BPM Proteins Modulate Heat Stress Response in Arabidopsis thaliana Seedlings
Abstract
1. Introduction
2. Results
2.1. Photosynthetic Responses to Heat Stress in A. thaliana Lines with Altered BPMs Gene Expression
2.2. Specific Energy Fluxes in Photosystem II
2.3. Impact of Heat Stress and Modified BPMs Gene Expression on Pigment Composition
2.4. Contribution of Heat Stress and Modified BPMs Gene Expression to Oxidative Stress Levels
2.5. Antioxidant Activity in Response to Heat Stress and Modified BPMs Gene Expression
2.6. Heat-Responsive Proteins and Genes in Seedlings with Altered BPMs Expression
3. Discussion
3.1. BPM1 Overexpression Increases the Sensitivity of Photosynthesis to Heat Stress
3.2. Overexpression of BPM1 Reduces Activation of Antioxidant Defence
3.3. Reduced BPMs Expression Prolongs Elevated HSP Levels During Recovery from Heat Stress
4. Materials and Methods
4.1. Plant Material, Growth Conditions, and Treatment
4.2. Determination of Photosynthetic Efficiency
4.3. Measurement of Photosynthetic Pigment Content
4.4. Measurement of Hydrogen Peroxide, Malondialdehyde, and Proline Content
4.5. Protein Extraction and Antioxidant Enzyme Activity Assays
4.6. Immunodetection of Heat Shock Protein 70 and Heat Shock Protein 90
4.7. Quantification of DREB2A, HSFA3 and BPMs Expression
Gene | Accession Number | 5′ → 3′ Sequence (Forward/Reverse) | Primer Efficiency | Reference |
---|---|---|---|---|
ACT * | At3g53750 | CTGGCATCATACTTTCTACAATG CACCACTGAGCACAATGTTAC | / | [43] |
DREB2A | At5g05410 | CAGTGTTGCCAACGGTTCAT AAACGGAGGTATTCCGTAGTTGAG | 0.87 | [86] |
HSFA3 | At5g03720 | AGTTTGCCAGAATCATACTTCCA AGCAAGTTTGGTTGGATTGTGG | 0.82 | [11] |
BPM1 | At5g19000 | CCCGGTTGCACTGAATGGGA ACGATTCATTGTACTTGCTAGATCCGATT | 0.90 | [11] |
BPM2 | At3g06190 | TCTATCCGGGTAATAAGATCGAAGA CCTTGGAAACCCTAATTGTGTC | 0.86 | [11] |
BPM3 | At2g39760 | AGTGATAGACGACATCGAACCT CAAGGTCATAGAGGTCAGCA | 0.86 | [11] |
BPM4 | At3g03740 | GAAGTTACTGACATGGAGCCT CACTGACTCGCACATTAGAC | 0.84 | [11] |
BPM5 | At5g21010 | CGTTTGCCTTAAGTTTACTGCC ACTGTTACTACCTTCCTCGTG | 0.78 | [89] |
BPM6 | At3g43700 | AAGGGTCAGGCAGCGAACCA CCGCTTCCCTTTCATTCGGTACA | 0.94 | [89] |
BPM1-GFP | / | AGTGGAAGACGAGTGAAGC CTGAACTTGTGGCCGTTTAC | 0.85 | [89] |
OGIO | At5g51880 | ATCCAAGAGCAGTTCAAGCAAG GAGAGCCATACCTTCCACTG | 0.82 | [86] |
PUX7 | At1g14570 | GTTTCTCAGACTATCAAAGCCA ATCAATTACAAGCACCACGG | 0.86 | [86] |
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, F.Q.; Xue, H.W. The Ubiquitin-Proteasome System in Plant Responses to Environments. Plant Cell Environ. 2019, 42, 2931–2944. [Google Scholar] [CrossRef] [PubMed]
- Ban, Z.; Estelle, M. CUL3 E3 Ligases in Plant Development and Environmental Response. Nat. Plants 2021, 7, 6–16. [Google Scholar] [CrossRef]
- Weber, H.; Hellmann, H. Arabidopsis thaliana BTB/POZ-MATH Proteins Interact with Members of the ERF/AP2 Transcription Factor Family. FEBS J. 2009, 276, 6624–6635. [Google Scholar] [CrossRef]
