Photosynthetic Performance and Yield Losses of Winter Rapeseed (Brassica napus L. var. napus) Caused by Simulated Hail
Abstract
1. Introduction
2. Results
2.1. Yield Loses
2.2. Gas Exchange and Chlorophyll Content Index Results
2.3. JIP-Test Measurements
2.4. PAM Measurements
2.5. Relationship between Hail Stress and Individual Parameters of Photosynthetic Performance
3. Discussion
4. Materials and Methods
4.1. Experimental Design and Plant Growth Conditions
- (i)
- Control;
- (ii)
- Hail stress.
4.2. Yield Measurements
4.3. Gas Exchange Measurements and Chlorophyll Content Index Measurement
4.4. Chlorophyll a Fluorescence Measurement
- -
- HandyPEA (Hansatech Instruments Ltd., King’s Lynn, UK);
- -
- FMS-2 (Hansatech Instruments Ltd., King’s Lynn, UK).
- -
- Fs—Steady-state fluorescence at any light level. This parameter indicates the intensity of chlorophyll fluorescence, which accompanies the photosynthesis process in stationary conditions.
- -
- Fm’—Maximum chlorophyll a fluorescence in light-adapted leaves.
- -
- ΦPSII (yield or Genty parameter)—Estimated effective quantum yield (efficiency) of PSII photochemistry at a given PAR. Based on changes in the values of this parameter, the quantum yield of the photochemical reaction in PSII can be assessed.
- -
- ETR—electron flow rate through photosystems.
- By the use of special leaf clips, plants were adapted to darkness for about 15 min;
- First pulse light (4000 μmol photons m−2 s−1) was activated for 1 s (Fo and Fm measured);
- Wait until signal gets to a steady state;
- Actinic light (1000 μmol photons m−2 s−1) was activated (Fp measured);
- Wait 4–5 min until the signal gets to a steady state (a time that is enough for full stomata adaptation and achieving equilibrium between light and dark phases of photosynthesis) (Fs was measured);
- Second pulse light (12,000 μmol photons m−2 s−1) was activated for 1 s (Fm’ measured).
4.5. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hausmann, J. Challenges for integrated pest management of Dasineura brassicae in oilseed rape. Arthropod-Plant Interact. 2021, 15, 645–656. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Załuski, D. Winter oilseed rape: Agronomic management in different tillage systems and energy balance. Energy 2023, 277, 127590. [Google Scholar] [CrossRef]
- Rusteika, M.; Skinulienė, L. Expectations of the Participants of the Crop Insurance System and Their Implementation. Agriculture 2023, 13, 649. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization). Guidelines on the Defintion and Monitoring of Extreme Weather and Climate Events. Task Team Defin Extrem Weather clim Events; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- Felix, M.O.; Kennedy, P. Correlation of polarimetric radar hail signature with MODIS satellite ground truth data. In Proceedings of the 87th AMS Annual Meeting, San Antonio, TX, USA, 14–18 January 2007. [Google Scholar]
- Lorenz, H.; Kabelitz, R.; Bleiholder, H.; Hofmann, M. Phänologische Entwicklungsstadien von Gemüsepflanzen: II. Fruchtgemüse und Hülsenfrüchte. Nachrichtenblatt Dtsch. Pflanzenschutzd. 1994, 46, 217–232. [Google Scholar]
- Wang, L.; Liu, L.; Wen, M.; Li, M.; Dong, Z.; He, Z.; Cui, J.; Ma, F. Using field hyperspectral data to predict cotton yield reduction after hail damage. Comput. Electron. Agric. 2021, 190, 106400. [Google Scholar] [CrossRef]
- Angearu, C.-V.; Ontel, I.; Irimescu, A.; Sorin, B.; Dodd, E. Remote sensing methods for detecting and mapping hailstorm damage: A case study from the 20 July 2020 hailstorm, Baragan Plain, Romania. Nat. Hazards 2022, 114, 2013–2040. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2017, 132, 13–66. [Google Scholar] [CrossRef]
