conti, Venera Costantino, Manuela Di Santolo, Marina Busetti, Roberto Luzzati and Verena Zerbato
Antibiotics 2024, 13(12), 1198; https://doi.org/10.3390/antibiotics13121198 - 9 Dec 2024
Cited by 1 | Viewed by 1503
Abstract
Objectives: The early identification of infection-causing microorganisms through multiplex PCR panels enables prompt and targeted antibiotic therapy. This study aimed to assess the performance of the BioFire® Joint Infection Panel (BF-JIP) in analysing non-synovial fluid samples. Methods: We conducted a [...] Read more.
Objectives: The early identification of infection-causing microorganisms through multiplex PCR panels enables prompt and targeted antibiotic therapy. This study aimed to assess the performance of the BioFire® Joint Infection Panel (BF-JIP) in analysing non-synovial fluid samples. Methods: We conducted a retrospective cohort study at Trieste University Hospital, Italy, on hospitalised adults with non-synovial fluid samples tested by both BF-JIP and traditional culture methods (November 2022–April 2024). Results: We evaluated 48 samples from 45 patients, including 24 abscess drainage fluids and 10 tissue samples. The BF-JIP showed high concordance (85.4%) and enhanced detection (4.3%) compared to culture methods. The BF-JIP excelled in cerebrospinal fluid (CSF) (100% accuracy and concordance) and in abscess drainage fluid (accuracy: 95.8%; concordance: 91.7%) identification and maintained high performance rates in patients under antibiotics. Conclusions: These findings suggest that BF-JIP is a valuable tool for accurate pathogen detection in various clinical samples, offering the additional advantage of being a rapid method. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

14 pages, 3986 KiB  
Article
Anomaly Detection Utilizing One-Class Classification—A Machine Learning Approach for the Analysis of Plant Fast Fluorescence Kinetics
by Nam Trung Tran
Stresses 2024, 4(4), 773-786; https://doi.org/10.3390/stresses4040051 - 18 Nov 2024
Cited by 1 | Viewed by 1239
Abstract
The analysis of fast fluorescence kinetics, specifically through the JIP test, is a valuable tool for identifying and characterizing plant stress. However, interpreting OJIP data requires a comprehensive understanding of their underlying theory. This study proposes a Machine Learning-based approach using a One-Class [...] Read more.
The analysis of fast fluorescence kinetics, specifically through the JIP test, is a valuable tool for identifying and characterizing plant stress. However, interpreting OJIP data requires a comprehensive understanding of their underlying theory. This study proposes a Machine Learning-based approach using a One-Class Support Vector Machine anomaly detection model to effectively categorize OJIP measurements into “normal”, representing healthy plants, and “anomalies”. This approach was validated using a previously published dataset. A subgroup of the identified “anomalies” was clearly linked to stress-induced reductions in photosynthesis. Furthermore, the percentage of these “anomalies” showed a meaningful correlation with both the progression and severity of stress. The results highlight the still largely unexploited potential of Machine Learning in OJIP analysis. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

31 pages, 42225 KiB  
Article
Comparative Insights into Photosynthetic, Biochemical, and Ultrastructural Mechanisms in Hibiscus and Pelargonium Plants
by Renan Falcioni, Werner Camargos Antunes, Roney Berti de Oliveira, Marcelo Luiz Chicati, José Alexandre M. Demattê and Marcos Rafael Nanni
Plants 2024, 13(19), 2831; https://doi.org/10.3390/plants13192831 - 9 Oct 2024
Cited by 2 | Viewed by 2560
Abstract
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L’Hér. Ex Aiton) [...] Read more.
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L’Hér. Ex Aiton) plants. The data collection encompassed daily photosynthetic profiles, responses to light and CO2, leaf optical properties, fluorescence data (OJIP transients), biochemical analyses, and anatomical observations. The findings reveal distinct morphological, optical, and biochemical adaptations between the two species. These adaptations were associated with differences in photochemical (AMAX, E, Ci, iWUE, and α) and carboxylative parameters (VCMAX, ΓCO2, gs, gm, Cc, and AJMAX), along with variations in fluorescence and concentrations of chlorophylls and carotenoids. Such factors modulate the efficiency of photosynthesis. Energy dissipation mechanisms, including thermal and fluorescence pathways (ΦPSII, ETR, NPQ), and JIP test-derived metrics highlighted differences in electron transport, particularly between PSII and PSI. At the ultrastructural level, Hibiscus exhibited optimised cellular and chloroplast architecture, characterised by increased chloroplast density and robust grana structures. In contrast, Pelargonium displayed suboptimal photosynthetic parameters, possibly due to reduced thylakoid counts and a higher proportion of mitochondria. In conclusion, while Hibiscus appears primed for efficient photosynthesis and energy storage, Pelargonium may prioritise alternative cellular functions, engaging in a metabolic trade-off. Full article
(This article belongs to the Special Issue Photosynthesis and Carbon Metabolism in Higher Plants and Algae)
Show Figures