- De Boer, K.; Tilleman, S.; Pauwels, L.; Vanden Bossche, R.; De Sutter, V.; Vanderhaeghen, R.; Hilson, P.; Hamill, J.D.; Goossens, A. APETALA2/ETHYLENE RESPONSE FACTOR and Basic Helix-Loop-Helix Tobacco Transcription Factors Cooperatively Mediate Jasmonate-Elicited Nicotine Biosynthesis. Plant J. 2011, 66, 1053–1065. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Sun, F.; Wang, Q.; Chen, M.; Huang, Y.; Feng, Y.Q.; Luo, X.; Yang, J. Rice Ethylene-Response AP2/ERF Factor OsEATB Restricts Internode Elongation by Down-Regulating a Gibberellin Biosynthetic Gene. Plant Physiol. 2011, 157, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Lechner, E.; Leonhardt, N.; Eisler, H.; Parmentier, Y.; Alioua, M.; Jacquet, H.; Leung, J.; Genschik, P. MATH/BTB CRL3 Receptors Target the Homeodomain-Leucine Zipper ATHB6 to Modulate Abscisic Acid Signaling. Dev. Cell 2011, 21, 1116–1128. [Google Scholar] [CrossRef]
- Chen, L.; Lee, J.H.; Weber, H.; Tohge, T.; Witt, S.; Roje, S.; Fernie, A.R.; Hellmann, H. Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants. Plant Cell 2013, 25, 2253–2264. [Google Scholar] [CrossRef]
- Chen, L.; Bernhardt, A.; Lee, J.; Hellmann, H. Identification of Arabidopsis MYB56 as a Novel Substrate for CRL3 BPM E3 Ligases. Mol. Plant 2015, 8, 242–250. [Google Scholar] [CrossRef]
- Jagić, M.; Vuk, T.; Škiljaica, A.; Markulin, L.; Vičić Bočkor, V.; Tokić, M.; Miškec, K.; Razdorov, G.; Habazin, S.; Šoštar, M.; et al. BPM1 Regulates RdDM-Mediated DNA Methylation via a Cullin 3 Independent Mechanism. Plant Cell Rep. 2022, 41, 2139–2157. [Google Scholar] [CrossRef]
- Waese, J.; Fan, J.; Pasha, A.; Yu, H.; Fucile, G.; Shi, R.; Cumming, M.; Kelley, L.A.; Sternberg, M.J.; Krishnakumar, V.; et al. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. Plant Cell 2017, 29, 1806–1821. [Google Scholar] [CrossRef]
- Škiljaica, A.; Lechner, E.; Jagić, M.; Majsec, K.; Malenica, N.; Genschik, P.; Bauer, N. The Protein Turnover of Arabidopsis BPM1 Is Involved in Regulation of Flowering Time and Abiotic Stress Response. Plant Mol. Biol. 2020, 102, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Ohama, N.; Kidokoro, S.; Mizoi, J.; Takahashi, F.; Todaka, D.; Mogami, J.; Sato, H.; Qin, F.; Kim, J.-S.; et al. BPM-CUL3 E3 Ligase Modulates Thermotolerance by Facilitating Negative Regulatory Domain-Mediated Degradation of DREB2A in Arabidopsis. Proc. Natl. Acad. Sci. USA 2017, 114, E8528–E8536. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat Tolerance in Plants: An Overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Way, D.A.; Sharkey, T.D. Plant Heat Stress: Concepts Directing Future Research. Plant Cell. Environ. 2021, 44, 1992–2005. [Google Scholar] [CrossRef]
- Sato, H.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Complex Plant Responses to Drought and Heat Stress under Climate Change. Plant J. 2024, 117, 1873–1892. [Google Scholar] [CrossRef] [PubMed]
- Marutani, Y.; Yamauchi, Y.; Kimura, Y.; Mizutani, M.; Sugimoto, Y. Damage to Photosystem II Due to Heat Stress without Light-Driven Electron Flow: Involvement of Enhanced Introduction of Reducing Power into Thylakoid Membranes. Planta 2012, 236, 753–761. [Google Scholar] [CrossRef]
- Hu, S.; Ding, Y.; Zhu, C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. Front. Plant Sci. 2020, 11, 375. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. [Google Scholar] [CrossRef]