- Strasser, R.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, Govindjee, G.C., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Goltsev, V.N.; Zuk-Golaszewska, K.; Zivcak, M. Chlorophyll Fluorescence: Understanding Crop Performance: Basics and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Tartachnyk, I.; Blanke, M.M. Effect of mechanically-simulated hail on photosynthesis, dark respiration and transpiration of apple leaves. Environ. Exp. Bot. 2002, 48, 169–175. [Google Scholar] [CrossRef]
- Tartachnyk, I.; Blanke, M.M.; Jackson, M.B. Effect of hail on photosynthesis, chlorophyll fluorescence, stomatal closure and evapotranspiration of apple leaves. Acta Hortic. 2007, 732, 543–547. [Google Scholar] [CrossRef]
- Petoumenou, D.G.; Biniari, K.; Xyrafis, E.; Mavronasios, D.; Daskalakis, I.; Palliotti, A. Effects of Natural Hail on the Growth, Physiological Characteristics, Yield, and Quality of Vitis vinifera L. cv. Thompson Seedless under Mediterranean Growing Conditions. Agronomy 2019, 9, 197. [Google Scholar] [CrossRef]
- Jalali, A.H. Potato (Solanum tuberosum L.) yield response to simulated hail damage. Arch. Agron. Soil Sci. 2013, 59, 981–987. [Google Scholar] [CrossRef]
- Flexas, J.; Carriquí, M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant’s phylogeny: Lessons for improving crop photosynthesis. Plant J. 2020, 101, 964–978. [Google Scholar] [CrossRef] [PubMed]
- Dellero, Y.; Jossier, M.; Bouchereau, A.; Hodges, M.; Leport, L. Leaf Phenological Stages of Winter Oilseed Rape (Brassica napus L.) Have Conserved Photosynthetic Efficiencies but Contrasted Intrinsic Water Use Efficiencies at High Light Intensities. Front. Plant Sci. 2021, 12, 659439. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, P.; Pawluśkiewicz, B.; Baczewska, A.H.; Oglęcki, P.; Kalaji, H. Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. Zemdirbyste-Agriculture 2015, 102, 305–312. [Google Scholar] [CrossRef]
- Dąbrowski, P.; Keutgen, A.J.; Keutgen, N.; Sierka, E.; Baczewska-Dąbrowska, A.H.; Mojski, J.; Pawluśkiewicz, B.; Sieczko, L.; Kalaji, H.M. Photosynthetic efficiency of perennial ryegrass (Lolium perenne L.) seedlings in response to Ni and Cd stress. Sci. Rep. 2023, 13, 5357. [Google Scholar] [CrossRef]
- Rapacz, M.; Sasal, M.; Kalaji, H.M.; Kościelniak, J. Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PLoS ONE 2015, 10, e0134820. [Google Scholar] [CrossRef]
- Stachurska, J.; Rys, M.; Pociecha, E.; Kalaji, H.M.; Dąbrowski, P.; Oklestkova, J.; Jurczyk, B.; Janeczko, A. Deacclimation-Induced Changes of Photosynthetic Efficiency, Brassinosteroid Homeostasis and BRI1 Expression in Winter Oilseed Rape (Brassica napus L.)—Relation to Frost Tolerance. Int. J. Mol. Sci. 2022, 23, 5224. [Google Scholar] [CrossRef]
- Rapacz, M.; Hura, K. The pattern of changes in photosynthetic apparatus in response to cold acclimation and de-acclimation in two contrasting cultivars of oilseed rape. Photosynthetica 2002, 40, 63–69. [Google Scholar] [CrossRef]
- Sieczko, L.; Dąbrowski, P.; Kowalczyk, K.; Gajc-Wolska, J.; Borucki, W.; Janaszek-Mańkowska, M.; Kowalczyk, W.; Farci, D.; Kalaji, H.M. Early detection of phosphorus deficiency stress in cucumber at the cellular level using chlorophyll fluorescence signals. J. Water Land Dev. Spec. Issue 2022, 176–186. [Google Scholar] [CrossRef]
- Borawska-Jarmułowicz, B.; Mastalerczuk, G.; Dąbrowski, P.; Tuchowska, Ż.; Kalaji, H. Influence of induced drought on photosynthetic performance in Dactylis glomerata varieties during the early growth stage. J. Water Land Dev. 2024, 60, 194–208. [Google Scholar] [CrossRef]