Figure 1

18 pages, 3740 KiB  
Article
Effects of Nitrogen Deficiency on the Photosynthesis, Chlorophyll a Fluorescence, Antioxidant System, and Sulfur Compounds in Oryza sativa
by Ling-Hua Chen, Ming Xu, Zuxin Cheng and Lin-Tong Yang
Int. J. Mol. Sci. 2024, 25(19), 10409; https://doi.org/10.3390/ijms251910409 - 27 Sep 2024
Cited by 10 | Viewed by 2909
Abstract
Decreasing nitrogen (N) supply affected the normal growth of Oryza sativa (O. sativa) seedlings, reducing CO2 assimilation, stomatal conductance (gs), the contents of chlorophylls (Chl) and the ratio of Chl a/Chl b, but increasing the intercellular CO2 [...] Read more.
Decreasing nitrogen (N) supply affected the normal growth of Oryza sativa (O. sativa) seedlings, reducing CO2 assimilation, stomatal conductance (gs), the contents of chlorophylls (Chl) and the ratio of Chl a/Chl b, but increasing the intercellular CO2 concentration. Polyphasic chlorophyll a fluorescence transient and relative fluorescence parameters (JIP test) results indicated that N deficiency increased Fo, but decreased the maximum quantum yield of primary photochemistry (Fv/Fm) and the maximum of the IPphase, implying that N-limiting condition impaired the whole photo electron transport chain from the donor side of photosystem II (PSII) to the end acceptor side of PSI in O. sativa. N deficiency enhanced the activities of the antioxidant enzymes, such as ascorbate peroxidase (APX), guaiacol peroxidase (GuPX), dehydro–ascorbate reductase (DHAR), superoxide dismutase (SOD), glutathione peroxidase (GlPX), glutathione reductase (GR), glutathione S-transferase (GST) and O-acetylserine (thiol) lyase (OASTL), and the contents of antioxidant compounds including reduced glutathione (GSH), total glutathione (GSH+GSSG) and non-protein thiol compounds in O. sativa leaves. In contrast, the enhanced activities of catalase (CAT), DHAR, GR, GST and OASTL, the enhanced ASC–GSH cycle and content of sulfur-containing compounds might provide protective roles against oxidative stress in O. sativa roots under N-limiting conditions. Quantitative real-time PCR (qRT-PCR) analysis indicated that 70% of the enzymes have a consistence between the gene expression pattern and the dynamic of enzyme activity in O. sativa leaves under different N supplies, whereas only 60% of the enzymes have a consistence in O. sativa roots. Our results suggested that the antioxidant system and sulfur metabolism take part in the response of N limiting condition in O. sativa, and this response was different between leaves and roots. Future work should focus on the responsive mechanisms underlying the metabolism of sulfur-containing compounds in O. sativa under nutrient deficient especially N-limiting conditions. Full article
Show Figures

Figure 1

16 pages, 2034 KiB  
Article
Photosynthetic Performance and Yield Losses of Winter Rapeseed (Brassica napus L. var. napus) Caused by Simulated Hail
by Piotr Dąbrowski, Łukasz Jełowicki, Zuzanna M. Jaszczuk, Olena Kryvoviaz and Hazem M. Kalaji
Plants 2024, 13(13), 1785; https://doi.org/10.3390/plants13131785 - 27 Jun 2024
Viewed by 2111
Abstract
Winter oilseed rape (Brassica napus L.), Europe’s foremost oilseed crop, is significantly impacted by hailstorms, leading to substantial yield reductions that are difficult to predict and measure using conventional methods. This research aimed to assess the effectiveness of photosynthetic efficiency analysis for [...] Read more.
Winter oilseed rape (Brassica napus L.), Europe’s foremost oilseed crop, is significantly impacted by hailstorms, leading to substantial yield reductions that are difficult to predict and measure using conventional methods. This research aimed to assess the effectiveness of photosynthetic efficiency analysis for predicting yield loss in winter rapeseed subjected to hail exposure. The aim was to pinpoint the chlorophyll fluorescence parameters most affected by hail stress and identify those that could act as non-invasive biomarkers of yield loss. The study was conducted in partially controlled conditions (greenhouse). Stress was induced in the plants by firing plastic balls with a 6 mm diameter at them using a pneumatic device, which launched the projectiles at speeds of several tens of meters per second. Measurements of both continuous-excitation and pulse-modulated-amplitude chlorophyll fluorescence were engaged to highlight the sensitivity of the induction curve and related parameters to hail stress. Our research uncovered that some parameters such as Fs, Fm’, ΦPSII, ETR, Fo, Fv/Fm, and Fv/Fo measured eight days after the application of stress had a strong correlation with final yield, thus laying the groundwork for the creation of new practical protocols in agriculture and the insurance industry to accurately forecast damage to rapeseed crops due to hail stress. Full article
(This article belongs to the Special Issue Practical Applications of Chlorophyll Fluorescence Measurements)
Show Figures