- Stirbet, A. Govindjee on the Relation Between the Kautsky Effect (Chlorophyll a Fluorescence Induction) and Photosystem II: Basics and Applications of the OJIP Fluorescence Transient. J. Photochem. Photobiol. B 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Magaña Ugarte, R.; Escudero, A.; Gavilán, R.G. Metabolic and Physiological Responses of Mediterranean High-Mountain and Alpine Plants to Combined Abiotic Stresses. Physiol. Plant. 2019, 165, 403–412. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Pospíšil, P.; Kumar, A.; Prasad, A. Reactive Oxygen Species in Photosystem II: Relevance for Oxidative Signaling. Photosynth. Res. 2022, 152, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Hanke, G. ROS Production and Signalling in Chloroplasts: Cornerstones and Evolving Concepts. Plant J. 2022, 111, 642–661. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Tiwari, S.; Singh, M.; Singh, A.; Mohan Prasad, S. Generation Mechanisms of Reactive Oxygen Species in the Plant Cell: An Overview. In Reactive Oxygen Species in Plants: Boon or Bane—Revisiting the Role of ROS; Singh, V.P., Singh, S., Kumar Tripathi, D., Mohan Prasad, S., Kumar Chauhan, D., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2017; pp. 1–22. [Google Scholar] [CrossRef]
- Sadeghipour, O. Cadmium Toxicity Alleviates by Seed Priming with Proline or Glycine Betaine in Cowpea (Vigna unguiculata (L.) Walp.). Egypt. J. Agron. 2020, 42, 163–170. [Google Scholar] [CrossRef]
- Fang, C.; Dou, L.; Liu, Y.; Yu, J.; Tu, J. Heat Stress-Responsive Transcriptome Analysis in Heat Susceptible and Tolerant Rice by High-Throughput Sequencing. Ecol. Genet. Genom. 2018, 6, 33–40. [Google Scholar] [CrossRef]
- Galsurker, O.; Doron-Faigenboim, A.; Teper-Bamnolker, P.; Daus, A.; Lers, A.; Eshel, D. Differential Response to Heat Stress in Outer and Inner Onion Bulb Scales. J. Exp. Bot. 2018, 69, 4047–4064. [Google Scholar] [CrossRef]
- Kotak, S.; Larkindale, J.; Lee, U.; von Koskull-Döring, P.; Vierling, E.; Scharf, K.D. Complexity of the Heat Stress Response in Plants. Curr. Opin. Plant Biol. 2007, 10, 310–316. [Google Scholar] [CrossRef]
- Ohama, N.; Sato, H.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional Regulatory Network of Plant Heat Stress Response. Trends Plant Sci. 2017, 22, 53–65. [Google Scholar] [CrossRef]
- Schramm, F.; Larkindale, J.; Kiehlmann, E.; Ganguli, A.; Englich, G.; Vierling, E.; Von Koskull-Döring, P. A Cascade of Transcription Factor DREB2A and Heat Stress Transcription Factor HsfA3 Regulates the Heat Stress Response of Arabidopsis. Plant J. 2008, 53, 264–274. [Google Scholar] [CrossRef]
- Yoshida, T.; Ohama, N.; Nakajima, J.; Kidokoro, S.; Mizoi, J.; Nakashima, K.; Maruyama, K.; Kim, J.-M.; Seki, M.; Todaka, D.; et al. Arabidopsis HsfA1 Transcription Factors Function as the Main Positive Regulators in Heat Shock-Responsive Gene Expression. Mol. Genet. Genom. 2011, 286, 321–332. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Bassel, G.W. Seed Vigour and Crop Establishment: Extending Performance beyond Adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- Crafts-Brandner, S.J.; Salvucci, M.E. Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress. Plant Physiol. 2002, 129, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under Stressful Environments: An Overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. In Probing Photosynthesis: Mechanisms, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis Group, LLC: Abingdon, UK, 2000; pp. 445–483. [Google Scholar]