- Peña-Olmos, J.E.; Casierra-Posada, F. Chlorophyll Fluorescence in Partially Defoliated Grape Plants (Vitis vinifera L. cv. Chardonnay). Rev. Fac. Nac. De Agron. Medellín 2013, 66, 6881–6889. [Google Scholar]
- Mishra, K.B.; Mishra, A.; Novotná, K.; Rapantová, B.; Hodaňová, P.; Urban, O.; Klem, K. Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. Plant Methods 2016, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Stirbet, A.; Govindjee. The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S-M fluorescence rise. Photosynth. Res. 2016, 130, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Bernát, G.; Steinbach, G.; Kaňa, R.; Govindjee; Misra, A.N.; Prašil, O. On the origin of the slow M–T chlorophyll a fluorescence decline in cyanobacteria: Interplay of short-term light-responses. Photosynth. Res. 2018, 136, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Rapacz, M.; Gasior, D.; Zwierzykowski, Z.; Lesniewska-Bocianowska, A.; Humphreys, M.W.; Gay, A.P. Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by anther culture of Festuca pratensis × Lolium multiflorum cultivars. New Phytol. 2004, 162, 105–114. [Google Scholar] [CrossRef]
- Kasajima, I.; Takahara, K.; Kawai-Yamada, M.; Uchimiya, H. Estimation of the relative sizes of rate constants for chlorophyll de-excitation processes through comparison of inverse fluorescence intensities. Plant Cell Physiol. 2009, 50, 1600–1616. [Google Scholar] [CrossRef] [PubMed]
- Brestic, M.; Zivcak, M.; Olsovska, K.; Shao, H.-B.; Kalaji, H.M.; Allakhverdiev, S.I. Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves. Plant Physiol. Biochem 2014, 81, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Roháček, K.; Soukupová, J.; Barták, M. Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. In Plant Cell Compartments—Selected Topics; Benoît, S., Ed.; Research Signpost: Trivandrum, Kerala, India, 2008; pp. 41–104. ISBN 978-81-308-0104-9. [Google Scholar]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; et al. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2020, 58, 275–292. [Google Scholar] [CrossRef]
Treatment | Yield | % Yield Loss | |
---|---|---|---|
Mean (t ha−1) | ±S.D. | ||
Control | 3.84 a | 0.09 | 0.0 |
Hail | 1.77 b | 0.07 | 53.9 |
Treatment | An (µmol CO2 m−2 s−1) | gs (mol H2O m−2 s−1) | Ci (µmol CO2 mol−1) | E (mmol H2O m−2 s−1) | CCI (a.u.) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | ±S.D. | Mean | ±S.D. | Mean | ±S.D. | Mean | ±S.D. | Mean | ±S.D. | |
Control | 32.2 a | 3.0 | 0.34 a | 0.04 | 238 b | 27 | 17.1 | 2.1 | 22.3 a | 2.9 |
Hail | 22.5 b | 1.7 | 0.18 b | 0.02 | 351 a | 26 | 8.9 | 1.4 | 14.2 b | 1.5 |
Parameter | r | Parameter | r | Parameter | r | Parameter | r |
---|---|---|---|---|---|---|---|
An | 0.86 * | Area | −0.02 | N | −0.15 | ϕRo | 0.05 |
gs | 0.92 * | Fo | −0.77 * | ABS/RC | −0.27 | PIabs | 0.41 * |
Ci | −0.90 * | Fm | 0.22 | DIo/RC | −0.11 | PItotal | 0.37 * |
E | 0.92 * | Fv | 0.53 * | TRo/RC | −0.07 | DFabs | 0.56 * |
CCI | 0.88 * | Fo/Fm | −0.13 | ETo/RC | −0.52 * | DFTotal | 0.63 * |
Fs | −0.71 * | Fv/Fm | 0.74 * | REo/RC | −0.03 | O | −0.64 * |
Fm’ | 0.74 * | Fv/Fo | 0.75 * | ϕPo | 0.74 * | K | −0.12 |
ΦPSII | 0.94 * | Vj | 0.49 * | ψEo | −0.49 * | J | 0.30 |
ETR | 0.95 * | Vi | 0.02 | ϕEo | −0.29 | I | 0.05 |
t Fm | 0.05 | Sm | −0.14 | δRo | 0.18 | P | 0.14 |
Average Month Temp. [°C] | Min. Month Temp. [°C] | Max. Month Temp. [°C] | Precipitation [mm] | Solar Radiation [W m−2] | ||||||