Figure 1

17 pages, 1809 KiB  
Article
Exploration of the Effects of Cadmium Stress on Photosynthesis in Oenanthe javanica (Blume) DC.
by Ronghua Zhou, Jun Xu, Liangjun Li, Yulai Yin, Bowen Xue, Jingjing Li and Fangfang Sun
Toxics 2024, 12(5), 307; https://doi.org/10.3390/toxics12050307 - 23 Apr 2024
Cited by 9 | Viewed by 2510
Abstract
Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 [...] Read more.
Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 signals were simultaneously measured to investigate the effect of Cd stress on photosynthesis in water dropwort [Oenanthe javanica (Blume) DC.]. We aimed to elucidate how Cd stress continuously affects the electron transport chain in this species. The PF analysis showed that with prolonged Cd stress, the FJ, FI and FP steadily decreased, accompanied by a positive shift in the K-band and L-band. Moreover, JIP-test parameters, including TRO/ABS, ABS/CSO, TRO/CSO and PIABS, were significantly reduced. The P700 signals showed that exposure to Cd stress hindered both the fast decrease and slow increase phases of the MR transient, ultimately resulting in a gradual reduction in both VPSI and VPSII−PSI. The DF analysis showed a gradual decrease in the I1 and I2 values as the duration of stress from Cd increased. The above results suggested that Cd stress affected the photosynthetic electron transport in water dropwort by influencing the amount of active PSII and PSI, primarily affecting PSII RCs in the early to mid-stages and PSI reductive activity in the later stage. Full article
Show Figures

Figure 1

16 pages, 3329 KiB  
Article
Metabolomic Profile and Functional State of Oat Plants (Avena sativa L.) Sown under Low-Temperature Conditions in the Cryolithozone
by Vasiliy V. Nokhsorov, Fedor F. Protopopov, Igor V. Sleptsov, Lidia V. Petrova and Klim A. Petrov
Plants 2024, 13(8), 1076; https://doi.org/10.3390/plants13081076 - 11 Apr 2024
Cited by 2 | Viewed by 1544
Abstract
Oats are one of the most useful and widespread cereal crops in the world. In permafrost conditions (Central Yakutia), based on metabolic changes in late summer-sown oat plants (Avena sativa L.), the key processes involved in the cold acclimation of a valuable [...] Read more.
Oats are one of the most useful and widespread cereal crops in the world. In permafrost conditions (Central Yakutia), based on metabolic changes in late summer-sown oat plants (Avena sativa L.), the key processes involved in the cold acclimation of a valuable cereal species were identified. During the onset of low ambient temperatures, metabolites from leaf samples were profiled using gas chromatography with mass spectrometry (GC-MS) and were analyzed using principal component analysis (PCA). A total of 41 metabolites were identified in oat leaves. It was found that acclimation to suboptimal temperatures during the fall period leads to biochemical (accumulation of mono- and disaccharides and decrease in fatty acids and polyols) as well as physiological and biophysical changes (decrease in leaf PRI reflectance indices and chlorophyll a fluorescence). Therefore, the study contributes to a more holistic understanding of oat metabolism under low-temperature cryolithozone stress. It is believed that the analysis of changes in leaf reflection properties and JIP-test parameters of chlorophyll a fluorescence using leaf metabolomic profiling can be used in the selection of valuable varieties of cereal crops to obtain plant fodders with high nutrient contents under conditions of a sharply continental climate. Full article
(This article belongs to the Special Issue Responses of Extreme Environment Plants to Abiotic Stress)
Show Figures

Figure 1

Back to TopTop