- Chen, L.-S.; Cheng, L. Photosystem 2 Is More Tolerant to High Temperature in Apple (Malus domestica Borkh.) Leaves than in Fruit Peel. Photosynthetica 2009, 47, 112–120. [Google Scholar] [CrossRef]
- Zushi, K.; Kajiwara, S.; Matsuzoe, N. Chlorophyll a Fluorescence OJIP Transient as a Tool to Characterize and Evaluate Response to Heat and Chilling Stress in Tomato Leaf and Fruit. Sci. Hortic. 2012, 148, 39–46. [Google Scholar] [CrossRef]
- Jägerbrand, A.K.; Kudo, G. Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan. Plants 2016, 5, 22. [Google Scholar] [CrossRef]
- Ritchie, G.A. Chlorophyll Fluorescence: What Is It and What Do the Numbers Mean? In National Proceedings: Forest and Conservation Nursery Associations—2005; Riley, L.E., Dumroese, R.K., Landis, T.D., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 34–42. [Google Scholar]
- Živčák, M.; Brestič, M.; Olšovská, K.; Slamka, P. Performance Index as a Sensitive Indicator of Water Stress in Triticum aestivum L. Plant Soil Environ. 2008, 54, 133–139. [Google Scholar] [CrossRef]
- Jedmowski, C.; Brüggemann, W. Imaging of Fast Chlorophyll Fluorescence Induction Curve (OJIP) Parameters, Applied in a Screening Study with Wild Barley (Hordeum spontaneum) Genotypes under Heat Stress. J. Photochem. Photobiol. B 2015, 151, 153–160. [Google Scholar] [CrossRef]
- Shanker, A.K.; Amirineni, S.; Bhanu, D.; Yadav, S.K.; Jyothilakshmi, N.; Vanaja, M.; Singh, J.; Sarkar, B.; Maheswari, M.; Singh, V.K. High-Resolution Dissection of Photosystem II Electron Transport Reveals Differential Response to Water Deficit and Heat Stress in Isolation and Combination in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Front. Plant Sci. 2022, 13, 892676. [Google Scholar] [CrossRef]
- Vuković, M.; Kutnjak, M.; Vitko, S.; Tkalec, M.; Vidaković-Cifrek, Ž. Heat Priming Modifies Heat Stress Response in BPM1-Overexpressing Arabidopsis thaliana (L.) Heynh. J. Plant Growth Regul. 2025, 44, 1695–1712. [Google Scholar] [CrossRef]
- Jin, H.; Li, M.; Duan, S.; Fu, M.; Dong, X.; Liu, B.; Feng, D.; Wang, J.; Wang, H.B. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency. Plant Physiol. 2016, 172, 1720–1731. [Google Scholar] [CrossRef]
- Simkin, A.J.; Kapoor, L.; Doss, C.G.P.; Hofmann, T.A.; Lawson, T.; Ramamoorthy, S. The Role of Photosynthesis Related Pigments in Light Harvesting, Photoprotection and Enhancement of Photosynthetic Yield in Planta. Photosynth. Res. 2022, 152, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Qu, A.L.; Ding, Y.F.; Jiang, Q.; Zhu, C. Molecular Mechanisms of the Plant Heat Stress Response. Biochem. Biophys. Res. Commun. 2013, 432, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.T.; Wani, S.H.; Chaudhary, M.T.; Jameel, T.; Kaur, P.; Du, X. Heat Tolerance in Cotton: Morphological, Physiological, and Genetic Perspectives. In Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives; Wani, S.H., Kumar, V., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Volkov, R.A.; Panchuk, I.I.; Mullineaux, P.M.; Schöffl, F. Heat Stress-Induced H2O2 Is Required for Effective Expression of Heat Shock Genes in Arabidopsis. Plant Mol. Biol. 2006, 61, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kaur, R.; Kaur, N.; Bhandhari, K.; Kaushal, N.; Gupta, K.; Bains, T.S.; Nayyar, H. Heat-Stress Induced Inhibition in Growth and Chlorosis in Mungbean (Phaseolus aureus Roxb.) Is Partly Mitigated by Ascorbic Acid Application and Is Related to Reduction in Oxidative Stress. Acta Physiol. Plant. 