Month | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2033 | 2022 | 2023 |
September | 12.6 | - | 3.2 | - | 17.2 | - | 56.0 | - | 160.3 | - |
October | 11.6 | - | 0.2 | - | 16.2 | - | 31.4 | - | 132.3 | - |
November | 4.4 | - | −6.5 | - | 6.6 | - | 22.1 | - | 48.1 | - |
December | 0.8 | - | −13.3 | - | 2.6 | - | 61.6 | - | 29.4 | - |
January | - | 3.6 | - | −1.5 | - | 18.7 | - | 62.3 | - | 28.5 |
February | - | 1.8 | - | −7.7 | - | 10.0 | - | 41.2 | - | 59.8 |
March | - | 4.9 | - | −5.4 | - | 19.4 | - | 26.7 | - | 111.0 |
April | - | 9.4 | - | −3.4 | - | 22.9 | - | 57.2 | - | 176.1 |
tFm | time (in ms) to reach the maximal fluorescence FP (meaningful only when FP = Fm) |
Area | total complementary area between the fluorescence induction curve and F = FP (meaningful only when FP = Fm) |
Fo ≅ F50 µs or ≅ F20 µs | fluorescence when all PSII RCs are open (≅ to the minimal reliable recorded fluorescence) |
Fm | maximal fluorescence, when all PSII RCs are closed |
Fv ≡ Fm − Fo | maximal variable fluorescence |
Fv/Fm | maximum quantum yield for primary photochemistry |
ABS/RC = Mo × (1/VJ) × (1/ϕPo) | absorption flux (exciting PSII antenna Chl a molecules) per RC (also used as a unit-less measure of PSII apparent antenna size) |
TRo/RC = Mo × (1/VJ) | trapped energy flux (leading to QA reduction), per RC |
REo/RC = Mo × (1/VJ) × (1 − VI) | electron flux reducing end electron acceptors at the PSI acceptor side, per RC |
ETo/RC = Mo × (1/VJ) × (1 − VJ) | electron transport flux (further than QA−), per RC |
ϕPo ≡ TR0/ABS = [1 − (Fo/Fm)] | maximum quantum yield for primary photochemistry |
ϕEo ≡ ETo/ABS = [1 − (Fo/Fm)] × (1 − VJ) | quantum yield for electron transport (ET) |
ϕRo ≡ REo/ABS = [1 − (Fo/Fm)] × (1 − VI) | quantum yield for reduction of end electron acceptors at the PSI acceptor side (RE) |
ψEo ≡ ETo/TRo = (1 − VJ) | efficiency/probability that an electron moves further than QA− |
δRo ≡ REo/ETo = (1 − VI)/(1 − VJ) | efficiency/probability with which an electron from the intersystem electron carriers is transferred to reduce end electron acceptors at the PSI acceptor side (RE) |
N = Sm × (Mo/VJ) | turnover number (expresses how many times QA is reduced in the time interval from 0 to tFM) |
PIabs | performance index for energy conservation from photons absorbed by PSII until the reduction of intersystem electron acceptors |
PItotal | total performance index for energy conservation from photons absorbed by PSII until the reduction of PSI end electron acceptors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, P.; Jełowicki, Ł.; Jaszczuk, Z.M.; Kryvoviaz, O.; Kalaji, H.M. Photosynthetic Performance and Yield Losses of Winter Rapeseed (Brassica napus L. var. napus) Caused by Simulated Hail. Plants 2024, 13, 1785. https://doi.org/10.3390/plants13131785
Dąbrowski P, Jełowicki Ł, Jaszczuk ZM, Kryvoviaz O, Kalaji HM. Photosynthetic Performance and Yield Losses of Winter Rapeseed (Brassica napus L. var. napus) Caused by Simulated Hail. Plants. 2024; 13(13):1785. https://doi.org/10.3390/plants13131785
Chicago/Turabian StyleDąbrowski, Piotr, Łukasz Jełowicki, Zuzanna M. Jaszczuk, Olena Kryvoviaz, and Hazem M. Kalaji. 2024. "Photosynthetic Performance and Yield Losses of Winter Rapeseed (Brassica napus L. var. napus) Caused by Simulated Hail" Plants 13, no. 13: 1785. https://doi.org/10.3390/plants13131785
APA StyleDąbrowski, P., Jełowicki, Ł., Jaszczuk, Z. M., Kryvoviaz, O., & Kalaji, H. M. (2024). Photosynthetic Performance and Yield Losses of Winter Rapeseed (Brassica napus L. var. napus) Caused by Simulated Hail. Plants, 13(13), 1785. https://doi.org/10.3390/plants13131785