2011, 33, 2091–2101. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Zhou, R.; Kong, L.; Yu, X.; Ottosen, C.-O.; Zhao, T.; Jiang, F.; Wu, Z. Oxidative Damage and Antioxidant Mechanism in Tomatoes Responding to Drought and Heat Stress. Acta Physiol. Plant. 2019, 41, 20. [Google Scholar] [CrossRef]
- Larkindale, J.; Knight, M.R. Protection against Heat Stress-Induced Oxidative Damage in Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid. Plant Physiol. 2002, 128, 682–695. [Google Scholar] [CrossRef]
- Ji, H.S.; Bang, S.G.; Ahn, M.-A.; Kim, G.; Kim, E.; Eom, S.H.; Hyun, T.K. Molecular Cloning and Functional Characterization of Heat Stress-Responsive Superoxide Dismutases in Garlic (Allium sativum L.). Antioxidants 2021, 10, 815. [Google Scholar] [CrossRef]
- Ozden, M.; Demirel, U.; Kahraman, A. Effects of Proline on Antioxidant System in Leaves of Grapevine (Vitis vinifera L.) Exposed to Oxidative Stress by H2O2. Sci. Hortic. 2009, 119, 163–168. [Google Scholar] [CrossRef]
- Gill, S.S.; Tajrishi, M.; Madan, M.; Tuteja, N. A DESD-Box Helicase Functions in Salinity Stress Tolerance by Improving Photosynthesis and Antioxidant Machinery in Rice (Oryza sativa L. cv. PB1). Plant Mol. Biol. 2013, 82, 1–22. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Zhang, M.; Wang, X.; Zhao, Y.; Yin, Z.; Zhang, Z.; Wang, Y.; Xiong, H.; Zhang, H.; et al. OsERF71 Confers Drought Tolerance via Modulating ABA Signaling and Proline Biosynthesis. Plant Sci. 2018, 270, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Gür, A.; Demirel, U.; Özden, M.; Kahraman, A.; Çopur, O. Diurnal Gradual Heat Stress Affects Antioxidant Enzymes, Proline Accumulation and Some Physiological Components in Cotton (Gossypium hirsutum L.). Afr. J. Biotechnol. 2010, 9, 1008–1015. [Google Scholar] [CrossRef]
- Kavi Kishor, P.B.; Suravajhala, P.; Rathnagiri, P.; Sreenivasulu, N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. Front. Plant Sci. 2022, 13, 867531. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Veljovic-Jovanovic, S.; Driscoll, S.; Novitskaya, L.; Foyer, C.H. Drought and Oxidative Load in the Leaves of C3 Plants: A Predominant Role for Photorespiration? Ann. Bot. 2002, 89, 841–850. [Google Scholar] [CrossRef]
- Bauer, N.; Leljak-Levanić, D.; Vuković, R.; Razdorov, G. MATH-BTB Domain Protein AtBPM1 Directly Interact with DMS3, Important of RNA-Directed DNA Methylation in Plants. In Proceedings of the FEBS-EMBO 2014, Paris, France, 30 August–4 September 2014; p. 306. [Google Scholar]
- Kerchev, P.; Waszczak, C.; Lewandowska, A.; Willems, P.; Shapiguzov, A.; Li, Z.; Alseekh, S.; Mühlenbock, P.; Hoeberichts, F.A.; Huang, J.; et al. Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis. Plant Physiol. 2016, 171, 1704–1719. [Google Scholar] [CrossRef]
- Vitko, S.; Bauer, N.; Leljak-Levanić, D.; Vidaković-Cifrek, Ž. Effect of Moderate Heat Stress on Arabidopsis thaliana with Modified BPMs Expression. Acta Bot. Croat. 2022, 81, 140–148. [Google Scholar] [CrossRef]
- Xiu, Y.; Iqbal, A.; Zhu, C.; Wu, G.; Chang, Y.; Li, N.; Cao, Y.; Zhang, W.; Zeng, H.; Chen, S.; et al. Improvement and Transcriptome Analysis of Root Architecture by Overexpression of Fraxinus pennsylvanica DREB2A Transcription Factor in Robinia pseudoacacia L. “Idaho”. Plant Biotechnol. J. 2016, 14, 1456–1469. [Google Scholar] [CrossRef]
- Finka, A.; Mattoo, R.U.H.; Goloubinoff, P. Meta-Analysis of Heat-and Chemically Upregulated Chaperone Genes in Plant and Human Cells. Cell Stress Chaperones 2011, 16, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Finka, A.; Sharma, S.K.; Goloubinoff, P. Multi-Layered Molecular Mechanisms of Polypeptide Holding, Unfolding and Disaggregation by HSP70/HSP110 Chaperones. Front. Mol. Biosci. 2015, 2, 29. [Google Scholar] [CrossRef]
- Guihur, A.; Fauvet, B.; Finka, A.; Quadroni, M.; Goloubinoff, P. Quantitative Proteomic Analysis to Capture the Role of Heat-Accumulated Proteins in Moss Plant Acquired Thermotolerance. Plant Cell Environ. 2021, 44, 2117–2133. [Google Scholar] [CrossRef]
- Charng, Y.; Liu, H.; Liu, N.; Hsu, F.; Ko, S. Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation. Plant Physiol. 2006, 140, 1297–1305. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Lämke, J.; Brzezinka, K.; Altmann, S.; Bäurle, I. A Hit-and-run Heat Shock Factor Governs Sustained Histone Methylation and Transcriptional Stress Memory. EMBO J. 2016, 35, 162–175. [Google Scholar] [CrossRef]
- Kozeko, L. Different Roles of Inducible and Constitutive HSP70 and HSP90 in Tolerance of Arabidopsis thaliana to High Temperature and Water Deficit. Acta Physiol. Plant. 2021, 43, 58. [Google Scholar] [CrossRef]
- Agarwal, P.; Agarwal, P.K.; Joshi, A.J.; Sopory, S.K.; Reddy, M.K. Overexpression of PgDREB2A Transcription Factor Enhances Abiotic Stress Tolerance and Activates Downstream Stress-Responsive Genes. Mol. Biol. Rep. 2010, 37, 1125–1135. [Google Scholar] [CrossRef]
- Juranić, M.; Dresselhaus, T. Phylogenetic Analysis of the Expansion of the MATH-BTB Gene Family in the Grasses. Plant Signal Behav. 2014, 9, e28242. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Boyes, D.C.; Zayed, A.M.; Ascenzi, R.; Mccaskill, A.J.; Hoffman, N.E.; Davis, K.R.; Görlach, J. Growth Stage-Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants. Plant Cell 2001, 13, 1499–1510. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Mátai, A.; Hideg, É. A Comparison of Colorimetric Assays Detecting Hydrogen Peroxide in Leaf Extracts. Anal. Methods 2017, 9, 2357–2360. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the Thiobarbituric Acid-Reactive-Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.A.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Maehly, A.C.; Chance, B. The Assay of Catalases and Peroxidases. Methods Biochem. Anal. 1954, 1, 358–423. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Romero-Calvo, I.; Ocón, B.; Martínez-Moya, P.; Suárez, M.D.; Zarzuelo, A.; Martínez-Augustin, O.; de Medina, F.S. Reversible Ponceau Staining as a Loading Control Alternative to Actin in Western Blots. Anal. Biochem. 2010, 401, 318–320. [Google Scholar] [CrossRef]
- Škiljaica, A.; Jagić, M.; Vuk, T.; Leljak Levanić, D.; Bauer, N.; Markulin, L. Evaluation of Reference Genes for RT-qPCR Gene Expression Analysis in Arabidopsis thaliana Exposed to Elevated Temperatures. Plant Biol. 2022, 24, 367–379. [Google Scholar] [CrossRef]
- Pfaffl, M.W. Quantification Strategies in Real-Time PCR. In AZ of Quantitative PCR; Bustin, S.A., Ed.; International University Line: La Jolla, CA, USA, 2004; pp. 89–113. [Google Scholar]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed]
- Vitko, S. Response of Arabidopsis thaliana (L.) Heynh. with Modified BPM and DMS3 Gene Expression to Heat Stress. Ph.D. Thesis, University of Zagreb, Faculty of Science, Zagreb, Croatia, 2024. [Google Scholar]
LINE | GROUP | ABS/RC | TR0/RC | ET0/RC | DI0/RC |
---|---|---|---|---|---|
wt | C-HS | 3.02 ± 0.03 A | 2.32 ± 0.02 A | 1.47 ± 0.02 A | 0.70 ± 0.02 A |
HS | 3.00 ± 0.14 A | 2.17 ± 0.06 A * | 1.28 ± 0.04 A * | 0.83 ± 0.09 A | |
C-REC | 2.94 ± 0.10 A | 2.18 ± 0.06 A | 1.29 ± 0.06 A | 0.76 ± 0.05 A | |
REC | 2.91 ± 0.08 A | 2.20 ± 0.05 A | 1.30 ± 0.08 A | 0.71 ± 0.03 A | |
oeBPM1 | C-HS | 2.69 ± 0.09 B | 2.08 ± 0.07 B | 1.26 ± 0.05 B | 0.62 ± 0.02 B |
HS | 3.11 ± 0.08 A * | 2.25 ± 0.04 A | 1.37 ± 0.04 A | 0.86 ± 0.05 A * | |
C-REC | 2.70 ± 0.08 A | 2.06 ± 0.05 A | 1.28 ± 0.04 A | 0.65 ± 0.04 A | |
REC | 2.62 ± 0.03 B | 2.04 ± 0.03 A | 1.29 ± 0.02 A | 0.58 ± 0.01 B | |
amiR-bpm | C-HS | 2.73 ± 0.04 B | 2.14 ± 0.02 B | 1.30 ± 0.02 B | 0.59 ± 0.02 B |
HS | 2.80 ± 0.03 A | 2.14 ± 0.02 A | 1.33 ± 0.01 A | 0.66 ± 0.02 A * | |
C-REC | 2.74 ± 0.01 A | 2.09 ± 0.03 A | 1.28 ± 0.04 A | 0.64 ± 0.02 A | |
REC | 2.70 ± 0.08 AB | 2.09 ± 0.07 A | 1.29 ± 0.05 A | 0.61 ± 0.03 B |
LINE | GROUP | Chl a (μg g−1 FW) | Chl b (μg g−1 FW) | Cars (μg g−1 FW) |
---|---|---|---|---|
wt | C-HS | 356.45 ± 20.80 AB | 84.41 ± 3.52 A | 105.07 ± 3.40 AB |
HS | 313.18 ± 17.68 A | 76.86 ± 1.93 A | 86.84 ± 4.42 A * | |
C-REC | 305.22 ± 32.29 A | 82.03 ± 11.51 A | 88.08 ± 9.17 A | |
REC | 333.02 ± 16.18 A | 92.31 ± 1.09 A | 95.27 ± 4.06 A | |
oeBPM1 | C-HS | 405.41 ± 21.87 A | 99.92 ± 6.58 A | 116.08 ± 4.64 A |
HS | 331.89 ± 12.99 A * | 84.97 ± 3.68 A | 100.77 ± 3.97 A * | |
C-REC | 357.97 ± 24.00 A | 89.37 ± 5.99 A | 104.69 ± 6.77 A | |
REC | 376.84 ± 25.17 A | 98.78 ± 7.28 A | 108.63 ± 5.95 A | |
amiR-bpm | C-HS | 314.12 ± 22.23 B | 82.97 ± 4.53 A | 90.84 ± 5.94 B |
HS | 368.84 ± 34.23 A | 86.87 ± 6.98 A | 104.22 ± 9.82 A | |
C-REC | 326.65 ± 9.45 A | 83.57 ± 6.10 A | 97.56 ± 0.62 A | |
REC | 328.29 ± 25.87 A | 83.95 ± 6.50 A | 97.00 ± 8.25 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitko, S.; Leljak-Levanić, D.; Bauer, N.; Vidaković-Cifrek, Ž. BPM Proteins Modulate Heat Stress Response in Arabidopsis thaliana Seedlings. Plants 2025, 14, 1969. https://doi.org/10.3390/plants14131969
Vitko S, Leljak-Levanić D, Bauer N, Vidaković-Cifrek Ž. BPM Proteins Modulate Heat Stress Response in Arabidopsis thaliana Seedlings. Plants. 2025; 14(13):1969. https://doi.org/10.3390/plants14131969
Chicago/Turabian StyleVitko, Sandra, Dunja Leljak-Levanić, Nataša Bauer, and Željka Vidaković-Cifrek. 2025. "BPM Proteins Modulate Heat Stress Response in Arabidopsis thaliana Seedlings" Plants 14, no. 13: 1969. https://doi.org/10.3390/plants14131969
APA StyleVitko, S., Leljak-Levanić, D., Bauer, N., & Vidaković-Cifrek, Ž. (2025). BPM Proteins Modulate Heat Stress Response in Arabidopsis thaliana Seedlings. Plants, 14(13), 1969. https://doi.org/10.3390/plants14131969